THE TEXTBOOK OF -

COMPUTER
SCIENCE

FOR CLASS - X

SINDH TEXTBOOK BOARD

Published by:
KASHIF BOOK AGENCY, KARACHI

All rights are reserved with the SINDH TEXTBOOK, BOARD, JAMSHORO.

Prepared by ASSOCIATION FOR ACADEMIC QUALITY (AFAQ) for SINDH TEXT BOOK
BOARD JAMSHORO.
Reviewed by Provincial Review Committee Directorate of Curriculum Assessment and
Research Sindh Jamshoro (DCAR).
Prescribed as a Textbook by the Boards of Intermediate and secondary Education, Karachi,
Hyderbad, Sukkur, Larkana Mirpurkhas and Shaheed Benazirabad for,Secondary School
Certificate Examination in the Province of Sindh.

Approved by the Education and Literacy Department, Government'of Sindh.
No. SO(C)SELD/STBB-18/2021 Dated: 14" July, 2021 for the province of Sindh.

Patron in Chief
Pervaiz Ahmed Baloch
Chairman, Sindh Textbook Board.

Shahid Warsi Khawaja Asif Mushtaq
Managing Director Project Director

Association For Academic Quality (AFAQ) Association For Academic Quality (AFAQ)

Rafi Mustafa Yousuf Ahmed Shaikh

Project Manager Cheif Supervisor
Association For Academic Quality (AFAQ) Sindh Textbook Board.
Supervisor
Daryush Kafi
Sindh Textbook Board, Jamshoro
AUTHORS REVIEWERS

® MS. Zufishan Kamal ® Mr. Abdul Majeed Bhurt
® Mr. Ajmal Saeed ® Professor (Retd.) Muhammad Zahid Shaikh
® Mr. Hanif Ahsan Zubedi ® Mr. Imran Pathan
® Mr. Amjad Ali Yousuf Zai
Editor ® Mr. Mushtaque Ahmed Ansari
® Khawaja Asif Mushtaq
PrF i Bux Kholdhar TECHNICAL ASSISTANCE CO-

ORDINATOR

DESIGNING & ILLUSTRATION e Mr. M. Arslan Shafaat Gaddi

® M. Arslan Chauhan

Printed at: Hameed Printing Press, Karachi.

PREFACE

After textbook of Computer Science for Class-9, Computer Science for
Class-10 isnow ready to be used by teachers and students. This textbook has been
developed on Curriculum of Computer Science 2018 reviewed by Directorate of
Curriculum, Assessment and Research Sindh, Jamshoro.

We expect that this book will fulfill the diverse needs of students studying
public and private schools across Sindh. This textbook encompasses some very
important of skill required in 21" century like Algorithm Designing, Problem
Solving, Logic Design and above all Coding. To compete with the rapidly
changing world we need to equip our youth with these skills.

IT is an area from where we have great potential. With skillful youth we
can generate a lot of foreign exchange even if we have very limited resources.
Teachers can play and an important role to equip students with IT skills and this
textbook will be helpful for them.

We believe that thisbook will help student to imagine and perceive beyond
this textbook, and instead of cramming the knowledge given in the book, they will
make efforts to develop and strengthen their own ideas and skills.

Our organization is indebted to Association For Academic Quality
(AFAQ), all the Authors and Reviewers of this book who made rigorous efforts to
deliver a book that is competitive with any other textbook at this level. We
encourage teachers, students, parents, researchers and all the stakeholders to give
their feedback and suggestion to further improve this book.

Chairman
Sindh Textbook Board, Jamshoro

Unit Page

PROBLEM SOLVING AND Aé(hTHM 1

5.

DESIGNING

BASICS OF PROGRAI@@G IN C++
Vo ™\

A4
INPUT/OUTP(Lﬁ*ANDLING in C++

. 4

CONT RUCTURE

1
‘Q@IONS

§bDIGITAL LOGIC AND DESIGN

|

7.

INTRODUCTION TO SCRATCH

20

48

70

93

107

123

SOVINGIAN D
ACORITHN .\

@

Define the term problem

Evaluate a problem in order to find out its best solution
Design a strategy for the solution of problem

Find feasible solutions of a problem

Na

1.1 PROBLEM SOLVING

Problem solving is the process of finding solutions of difficult or -

L¥
B
T

-
=

complex issues. It is the process by which any kind of problem is solved.

D= ;;;.@

Solving problems is the core feature of computers. A computer is not ol
intelligent. It cannot analyze a problem and come up with a solution. A |
human (the programmer) must analyze the problem, develop the instructions
for solving the problem, and then make the computer carry out the
instructions. The major responsibility of a programmer is to provide solution
of the problems by using computers. It will be easier if computer science
students first understand how a human solves a problem, then understand :
how to translate this solution into something a computer can understand, and
finally how to “write” the specific steps to get the job done. Remember, in
some cases a machine will solve a problem in a completely different way than

a human.

wa

What is Problem
A problem is a situation preventing
something from being achieved. A problem can
be a task, a situation or any other thing. In
simple language, a problem is a question which
requires an answer or a solution. In any case, a
problem is considered to be a matter which is difficult to solve or settle, a
doubtful case, or a complex task involving doubt and uncertainty.

Plan the solution of Problem

Problems can be solved with the help of computers but for this
programmer has to plan and strategize tasks that lead to the solution of the
problem.

Problem Solving Strategies

A very important aspect of problem-solving is developing good
strategies. There are many strategies for solving a problem. A strategy is an
approach (or a series of approaches) created to solve a computational
problem. Strategies are designed according to the nature of the problem.
. Strategies are flexible and show various steps to reach the solution. A strategy
in itself might produce incorrect results, but an algorithm based on such

| strategy will always produce correct results.

For solving any problem, it is important to know what the problem
really is and how it should actually ‘be if there was no such problem.
The question about end result helps you to find the gap and create a strategy
for solution.

Problem Solving Process

Problem solving -is a- step-by-step
| process. There are four basic step involved
in finding a solution for-a problem as given
below:

Define the § Generate
problem alternatives

Choose a
1. Define the problem. solution

2. Generate alternative solutions.

3. Evaluate and select an alternative.

4. Implement and follow up on the solution. Fig. 1.1: Problem Solving
1. Define the problem

In problem solving process, the first step is defining or identifying the

problem. It is the most difficult and the most important of all the steps. It
involves diagnosing the situation so that the focus should be on the real
problem and not on its symptoms. During this first stage of problem solving,
it is important to describe the problem. A well- described problem will also
help others to understand the problem.

Generate alternative solutions

For any problem, there are more solutions to it than the one that is
thought of first. Postpone the selection of one solution until several problem-
solving alternatives have been proposed. Considering multiple alternatives
can significantly enhance the value of your ideal solution. So, it is best to
develop a list of all feasible solutions that can be assessed and decide which
one will be the best for the particular problem. Thinking and team problem-
solving techniques are both useful tools at this stage of problem solving.

3. Evaluate and select an alternative

Many alternative solutions to the problem should be generated before
final evaluation. A common mistake in problem solving is that alternatives
are evaluated as they are proposed, so the first acceptable solution is chosen,
even if it is not the best solution. If we just focus on trying to get the results
we want, we can miss the chances for learning something new which is :
required for real improvement in the problem-solving process.

4. Implement and follow up-en the solution

The plan for best solution also includes planning on what happens

next if something goes wrong with the solution if it does not work out the

way it was required. When the best solution is implemented, it is important
to track and measure the results to be able to answer questions such as: Did it
work? Was this'a good solution? Did we learn something here in the
implementation that we could apply to other potential problems?

When choosing most appropriate solution, the problem solver should
consider about the possible impacts of that solution. For example, will this
solution solve the current problem without creating new ones or if this
solution is acceptable by everyone involved in this situation or if the solution
is within the budget and achievable within a given time.

‘-:f;f:;t@{:_

¢ Define term algorithm
ﬁ ¢ Discuss the importance of algorithm in problem solving
t

N 1.2 ALGORITHM

Algorithms are widely used throughout all areas of Information
Technology (IT). A search engine algorithm, for example, takes search strings
of keywords and operators as input, searches its associated database for
relevant web pages, and returns results. Another common-example is online

~ advertisements where the algorithm takes age, gender, region and interests as
- input and then displays ads to only those people who match the criteria.

BN 121 Definition
: An algorithm is a set of instructions/steps/rules that are followed to
_ solve a problem. It is a tool for solving a well-specified computational
. problem. In our daily lives as well, we follow various algorithms without
knowing, for example:

* We follow a daily routine after waking up in the morning
* We follow a set of instructions while driving a car

» We follow recipes in cooking food or making tea

These step-by-step instructions that we follow everyday are algorithms
to solve certain problems. There are two common methods to express
algorithm designs; pseudocode and flowcharts.

1.2.2 Role of algorithm in problem solving

The advantage of using an algorithm to solve a problem or make a
decision is that it produces the best possible answer every time. This is useful
in solutions where accuracy is required or where similar problems need to be
solved more often. In many cases, computer programs can be developed with
the help of this process. Then data is entered in that program so that the
algorithm can be executed to come up with the required solution.

A computer programmer has to design various algorithms to create a
program. These algorithms can vary from retrieving input from a user to

computing complex formulas to reach a conclusion. This data is then
rearranged into a meaningful way to present to the user. The user then makes
decisions based on the presented data.

Qualities of Good Algorithms
Input and output should be defined precisely.
Each step in the algorithm should be clear and unambiguous.
Algorithms are supposed to be most effective among many different
ways to solve a problem.
An algorithm should not include computer code. Instead, the algorithm
should be written in such a way that it can be used in different
programming languages.

s \J
p ¢ Design algorithm to find sum, ave% lume, percentage and others.
o\

1.2.3 Algorithm Examples
Following are few examples of simple algorithm.

B Algorithm 1: Making a cup,of-tea

Step 1: Start

Step 2: Place the fresh water in a pot or a kettle.
Step 3:Boil the water.

Step 4: Put the black tea leaves in that pot.

Step 5: After that add some milk into that pot.
Step 6: Add some sugar.

Step 7: Boil for some time.

Step 8: Stop

Algorithm 2: Sum of two numbers

Step 1: Start

Step 2: Declare variables num1, num?2 and sum.

Step 3: Read values numl and num?.

Step 4: Add num1 and num?2 and assign the result to.sum.
sum = numl + num?2

Step 5: Display sum

Step 6: Stop

Algorithm 3: Average of three numbers

Step 1: Start

Step 2: Declare variables numl, num2, num3 and avg.

Step 3: Read values numl, num?2 and numa3.

Step 4: Apply formula {Average = Sum / No. of values}
avg = (numl + num?2 + num3) / 3

Step 5: Display avg

Step 6: Stop

Algorithmé4: Velume of a box

Step 1: Start

Step 2: Declare variables length, width, height and volume.

Step 3: Read values length, width and height.

Step 4: Apply formula {Volume = length x width x height}
volume = length x width x height

Step 5: Display volume

Step 6: Stop

@

Algorithm 5: Percent Calculate

Step 1: Start

Step 2: Declare variables part, total and percentage.

Step 3: Read values part and total.

Step 4: Apply formula {Percentage = (part / total) x 100}
percentage = (part / total) x 100

Step 5: Display percentage

Step 6: Stop

5-'-{)5 Define the flowchart

Identify the different symb in flowchart designing
] Discuss the importance art in problem solving
Design flowchart for problem by wusing various
flowchart symbols

I I = ¢+ Differentiate W orithm and flowchart

1.3 FLOWCHART

The flowchart is the physical representation of problem solving
process. It is used to show the sequence of steps and logic of solution for a
problem, before writing the full computer program. It also helps in
communicating the steps of the solution to others by using different symbols.

1.3.1 Definition

It is a general-purpose tool used to define the sequence of different
types of processes or operations in information system or program. It shows
processes and their flow visually using diagram. It describes graphically
different steps of programs or any operation and their sequence or flow using
different symbols. Information system flowcharts show flow of data from
source documents to final distribution to users. Program flowcharts show the
sequence of steps or instructions in a single program or subroutine. It is
diagrammatic or graphical representation of algorithm and converts word of
algorithm into symbols. The flowchart shows different steps with the help of

| .:‘.:..:... LY
& s .

different shapes and their sequence. The processes are connected with
directed lines or arrows which show the path from one procedure step to the
next.

& 1.3.2 Flowchart Symbols

Flowchart is made up of different symbols to represent. or show
program and its flow. Some of them are as follows:

A
Name Symbol }@scription
i

) & oval shape and is

Start/Sto ed to show the start

L ? m and end of a program or

flowchart sequence.

The arrow shape shows
direction of flow from
one step or box to
another.
This rectangle shape
indicates any type of
internal operation or
Process process usually one step.
The step is written inside
the box. Only one arrow
goes out of the box.
This parallelogram shape
shows the input or
output process. It is used
Input/output for any Input / Output
(I/O) operation and
indicates that the
computer is to obtain
data or output results.

This diamond shape
shows decision based on
a condition written in the
diamond. Two arrows g
out of the diamond. One
Condition directs toward pa
condition is tr

other for fals an

also use place
of true .

® Teacher should tell stude Qout other symbols like
.(alternate symbol for star& connecter symbol, etc.

Decision/

Teachers Note

—

1.3.3 Importance of a Flowchartfor Sélving a Problem

Main use of aflowchartis to visualize operations and sequence of
steps to perform them. It illustrates the logic to solve a problem, before |,
writing the full computer program. It shows all steps visually or graphically
which is easy to understand in one look and also helps to describe program
flow to others. It also helps programmers when we modify or extend
program. Following are some advantages of flowchart for solving problem

¢ . Flowcharts help in communicating the logic of a program to all others
and make it easy to understand.

It is a useful program document that is needed for various purposes like
to know about program quickly or to modify program logic.

The flowcharts act as a guide or blueprint during the coding of program.

A Sample Flowchart
It takes three numbers as input, calculates sum and percentage. If
percentage is above 70 then prints “Well done”, otherwise “Work hard”.

Input x,y,z

Y

Sum = x+y+z

Y

Percent = Sum /300 * 100

If percent > 70

Fig. 1.2: Sample Flowchart

.

@ £ 3 J

1.3.4 Difference between Algorithm and Flowchart

S.No. Algorithm Flowchart

Flowchart is a diagram of <
Algorithm is step by step different shapes which shows&
solution of a problem flow of data through proce@

system.

In algorithm text is used. In flowchart, symbol apes
are used

Algorithm is easy to debug. Flowchart is cjé&to debug

Algorithm is difficult to write | Flowchart to construct
and understand. and u&ders

Algorithm does not follow Flow follows rules for its
any rules. construction.

Algorithm is the pseudo code } art is just graphical or

o L ez (;;Cal representation of program

v
SLOs ¢ Define L%hta types
Q tack, Queue, Array

¢ De “ Non-Linear data types
“ o Tree & Graph

§ 1.4 DATASTRUCTURE
. A data structure is a particular way of organizing data in a computer
to use it effectively. For example, array data structure is used to store a list of
items having the same data-type. Data structure may be linear or non-linear.

1.4.1 pLinear Data structures

In Linear Data Structure data elements are arranged in sequential
order and each of the elements is connected to its previous and next element.
This structure helps to convert a linear data structure in a single level and in
single run. They are easy to implement as computer memory is also in a
sequential form. Linear data structures are not efficient in memory utilization.
Examples of linear data structures are Stack, Queue, Array etc.

(@) Stack

Stack is a linear data structure which follows a particular order to
perform different operations. Items may be added or removed only at the top
of stack. The order may be LIFO (Last
In First Out) or FILO (First In Last
Out). The data which is placed first is
removed in last and which is placed
last is removed first. We cannot
remove data from the bottom or
middle. Examples of a stack are
plates that are stacked or put over
one another in the canteen. The plate
which is at the top most is the first
one to be removed and the plate which
is placed at the bottom most position
remains in the stack until last plate is removed.

Fig. 1.3: Stack (Push- Pop)

The term push is used to insert a new element into the stack and pop is
used to remove an element from the stack. Insertion and removal can be done
at one end called top. Stack is-in overflow state when it is completely full and

is in underflow state if it is completely empty. In overflow state we cannot 4 .

. add an item and in underflow state we cannot remove an item from: it.

(b) Queue
A Queue is a linear data
structure which follows a particular
order in which operations are Back Front

performed in FIFO (First In First D
equeue

Out) method, which means that .

element inserted first will be nqueue

removed first. Example of a queue is

any queue of students in school or Fig. 1.4: Queue

people in cinema where one who

comes first gets the ticket first. Deletions take place at one end called front or
head and insertions take place only at the other end called rear or tail. Once a

new element is inserted into the Queue, it cannot be removed until all the
elements inserted before it in the queue are removed. The process to add an
element into queue is called Enqueue and the process to remove an element
from queue is called Dequeue.

(c) Array

Array is alinear data structure, which holds a list of finite data
elements of same data type. Each element of array is referenced by a set of
index of consecutive numbers. The elements of array are stored in successive |
memory locations. Most of the data structures make use of arrays to
implement their algorithms. Two terms are necessary to understand array.

Memory Location

200 201 202 203 204 205 206 =
U|B|F|D|[A|[ELC]| =

0 1 2 344~5 6 =

Index
Fig. 1.5: Array (Memory Locations)

Element: Each item stored in an array is called an element.

Index: Each location of an element in an array has a numerical value
called index, which is used to identify the element. Set of indexes in an
array are consecutive numbers.

Operations like Traversal, Search, Insertion, Deletion and Sorting can be
performed on arrays.

| Teachers Note .
Teacher should tell students about operations performed

@
.(on an array like traversal, sorting, etc.

1.4.2 Non-Linear Data Structures
The elements of a non-linear
data structure are not connected in
a sequence. Each element can have
multiple paths to connect to other
elements. They support multi-level
storage and often cannot be
traversed in single run. Such data
| structures are difficult to
- implement but are more efficient in
utilizing ~ computer ~ memory.

- Examples of non-linear data Fig. 1:6: Tree Data Structure

structures are Tree, Graphs etc.

(@@ Tree

This non-linear data structure is used to represent data containing a
hierarchical relationship between elements. Tree represents its elements as
the nodes connected to each other by edges. In each tree collection, we have
one root node, which is the very first node in our tree. If a node is connected
to another node element, it is-called a parent node and the connected node is
called its child node. There is also a binary tree or binary search tree. A binary
tree is a special data structure used to store data in which each node can have
a maximum of two children. Each node element may or may not have child
nodes.

(b) Graph

Agraphis a mnon-linear data
structure consisting of data elements
(finite set) called nodes/vertices and
edges that are lines that connect any
two nodes in that graph. Each element
or node can contain information like
roll number, name of student, marks,
etc. In graph each node can have any

number of edges, there is no any node Fig. 1.7: Graph Data Structure

called root or child. A cycle can also be formed. In the given figure, circles
represent nodes or vertices, while lines represent edges.

Graphs are used to solve network problems. Examples of networks
include telephone networks, social networks like Facebook, etc. For example, 5
a single mobile phone is represented as a node (vertex) whereas its =
connection with other phones can be shown as an edge between nodes.

Types of graphs:
There are two types of graphs.

1. Undirected Graph:

In an undirected graph, nodes are connected by edges that are all [~

bidirectional. For example if an edge connects node 1 and 2, we can traverse
from node 1 to node 2, and from node 2 to 1.

2. Directed Graph:
In a directed graph, nodes are connected by directed edges - they only
go in one direction. For example, if an edge connects node 1 and 2, but the

arrow head points towards 2, we can only traverse from node 1 to node 2 -

[

Problem solving is the process of finding solutions of difficult or
complex issues.
¢ A problem is a situation preventing something from being achieved.

e There are four basic steps involved in finding a solution; define the
problem, generate alternative solutions, evaluate and select an
alternative and implement and follow up on the solution.

e It is important to understand the problem and set a starting point of
solution.

o There are various strategies that can be used to formulate an algorithm
for solving the problem.

Using the strategy, various solutions to a given problem are planned and
the most feasible solution is identified.

Algorithm is a technical term for a set of instructions for solving a
problem or sub-problem.

Algorithms enable breaking down of problems and conceptualize
solutions step-by-step.

Algorithms are defined as generic steps of instructions so. they can be
written in any programming language.

A flowchart writes the sequence of steps and logic of solving a problem,
using graphical symbols.

Flowcharts help in communicating the logic of a program to all others
and make it easy for understanding.

A data structure is a particular way of organizing data in a computer to
use it effectively.

In Linear data structure data elements are arranged in sequential order
and each of the elements is connected to its previous and next element.
Stack is a linear data structure in which items may be added or removed
only at one end i.e. at the top of stack.

Queue is a linear data structure in which that element inserted first will
be removed first.

Array is a linear data structure, which holds a list of finite data elements
of same data type. Each element of array is referenced by a set of index
of consecutive numbers.

The elements of a non-linear data structure are not connected in a
sequence. Each element can have multiple paths to connect to other
elements.

Tree non-linear data structure is used to represent data containing a
hierarchical relationship between elements.

A graphis anon-linear data structure consisting (finite set) of data
elements called nodes/vertices and edges that are lines that connect any
two nodes in that graph.

A. ENCIRCLE THE CORRECT ANSWER:

1.

To “bake a cake” is an example of:
a. problem b. strategy
c. algorithm d. solution
To find a feasible solution to a problem, the first step is to:
a. establish starting point b. find available solutions
c. create a strategy d. identify and analyze the problem
Step by step solution of a problem in simple language is called:
a. Problem Solving b. Algorithm
c. Flowchart d. Data Structure
shows the logic of program graphically.
a. Data Structure b. Graph
c. Algorithm d. Flowchart
Symbol is used for input/output in flowchart.

a. Triangle b. Square
c. Parallelogram d. Oval
Elements of data structure are not connected sequentially.
a. Array b. Graph
c¢. Queue d. Stack

stores data in hierarchal manner.
a. Stack b. Queue
c. Array d. Tree
When that data is Pushed in stack, it means that data is:
a. inserted b. deleted
c. sorted d. edited
In binary tree, each child can have maximum:
a. onenode b. two nodes
c. three nodes d. four nodes
Traversing an array means accessing:
a. first element b. last element
c. any specific element d. each and every element of the array

B. RESPOND THE FOLLOWING:

1. Describe the steps involved in problem solving.
What are the advantages of developing algorithms?
List any three advantages of designing flowcharts.
What is the difference between tree and graph data structure?
What is the difference between queue and stack data structure?
What is the need of index in an array?
With the help of a sketch define: Push, Pop, Overflow and Enqueue,
Dequeue.

/

IEAB AGTIVITIES

Design an algorithm to find the greater number by taking two
numbers as input.
Design an algorithm to find area of a triangle.
Sort the following steps of the algorithm in correct order for baking a
cake:
* Step: Gather the ingredients
Step: End
Step: Grease a pan
Step: Preheat the oven
Step: Put the pan in the oven
Step: Start
Step: Pour the batter into the pan
Step: When the timer goes off, take the pan out of the oven
Step: Set a timer
Step: Mix together the ingredients to make the batter
Draw a flow chart to calculate gross salary by adding 20% house rent
and 30% medical allowances in basic salary.
Draw a flow charts for all the algorithms given in this unit.
Draw the following structure
a. Tree with six nodes.
b. Graph with five nodes.
. Search about Algorithmic Thinking and in groups, discuss this
concept.

[l Programming

1
— ¢ Define computer program
F . | | ¢ Describe the importance of syntax in any programming language

21 INTRODUCTION

A computer program is a set of instructions that is understood by a
computer to perform tasks. A person who writes computer programs is
known as a programmer. Computer processes instruction in binary language.
Therefore, programs are written in programming languages. Programming
languages have a specific set of words called syntax to create those
instructions. Specialized programs such as compiler are used to convert set of
syntaxes into set of machine-readable instructions. It requires an interface to
convert commands from a human user. A programmer can make mistakes in
syntax while writing a program or instructions. Other specialized programs,

known as Integrated Development Environments (IDEs), help programmers to
write programs in various languages.. C++ is one of the most common and
powerful general purpose programming language. All programming

languages have certain concepts about rules of syntaxes, reserved words and
data types.

211 Computer Progtam

A computer program is a collection
of instructions.that can be executed by a
computer to perform a specific task. It is
very difficult to write in the ones and
zeroes of machine code, which is what the
computer can understand, so computer
programmers use specialized languages to
communicate with computers to perform
a set of specific tasks using languages like C++, Java or Python. Once it is
written, the programmer uses a compiler to translate it into a language that
the computer can understand.

BER RRDRAR RRORAD

Syntax in Programming Language:
Syntax tells the computer how
to read a set of code. It is essentially a i/ bind the socket L6 r
set of keywords and characters that a i¢ (od nﬂ{,gq:hﬂfd. '.1:- m
computer can read, interpret, and Hrm—r'i-it?-f"-"-‘- cou
convert into tasks needed. Text-based Vs
computer languages are based on -
sequences of characters, while visual L
programming languages like Visual Basic are based on the layout and

connections between symbols (which may be textual or graphical).

Example:
‘ cout << "Hello World";

In C++, this syntax displays the message "Hello World" on the screen.
Syntax plays an important role in the exectution of programs in text-based
programming languages and can even cause syntax errors if a programmer
tries to run a program without using proper syntax. It is very common for
new programmers to make syntax-based mistakes. Different programming
languages use different types of syntax.

it . Classimkrogramming languages into High, middle and low-level
ﬁ i lan e basis of their characteristics
il gK

2.1.2 Classification of Programming Languages
Thousands of programming

languages have been developed till

now, but each language has its

specific purpose. These languages

vary in how they can communicate

with the computer’s hardware. Some

programming languages can directly

communicate with hardware while

others have less or no access to that

hardware. Based on the accessibility of hardware, they can be classified into
following categories:

. Low-level language
. Middle-level language
. High-level language

Low-level language
The low-level language is a programming language that can directly
access and communicate with the hardware, and it is represented in 0 or 1

forms, which are the machine instructions. The languages that come under |

this category are the Machine level language and Assembly language.
Machine-level language:

The machine-level language comes at the lowest level in the hierarchy,
so it has direct access to the hardware. It cannot be easily understood by

humans. The machine-level language is written in binary digits, i.e., 0 and 1. |+

It does not require any translator as the machine code is directly executed by
the computer. Machine language is the first-generation programming
language.

The assembly language:

The assembly language comes above the machine language means that
it has lesser access to hardware. It is easy to read, write, and maintain by
humans. The assembly language is written in simple English language, so it is
easily understandable by the users. In assembly language, the assembler is
required to convert the assembly code into machine code. It is a second-
generation programming language.

2, Middle-Level Language
Some special purpose middle-level languages were developed in the
past that were used as bridge between hardware and user interaction.

However, such languages have become obsolete and are not used anymore.

High-Level Language

The high-level languages brought revolution in programming world.
They allow a programmer to write the programs which are independent of a
particular type of computer. These languages are closer to human languages
than machine-level languages.

High-level languages do not have direct access to the hardware therefore a
translator (compiler or interpreter) is required to translate a high-level
language into a low-level language.

Advantages of a high-level languages
o The high-level language is easy to read, write, and maintain as it is
written in English like words.
e The high-level language is portable as opposed to low-level languages;
i.e., these languages are not dependent on the machine.

Differences between Low-Level language and High-Level language

Low-level langu,a& High-level language

It is a machine-friendly language, i.e., |Itis a user-friendly language as
the computer understands the this language is written in simple
machine language, which is English words, which can be
represented in 0 or 1. easily understood by humans.

It requires the assembler to convert It requires the compiler or

the assembly code into machine code. | interpreter to convert the high-
level language instructions into
machine code.

One type of machine code cannot run | The high-level code can be

on all machines, so it is not a portable | translated to required machine-
language. code, so it is a portable language.
It has direct access to memory. It is less memory efficient.
Coding and maintenance are not easy | Coding and maintenance are

in a low-level language. easier in a high-level language.

(R]
p ¢ Distinguish among various types of translators
ST

2.1.3 Translators

Computers only understand machine code (binary). This code is |
difficult to read, write and maintain. Programmers prefer to use a variety of
high and low-level programming languages instead. A program written in
any language is called as source code. To convert the source code into
machine code, translators are needed.

Low Level Programming High Level Programming
Language Language i

L= gl AR R]
Ve e R —= ¥ """J""""Irllul
Tyt i
IR T TR iy e
i AR R T T e e
I T TEET TR ik i

§

S0

A translator takes a program written in source language as input and
converts it into a program in target machine language as output. It also
detects and reports the error during translation.

Roles of translator are:
¢ Translating the program input into an equivalent machine language
program.
Providing alert messages wherever the programmer does not follow
the rules of syntax of source language.

Different Types of Translators:
There are three different types of translators as follows:

1. Compiler

A compiler is a translator used to convert high-level programming
language to low-level programming language. Compiler takes time to do its
work as it translates high-level code to lower-level code all at once and
creates an executable file. This translated program can be used again and
again without the need for recompilation from source code.

It converts the whole program in one session and reports errors
detected after the conversion. An error report is often produced after the full
program has been translated. Errors in the program code may cause a
computer to crash. These errors can only be fixed by changing the original
source code and compiling the program again.

2. Interpreter

Interpreter is also a translator used to convert high-level programming
language to low-level programming language. However, interpreter
translates the code line by line and reports the error as soon as it is
encountered during the translation process. With interpreter, it is easier to
detect errors in source code than in a compiler. An interpreter is faster than a
compiler as it immediately executes the code upon reading the code.

Interpreters do not create an executable file. Therefore, the interpreter
translates the source code from the beginning every time it is executed.

3. Assembler

An assembler is a translator used to translate assembly language to
machine language. It is like a compiler for the assembly language but
interactive like an interpreter. An assembler translates assembly language
code to an even lower-level language, which is the machine code. The
machine code can be directly understood by the CPU.

(R]
p ¢ Differentiate between syntax, runtime and logical errors.
ST

2.1.4 Types of Errors
Errors are the problems or the faults that occur in the program which |
cause the program to behave abnormally.

Programming errors often
remain undetected until the
program is compiled or
executed. Some of the errors
prohibit the program from
getting compiled or executed.
Thus, errors should be removed
before compiling and executing.

The most common errors can be generally classified as follows:

1. Syntax Error

Syntax error occurs when the code does not follow the syntax rules of
the programming language. These can be mistakes such as misspelled
keywords, a missing punctuation character, a missing bracket, or a missing
closing parenthesis. -Nowadays, all famous Integrated Development
Environments (IDEs) detect these errors as you type and underline the faulty
statements with a wavy line. If you try to execute a program that includes
syntax errors, you will get error messages on your screen and the program
will not be executed.

Most frequent syntax errors are:

* Missing Parenthesis (})
¢ Printing the value of variable without declaring it
* Missing semicolon

Run-Time Error

Errors which occur during program execution (run-time) after
successful compilation are called run-time errors. A run-time error occurs
when a program is asked to do something that it cannot perform, resulting in
a ‘crash’. The widely used example of a run time error is asking a program to
divide by 0.

The code contains no syntax or logic errors but when it runs it can't
perform the task that it has been programmed to carry out.

3. Logic Error

Logic errors are those errors that prevent your program from doing
what you expected it to do. On compilation and execution of a program,
desired output is not obtained when certain input values are given. These
types of errors which provide incorrect output but appear to be error free are
called logical errors. These are one of the most common errors done by
beginner programmers.

With logic errors you get no warning at all. For example, consider a
program that prompts the user to enter three numbers, and then calculates

and displays their average value. The programmer, however, made a logic
error; one of its statements divides the sum of the three numbers by 5, and
not by 3 as it should. The program will execute as usual, without any error
messages, prompting the user to enter three numbers and displaying a result,
but not the correct one. It is the programmer who has to find and correct the
statement containing logical error.

¢ Discuss about Integrated Development Environment (IDE) of C++
¢ Develop the understanding about functions of different components
of IDE

2.2 PROGRAMMING ENVIRONMENT OF C++

C++ runs on lots of platform like Windows, Linux, Unix, Mac, etc.
Before we start programming with C++. We will need an environment to be
set-up on our local computer to compile and run our C++ programs
successfully.

221 Integrated Development Environment (IDE)
On a more basic level, IDEs

provide interfaces for users to write

code, organize text groups, and

automate programming tools. Instead

of a simple plain-text editor, IDEs

combine the functionality of multiple

programming processes into one. Most

IDEs come with built-in translators. If

any bugs or errors are found, users are shown which parts of code have

problems.

Some IDEs are dedicated to a specific programming language or set of

languages, having a set of tools and features which are helpful in writing |

codes for that language. For instance, Dev-C++ is used for making programs
in C++ language. However, there are many multiple-language IDEs, such as
Eclipse (C, C++, Python, Perl, PHP, Java, Ruby and more) and Visual Studio
Code (Java, JavaScript, PHP, Python, Ruby, C, C++ and more).

Key Benefits of Integrated/Deyvelopment Environments:

Serves as a single environment for most of a developer’s needs such as
compilation, linking, loading, and debugging tools.

Code completion capabilities improve programming workflow.
Automatically checks for errors to ensure top quality code.
Refactoring capabilities allow developers to make comprehensive and
mistake-free renaming changes.

Components of IDE

IDEs increase programmer productivity by combining common
activities of writing software into a single application: editing source code,
building executables, and debugging.

Editing Source Code

This feature is a text editor designed for writing and editing source
code. Source code editors are distinguished from text editors because they
enhance or simplify the writing and editing of code. Writing code is an

Fe, - I.
n sflin Ll
.- e

W

e

LR

important part of programming. IDEs facilitate this process with features like
syntax highlighting and autocomplete.

Syntax Highlighting

An IDE that knows the syntax of your language can provide visual
cues. Keywords, words that have special meaning like class in C++, are
highlighted with different colors. Syntax highlighting makes code easier to
read by visually clarifying different elements of language syntax.

Code completion

When the IDE knows your programming language, it can anticipate
what you're going to type next. Code completion features assist programmers
by intelligently identifying and inserting common code components. These
features save developers time writing code and reduce the chances of errors.

Compiler

Compilers are components that translate programming language into a
form machines can process, such as binary code. IDEs provide automated
build processes for languages, so the act of compiling and executing code is

done automatically.

Linker

The linker opens the compiled program file and links it with the
referenced library files as needed. Unless all linker items are resolved, the
process stops and returns the user to the source code file within the text
editor with an error message. If no problems encountered, it saves the linked
objects as an executable file.

Loader

The IDE directs the operating system’s program called the loader to
load the executable file into the computer’s memory and have the Central
Processing Unit (CPU) start processing the instructions.

Debugging

No programmer can write programs without errors. When a program
does not run correctly, IDEs provide debugging tools that allow
programmers to examine different variables and inspect their code step by

step. IDEs also provide hints while coding to prevent errors before
compilation. Programmers and software engineers can usually test the
various segments of code and identify errors before the application is
released.

2.2.3 Introduction to Dev-C++
One of the most commonly used IDE for coding programs in C++ is
Dev-C++. It is a graphical IDE that has an integrated compiler system to

create applications for Windows as well as console. Dev-C++ is a fully |

featured IDE supporting features like debugging, auto completion,
localization, syntax highlighting, class and variable browsing, project
management, package manager and others.

Installing and Configuring Dev-C++ IDE
Dev-C++ is freely available for download from this link:
https:/ /sourceforge.net/projects/orwelldevcpp/

After downloading the installation package, we can begin the
installation process. In this book, we will be using steps for installing Dev-
C++ version 5.11 with the TDM-GCC 4.9.2 compiler.

Step 1.
Select “English” as the language to be used for installation process.

Installet Language X

' -
E Plaase selact a language.

Engish

oK Cancel

Fig. 2.1. Step 1: Dev-C++ installation

Step 2.
Agree to the license agreement by pressing “I Agree” button.

Step 3.
Select “Full” from the dropdown for “type of Install”. This will select

all the necessary components required to run Dev-C++ and compile C++
source codes. Click on “Next” to proceed.

i Dev-Cee 571
Thoose Compaonenta
Choose vhich festures of Dev 4+ 511 yvou ward 1 insial

Check thesampansnts veod want i inets] and urcheck the corperierin vou don's wanlt e
irtal, Chick Mext b3 corirue.

Seect e fype of retl: " ~

(Dey-Co + orogram Ses regured)
[=] Trmn fles
o [l oG 49,2 compler
Larguages fles
4] Assooiste € et €4+ fing Dy L 44
o [¥] Shortoutz

i = -
De=mcyipiion

tnu:la:llimz-l

Step 3: Installation components

Step 4.
Select the installation directory where all the necessary Dev-C++ files

and libraries will be installed. Usually, the default specified path is used for
installation but you can change it if desired. Click on “Install” to begin
installation.

ﬁ DevCos 511

Choowe insi sl Locaiion
Croge e folder i aneh 12 meteld Dee D4 511

Setp il rmtal Dev £+ + 5. L1 i B fodawmg folder, To rstsl m g different foicer, ciek
Bromme and esect pnofer foider, Chok invted o start the negialaton,

<o [il] conce

Fig. 2.3. Step 4: Install location

Step 5.

The installer will show the progress for installation. Once the process
completes, it will show a “Finish” dialog. Make sure the “Run Dev-C++ 5.11”
box is checked. This will automatically start Dev-C++ IDE after this
installation completes. Click “Finish” button to complete the installation
process.

Compleling the Dev-C++ 5 1] Seltup
Wizard

fapeL oa 11 Fovp ety iroriiilieedd o P coonpuites

Ohck Frvgh 1 Cioe: Tas afTong,

o =]

Fig. 2.4. Step 5: Finish installation

Configuring Dev C++

When Dev-C++ IDE is run for the first time, it will require some
configuration. This configuration will be used while developing programs in

the IDE.

Set “English (Original)” as default interface language in the Dev-C++
first time configuration dialog. Click “Next” to continue. On the “theme”
selection dialog, leave the default settings and click on “Next” to continue.
Then click “OK” to close first time configuration dialog.

Bev=C= s Firstbme configurmtion
Rimeiude aRir=an
int mainiint argc, char'* argv)
st roout o “Hello sorldly
return B}

Selert your N -
Aulgarmn (Rufisdase
Catalnn [T atatd)
Lol A Chinese
hpriese (TW)
|f_:u.ni.!n

’f"_‘redﬂ {Eetting)
Darith

Db {Pbedetlimcie!

Engiich Ongmall |

Extaimian
French

Galenn

Yioui wanister Charge the languege of Took = »
Enviroriment Opticns » » Gensol

P oo

Fig. 2.5. Configuring Dev-C++

Linker Setting for Debugging

Sometimes an in-depth information is required from the debugger to
properly identify the problems in our source code when a program is
debugged. To obtain such information, our newly installed IDE and.its
integrated compiler needs to be configured. The following steps are used to
enable this configuration:

. Click on Tools -> Compiler Options.

. Open the Settings tab from the Compiler Options dialog.

. Under Settings tab, open Linker tab.

. In the Linker tab, change the Generate Debugging Information (-g3)
option to Yes.

. Click on OK to save settings.

d

Iee Lil i — & i e N

|Jimeen B |~~ 08 NADESY HEEE vt A8 e
i !] # H ighmkafai —___ -;

Rrapmi® Clases | Dalag Crapsin Cpmirs
(Complle mt io costegan
\ RO SR i T BT

Gamaral 1Tegp Duppisam Mepers

Copiltws Codd Comimaiin. Wit Py Likie Dgsaun
L i anctive £ progree | labes

Carrty dalizggeg olErtion 57

D T SR SPTE ke - nesi
(w2l Limile vl waiifio | mm il

i iz oty)

Fig. 2.6. Dev-C++ Computer options

Developing Programs in Dev-C++

C++ development is done by writing source codes and saving those
tiles for compilation. Dev-C++ provides good project management support to
help manage C++ files and group them into projects. The steps to create a
new project in Dev-C++ are:

1. Click on File -> New -> Project.
2. From the New Project dialog, make sure Empty Project is selected.

From language options, select C++ Project. Then enter.a Name for |

your project.
. Click on OK. Dev-C++ will ask for the path where you want the new

project to be stored. Once it is done, Dev-C++ will open a workspace. It |

will show Project Explorer on the left side that shows the project we |

just created.

i; . | @A N
1 § | AU i LETRT]

II]E:I!lllnl-t A PN A ERE €4 9 nEEE V|

|-l] 4 B | eiseaia) -

Project anees | Clehiig

P Proymce
Hamr puffigesin) Winl? Comenfe

=
Wi

Canpaln Cestst | by
Ak apn Apjledin

&) prnpity pronget ol Poopit &L Pepjaah
bammn (] Shaees oot g

{TaxtPrgadet|

[T X gance

Fig. 2.7. Creating new project

Add Files to Project
A project requires source files which will contain codes for your
program. The steps to create a new file are:

1. Click on Project -> New File. Alternatively, you can also right-click on
the Project Name in the Project Explorer and click on New File.
2. Click on Yes on the Confirm dialog to add a file. This file is not stored
until it is deliberately saved.
. To save newly added file, click on File -> Save. Enter a path where you
want to save the file and provide its name. Click on Save to store the
tile.

Compile and Execute Project

After writing the source codes in files, the project needs to be compiled
and executed to see its output. Follow these steps to compile and run a
project:

1. The project needs to be compiled before execution. To compile, click on
Execute -> Compile or press F9 key. Compile Log tab shows the

compilation status. Compiler tab will show if there are any syntax

€rrors. I

- After successfully | gugan aias BuEE G0N0 RSB0 As)s
compiling -the project, F## -

run it by clicking on ‘& =

5 =
al | S — "

Execute -> Run or by L - —
. A console window will ' "
T e By = il == o iy 1] Pt e

open and show the =y e s W
output of the program. a I, LY VAot ki

Fig. 2.8. Compile and execute project

L 1nt]
¢ List out different reserved words commonly used in C++ program
p ¢ Use different data types in a C++ program

23 C++ PROGRAMMING LANGUAGE
C++ is a general-purpose programming

language that was developed as an enhancement

of the C language to include object-oriented

concept. It was created by Bjarne Stroustrup and

its main purpose was to make writing programs

easier and more pleasant for the individual

programmer.

C++ is a high-level language with an advantage of programming low-
level (drivers, kernels) and even higher-level applications (games, GUI,
desktop apps etc.). The basic syntax and code structure of both C and C++ are
the same.

2.3.1 Reserved Words

A reserved word in C++is - . .
a word whose meaning is already .. lona long
defined by the compiler. A '

1 r | clusw 4
reserved word cannot be used as |

prit

an identifier, such as the name of e . double
a variable, function, or label - it is

"reserved. from use in C++". A

reserved word is part of syntax

and may not have any specific

meaning in English language.

There is a total of 95 reserved words in C++. The reserved words of C++ may
be conveniently placed into several groups. In the first group, we put those
that were also present in the C programming language and have been carried
over into C++. There are 32 of these.

There are another 30 reserved words that were not in C, are therefore new to
C++ programming language. Some of the commonly used C++ reserved are:

and break case
auto char do
bool class else

|
catch const export Q
default continue float %
double delete
enum explicit
extern false (ule
for friend new
if import or
int long protected
nullptr namespace short
public not static
requires operator struct
signed private template
switch register throw
this return typedef
true C sizeof union
unsigrqb try virtual
VO}& using while
2.3.2 C++ Data“Fypes
You may need to store information of i Tyt Codetsain
various formats and sizes like character,
integer, floating point, double floating
point, boolean etc. These formats and sizes
are defined as data types. Based on the data
type of a storage, the operating system
allocates memory and decides what kind of
data can be stored in that allocated memory.

C++ offers the programmer various types of built-in as well as user

defined data types. Following table lists down some of the basic C++ data
types:

Type Keyword | Size Range
Boolean bool 1byte |0 (false), 1 (true)
Character char 1byte |-127 to 127 or 0 to 255
Integer int 4 bytes | -2147483648 to 21474%

Floating point | float 4bytes |15 x 104 to 3.4 . Stores
fractional num fficient for

storing 7 deci igits

Double 8 bytes | 5.0 x 10734 to 1.7 x 1030, Stores
floating point fractional numbers. Sufficient for
stori ecimal digits

EEuY ¢ Differentiate between variab nstant
ﬂ ¢ Comprehend variable r rules in C++
¢ Differentiate between able declaration and initialization

24 CONSTANTS ANBD VARIABLES

A constant is a value that cannot be altered
by the program during execution, i.e., the value is
constant. When' associated with an identifier, a
constant is said to be “named,” although the terms
“constant” and “named constant” are often used
interchangeably. This is contrasted with a variable,
which is an identifier with a value that can be
changed during execution.

241 Constants and Variables

A constant is a data item whose value cannot change during the
program’s execution. Thus, as its name implies - the value is constant.
Constants are used in two ways. They are:

1. literal constant
2. defined constant

A literal constant is a value you type into your program wherever it is
needed. Examples include the constants used for initializing a variable and
constants used in lines of code:

21,12.34,'A', "Hello world!", false, null

In addition to literal constants, there are symbolic constants or named
constants which are constants represented by name. The const keyword and
#define preprocessor are used to define a constant. Many programming
languages use ALL CAPS to define named constants like const float PI =
3.14159; OR #define PI 3.14159.

A variable is the memory location that can hold a value. This value can
change during the program’s execution. It does not remain constant. For
example, a classroom with a capacity of 20 students is a fixed place or
constant but the subjects taught, teachers and students will vary with each
class and subject and are variables.

Variables do not require to be assigned initial values. Variables once

defined may be assigned a value within the instructions of the program.
Variable can be assigned different values at different times during execution.
For example:

x =5;
x =37,
Difference between Constant and Variable:

. Constant Variable

A constant does not change its | A variable, on the other hand,
value during program execution. changes its value depending on
instructions.

Constants are usually written in | Variables are always written in
numbers and may be defined in | letters or symbols.

identifiers.
Constants usually represent the | Variables, on the other hand,
known values in an equation, | represent the unknown values.
expression or in line of
programming.

24.2 Rules for Naming Variables
The general rules for constructing names for variables (unique
identifiers) are:

Names can contain letters, digits and underscores

Names must begin with a letter or an underscore (_)

Names are case sensitive (myVar and myvar are different variables)

Names cannot contain whitespaces or special characters like !, #, %, etc.
Reserved words (like C++ keywords, such as int) cannot be used as =

e Lt
names ry

Names cannot be longer than 32 characters in C++ by default.

24.3 Declaring (Creating) and Initializing Variables

In C++, there are different types of
variables (defined with different keywords).
A variable declaration tells the compiler
where and how much storage to create for the
variable. A variable declaration specifies a
data type and name for that variable as

. follows:

Syntax
data_type variable_name;

Where type is one of C++ data types (such as int), and variable_name is
the name of the variable (such as x or myName).

Initialization
Variables can be initialized (assigned an initial value) in their
declaration. The initializer consists of an equal sign followed by a constant

expression as follows:

Syntax
data_type variable_name = value;

The equal sign is used to assign values to the variable.

Strings in C++

Variables that can store non-
numerical values that are longer than
one single character are known as
strings.

The C++ language library provides support for strings through the
standard string class. This is not a fundamental type, but it behaves in a
similar way as fundamental types do in its most basic usage. Strings can be
declared without an initial value and can be assigned values during
execution.

A computer program is a list of instructions that tell a computer what to
do.

We refer to syntax in computer programming as the concept of giving
specific word sets in specific orders to computers so that they do what we
want them to do.

Different programming languages can be classified into high, middle and
low-level languages.

High-level languages are easy to read for humans and contain English
language like words.

Middle-level languages have a human readable format along with direct
control over the machine’s resources.

Lowe-level languages are easy for machines to read and hard for humans.
Low-level programs mostly comprise of binary digits and memory
operators.

There are three types of translators namely, compilers, interpreters and
assemblers.

Compilers convert high-level languages into machine readable format.
Interpreters also convert high-level programs into machine readable
format.

Unlike compilers, interpreters convert instructions line-by-line.
Assemblers convert low-level languages into machine readable format
with added benefit of being interactive like an interpreter.
Programming errors prevent the program from being compiled - or
executed.
Syntax errors are words or symbols unrecognized by a particular
programming language.
Runtime errors only occur during program execution mostly due to an
invalid input.
Logical errors are considered when incorrect results are obtained based on
provided input.
Logical errors do not interrupt program execution.
Integrated Development Environments (IDEs) are programs that facilitate
writing, compiling and executing codes.
IDEs usually provide a single environment for programmers to write and
executes codes efficiently.
C++ is a general-purpose high-level programming language.
Reserved words are part of programming language syntax and cannot be
used as name of variable, function or label.
A constant is a named identifier having a value that cannot be changed.
A variable is a named identifier with a value that can be changed during
normal execution of program.
Different types of values can be stored in variables. These types are called
data types such as int, string, bool, etc.
A variable can be declared by giving it a name and type. It can also be
initialized during declaration by assigning a value to it.
In C++, a variable is defined and initialized as:

“data_type variable_name= value;”

C++ offers various data types for holding values in variables.

These data types allocate system memory based on its type.

A. ENCIRCLE THE CORRECT ANSWER:
A computer program is a collection of:
a. Tasks b. Instructions
c. Computers d. Programmers
High-level languages have syntax that is:
a. Basily readable by humans b. Easily readable by machines
c. Easily readable by both d. None of the above
Low-level languages have syntax that is:
a. Basily readable by humans ~ b. Easily readable by machines
c. Easily readable by both d. None of the above
The primary characteristic of a compiler is to:
a. Translate codes line-by-line
b. Translate low-level code to machine language
c. Detect logical errors
d. Translate codes all at once
The primary characteristic of an interpreter is to:
a. Translate codes line-by-line
b. Translate low-level code to machine language
c. Detect logical errors
d. Translate codes all at once
An Integrated Development Environment facilitates a programmer to:
a. Edit source code b. Complete and highlight syntaxes
c. Debug and compile codes d. All of the above
All errors, detected by users are typically:
a. Syntax Errors b. Semantic Errors
c. Run- Time Errors d. Logical Errors
Allowed names for declaring a variable:
a. Can contain whitespaces
b. Can be one of the reserved words
c. Can contain letters, digits and underscores
d. Can be the same as its data type

A bool data can store following type of value:
a. Numbers b. Strings
c. Fractional numbers c. True or false
Which data type occupies the most space in memory?
a. Character b. Integer
c. Floating point d. Double floating point
B. RESPOND THE FOLLOWING:
. What is computer program?
. List five common high-level languages used and describe their
purpose.
. Using the rules of naming variable, develop ten meaningful and valid
variable names.
. Write and two differences between machine and assembly language..
. What are Strings in C++?
. What is the difference between declaring and initializing a variable?
. What is the difference between source code and object code?
. List any four advantages of using an IDE.

. In groups, students should learn to download, install and configure
Dev C++.

. Teacher demonstrates the use of IDE and its features as given in this
unit. Also explains the use of variable and constants.

& = Y@

H@mmmm@ﬂﬂ
CEN
C W I

¢ Explain basic structure of C++ program.
¢ Introduce the use of Preprocessor directives in C++ program.
¢ Comment Statement in C++

3.1 BASIC STRUCTURE OF C++

In C++ program is divided into three
parts:

1. Preprocessor Directives

2. Main Function Header

3. Body of Program / Function
The basic structure of the C++

program is given in Figure No. 2.1:

Fig. 2.1 Basic Structure of C++ Program

S.NO. Codes and Symbols OV Description

| The # symbol is called Preprocessor

Directives. #include is used to link
#include<iostream> |the external header files/libraries
which may be required in program.
#define is used define constants in
program.

This instruction tells the compiler to
y use standard namespace. The
Namespace is the collection of
using namespace Std; identifiers. It is used for wvariables,
class, functions, and objects. All these
elements of the Standard Library of
C++ are declared within standard

“std”.

)) int main() function is used for
int main () execution of C++ program.
int main () return value zero.

-

":::2-@:1

This symbol indicates the beginning
{ of the main function. It is also known

as Opening Curly braces. B
Instructions that perform a partimﬂﬁ|
of

task is called a statement. Stat

terminator (;) used to t
statements. This symbol @ own

AT 5. |Statement; as semi colon.
aE ¥ For example: co @“Pakistan
- = Zindabad”;
i The output Of} given example is
_:': roe that “Pakistan Zindabad” will print
: ':-4 R on the scr
. =] The value is the exit code of

gram. By default, main() in
eturns an int integer data type
lue to the operating system.

This symbol indicates the ending of
the main function. It is also known as

6. |return value; Y

Closing Curly braces.

@ 7| The body of the function is enclosed between curly
Yo wa. <3 | braces. All instructions are executed within opening
7 “{” and closing “}” curly braces.

3.2 .. COMMENT STATEMENT IN C++

The comment statement are those statements that are ignored by the
compiler. These statements do not execute. Through comments, the
programmers give special remarks to the statements for their convenience. In
C++, there are two types of comment statements.

1. Single Line Comment

2. Multi Line Comment

Single Line Comment:

It is used to a single-line explanation with the help of a double slash
(//) symbol. If the programmer wants to use a single line comment on more

@

than one line, this may need to put a double slash on each line at the start.
These comments are ignored by the compiler, which means comments are
not executable.
For example:
// Single line comment
// This is my first program
#include<iostream>
int main()

{

Statements..;
return 9;
}
2. Multi Line Comment:

It is used for multiple-line explanations. Symbols (/* and */) are
needed at the start and end of the statements. These comments are ignored
by the compiler, which means comments are not executable.

For example:
/* Multi line comment
This is my first program */
#include<iostream>
int main()

{

Statements..
return 0;

}

Differentiate between input and output functions.
Use input and output functions in a program.
Describe the use of statement terminator in a program
Use escape sequences in any C++ program.

3.3 INPUT/OUTPUT Handling in C++

In C++Input and Output streams perform Input/ Output (I/O)
operation and these I/O stream are stored in header file. Such as <iostream>.
These header files must be mentioned at the beginning of the program.

I/ O streaming uses multiple input/output channels.
%KW%I_,J

3.3.1 Output Function

S.no. Functions Description with example X
cout is a predefined object in C++. &e‘d to
e display the output to the standa %ut
Gy Ak device i.e. monitor. “cout” u @tion
- S 1. | cout statement | 9Perator (<<)
7 . a Syntax: cout << variable S ut <<exp./string
" << variable
5 For example:
w5 cout << “MY PROGRAM”'
- ::l_-_ This functlol(to print the string to the

N outpu . he new line is automatically
= inse prmtmg the string.

Syntax: int puts(const char * str);
!%ample : :
Q lude<iostream> OUTPUT:

ing namespace std; MY FIRST

2. puts()

int main () PROGRAM
{
puts(“MY FIRST PROGRAM”);
return 0;
/ }

“cout” stands for “Character Output”. Here C means
You KW';I}L,J character and Out means output.

puts() is defined in <cstdio> header file. This file must
be included at the beginning of the program.

Teachers Note .
® Teacher are supposed to orient students also about the

./ function of putc() in C++ program.

3.3.2 Input Function

S.no. Functions Description with examples
cin is a predefined object that reads data from
the keyboard with the extraction operator (>>).
This operator allows you to accept data from
standard input device.
Syntax: cin >> variable;
For Example:
1 . #include<iostream>
. cin statement . .
using namespace std;
int main()
{
int a;
cin >> a; ¢//cin takes input in “a”
variable
return @;
}
o getch() is predefined function. This
function is defined in conio.h (Console
Input and Output header file.
e It is used to get a single character from
keyboard during execution of program.
¢ The entered character is not printed on the
screen.
e [tis used to hold the output screen until the
user press any key from the keyboard.
2, getch() For Example:

#tinclude<iostream>
#include<conio.h>
using namespace std;
int main ()
{
char ch = getch();
cout <<"X Class";
cout << ch;

return 0;

The function of “getche()

getch() function.

”

is similar to

The “getche()” stands for get character

echo.

This function displays the character that
entered by the user.

It is also predefined function in “conio.h”

header file.

Syntax: character variable = getche();

For example:
#include<iostream>
#include<conio.h>
using namespace std;
int main ()
{
char ch;
int a=10,b=10;

OUTPUT:

Do your want to
continue(Y/N)..Y
the addition is..... 20

cout <<"\n Do you want to continue

(Y/N)..";
ch=getche();
cout <<

<<a+b;

return 0;

}

"\n the addition is....'

The getchar() function in C++ reads the
character from standard input stream. It's
defined in <stdio.h> header file. It needs to
press Enter Key after entering the character.

For example:
#include<iostream >
using namespace std; | Use of getchar

int main () function....a
{ getchar is

OUTPUT:

char ch;

cout << “\n Use of getchar

function”;
ch = getchar();
cout << “\n getchar is” << ch;

. return 0; 6

This is a predefined function in it
reads characters from stdin and éb them
e

until a newline character foun fined in
<cstdio> header file. Program&shows how
to apply this function in C++.

Syntax: gets(variesl%

For example:
OUTPUT:

#include<io m> -
#include< Enter the message....

usin @ace std; Pakistan
int @ Your message is

Pakistan
%ar' ch[20];
out << “\n Enter the message.

gets(ch),
cout << “ Your message is....”
ch;

return 0;

}

Teachers Note
It is good if teacher informs students about the function of
getc() in C++

3.3.3 Statement Terminator (;):
Every statement in C++ must be terminated with semi colon (;). It
indicates the end of the statement and it is also called Statement terminator.
If the terminator is missing an error message will occur.
3.3.4 Escape Sequences:
The escape sequences are special non-printing characters. They can be
used with the “cout” in C++. An escape sequence starts with a backslash (\)
| and a code character.

1 The commonly used escape sequences are given below:
4 Escape Sequence Explanation with exqﬁg\
-1l “a” means Alert or alarm. It cau ep sound in the
« | { \a computer. %
- A Example: cout <<”\a”;
{ “b” stands for backs& It moves the cursor
1 \b backspace.
. Example: cout << 3
=4 “t” stands f ntal tab. It is used to shift the
\t cursor to a couple of spaces to the right in the same line.
Example.%t << \tY;
r New line or line feed. It inserts a new

\n rsor moves to the beginning of the next line. 5
e: cout << “\n”;
' iage Return “r”. It is used to position the cursor to
\r ke beginning of the current line.
Example: cout << “\r”;
\ “\ backslash” It is used to print the backslash character.

Example: cout << “\\”;

“Single quotation” It is used to print the “apostrophe (')
\ sign or character.

Example: cout << “\’”;

“Double quotation” It is used to print the quotation
\” mark. Example: cout <<“\””’;

Teachers Note | Teachers should ask students to develop program
using escape sequences.

3.4

OPERATORS:

Operators are special symbols used for specific Operator
purposes. Operators perform mathematical operations l

on Operands. For example: X + y. Here “x” and “y” _
are operand and “+” operator. There are seven types of x ""l" Y

operators that are used in C++ programming.
3.4.1 Arithmetic Operators ! |

3.4.1

3.4.2 Increment Operators
3.4.3 Decrement Operators Qperands
3.4.4 Relational Operators
3.4.5 Logical Operators
3.4.6 Assignment Operators

3.4.7 Arithmetic Assignment Operators
Arithmetic Operators:

In Arithmetic operators, five different operators are used to perform |

an arithmetic operation. All operators except Remainder or Modulus

operator can be used in integer and float data type.

Addition (+): It is used to perform arithmetic addition.

Example: a + b;

Subtraction (-): It's used to perform arithmetic subtraction.

Example: ‘a =b;

Multiplication (*): It used to perform arithmetic multiplication.
Example: a * b;

Division (/): It perform the arithmetic division of two numbers.
Example: a/b.

Remainder / Modulus (%): It used to find remainder of a division. It
returns the remainder of an integer value. Remainder operator is also
known as Modulus operator. This operator is used only with integral
data types.

Example: 5/2 =2 and 1 is remainder. We can write in this form 5%2

Develop a simple calculator in C++ by using arithmetic operators.

#include<iostream>
using namespace std;
int main ()

{
int a,b,add,sub,multi,remd;
float div;
cout <<"\n \t CALCULATOR";

cin >> a;

cout << "\n \t Enter the value of b

cin >> b;

add = a+b;

cout << "\n \t Addition of "<< a <<"and.. "<< b << "is....

sub=a-b;
cout << "\n \t Subtraction of "<< a <«<"and..."<«

.."<< sub;

multi=a*b;

cout << "\n \t Multiplication of "<< a <<"and..."<< b <«
<< multi;

div=a/b;

cout << "\n \t Division of "<< a <<"and..."<< b <«

is...."<«
div;

remd=a%b;

cout <<+ "\n \t Remainder of Modulus division of
<<"and..."<<'b << "is...."<< remd;

return 0;
} OUTPUT

CALCULATOR

< a

Enter the Value of a..... 15

Enter the Value of b..... 10

Addition of 15 and 10 is

Subtraction of 15 and 10 is

Multiplication of 15 and 10 is 150

Division of 15 and 10 is

Remainder of Modulus division of 15 and 10 is.....

@O @ In the division of integers, numbers show only whole
You Know

numbers in result.

Teach:rs o Teachers are supposed to explain the precedence of

./ Arithmetic Operators.

3.4.2 Increment Operator (++):

The increment operator can be used with any type of variable. It is
used to add 1 to the value of a variable. Increment operator represented by
++ (double plus sign). This operator can be applied only to a single variable.
There are two ways to use increment operator:

¢ Prefix Increment Operator: You can apply this operator before the

variable name. It can be written like ++a. ie. x=++a;
Example:

#include<iostream>
using namespace std; %ﬁas
int main ()

{

int a=10;

cout << “\n Value of a is....”<< ++a; mmm) Prefix Increment Operator
return O;

}

In prefix increment operation value of a is printed as 11 because 1 is
added in ‘a’ before printing.

@

¢ Postfix Increment Operator: If the increment operator is applied
after the variable name, it is known as Postfix Increment operator.
It is written like a++.
Example:
#include<iostream> Output:
using namespace std; Valueof ais......10
int main ()
{
int a=10;
cout << “\n Value of a is....”<< a++; =) Postfix Increment Operator
return 0;

}

In Postfix increment operation value of a is printed as 10 because 1 is
added in ‘a’ after printing. So the value of ‘a” will change to 11 after
printing,.

3.4.3 Decrement Operator {(~-):

The decrement operator is same as increment operator but it subtracts |
1 from the value of a variable. It is represented by - - (double minus sign). It
can also be used as prefix and postfix.

3.44 Relational Opérator:

The relational operators are used to test the relation between two
values. All relational operators are binary operators. These operators must
require two operands. The result of the comparison is True (1) or False (0).
The relational operators are also known as Comparison Operators.

The following are the relational operators and their operations.

vOperators Meaning Purpose Expression
Its check the equality of two
operands values.

It checks whether the value of
Not equal to | the left operand is not equal to al=b
the value of the right operand.

== Equal to a==b

@

This operator checks the value
Greater than | of left operand is greater than
the value of right operand.

Its check the value of left

Less than operand is less than the value of
right operand.

It checks the value of the left
operand is greater than or equal
to the value of right operand.

It checks the value of the left
operand is less than or equal to
the value of right operand.

Use relational operators in C++ program:

Greater than
or equal to

Less than or
equal to

OUTPUT
Relational
Operator

// Relational Operators
#include<iostream>
using namespace std;
int main ()

int a = 10;

int b = 20;

cout << \t Relational Operator";
cout <«

cout <« \t” == b) << endl;
cout <« \t” b) << endl;
cout << \t” b) << endl;
cout <« \t” a) << endl;
cout <« \t” a) << endl;
cout <« \t” a) << endl;

return 0;

}

-
.

3.4.5 Logical Operator:

Logical operators are used to determine two relational expression.
These operators can be used in many conditional and relational
expressions. There are three logical operators that are used in Cit+
programming.

Operators Description

This operator is called AND.
&& The condition will be true if both

) x>y && x<z
expressions are true.

It's known as OR operator. The
condition will be true if any one of the
expressions is true.

x=10, y=5, z=12
x>y || x>z

This operator is called NOT. The
condition will be inverted, false
becomes true and true becomes false.

x=10, y=5;
H(x<y);

Differentiate between relational and logical operators
Relational Operator:
e These operators are used to perform logical operations on two given
variables.

¢ The relational operators are used to compare any two values.
Logical Operator:

¢ These operators are used to compare the two relational statements.

o The logical operators are used to combine one and more than one
relational expression.
Like relational operators they also give True (1) or False (0) results.

Use Logical and Relational operators in C++ program:
#include <iostream>
using namespace std; OUTPUT
int main () LOGICAL OPERATOR

{
int x = 10; 1 AND OPERATOR

int y = 5; 1 OROPERATOR
int z = 12; 1 NOT OPERATOR
cout << "\n \t LOGICAL OPERATOR";
cout <«

cout << "\n \t" << ((x > y) && (x < z)) << "\n \t AND
OPERATOR"<< endl;

cout << "\n \t" << ((x >y) || (x >2z)) << "\n \t OR
OPERATOR"<< endl;

cout << "\n \t" << !(x < y) << "\n \t NOT OPERATOR" <<
endl;

return 9;

}
3.4.6 Assignment operator (=) vs Equal to operator (==)

\Y
Assignment operatmé) Equal to operator (==

The assignment operator
(=) is used for-assigning a
variable to a value.

The equal to (==) operator is used to check
the equality of two operands values.

This ‘operator assigns the | This operator compares value of the left side
value of right-side | and right-side expression. Such as x=10 and
expression to left-side | y=10 than x==y

variable. Such as x=10; If condition true otherwise false.

Use assignment operator in initialization of variable and equal to operator
in order to compare two variables.

#include<iostream>
using namespace std;
int main ()
{
int x=20, y=10;
cout << "\n \t Assignment vs Equal to Operator";

cout << "\n

cout << "\n 20 assignment opt

cout << "\n 10 assignment opt

cout << "\n Equal to opt. result is
(x==y);
return 9;

}

OUTPUT
Assignment Vs Equal to Operator

x=20 assignment opt.....20
y=10 assignment opt.....10
Equal to opt is

Arithmetic Assignment Operators:

In arithmetic assignment operators, the arithmetic operator is
combined with the assignment operator. The assignment operator comes to
the right of an arithmetic operator. This operator is also known' as
Compound Assignment Operator.

A
Operators Description

It adds the right operand to the left
operand and assigns the result to the
left operand.

+= (Addition-assignment)

Example: a+=2 medhs a=a+2

It subtracts the right operand from the
left operand and assigns the result to
the left operand.

Example: a -=3 means a=a-3

It multiplies right operand with the left
operand and assigns the result to the
left operand.

-= (Subtraction-assignment)

*= (Multiplication—assignm%

Example: a *=4 means a=a*4
0 It divides left operand with the right
9 operand and assigns the result to the
left operand.
o (. Example: a /=4 means a=a /4

/= (Division-as

The C++ program consiss of three parts.
e Preprocessor Directives
¢ main Function header
¢ Body of program
#include<iostream> is used to include header files like “iostream.h,
conio.h, etc.
namespace is the collection of identifiers.
The main() function is compulsory element of the C++ program.
The comment statements are those statements that are ignored by the
compiler. These statements are not executable.
I/O Stream is a standard library file that contains definitions of
Standard Input and Output functions.
cout is an output object. It is used to display the output through output
device like monitor.
puts() is a string function and it is included in <cstdio> header file.
cin works as an input object in C++.
Statement terminator (;) is used for statement ending C++
programming,.
Escape Sequences is a non - printable characters. It is used only with
cout statement.
Operators are special symbols used for specific purposes.
o Arithmetic Operator are used for arithmetic operations or
calculation.
Increment and Decrement Operator are used in two different ways
in programming,.
e DPrefix
e Postfix
Relational Operators are used to test the relation between two
values.
Logical Operators are used to determine two relational expression.
Relational and Logical Operators works on a decision making and
loops.

s, T RE
ENERGISE

A. ENCIRCLE THE CORRECT ANSWER:

i)

The C++ header file contains function prototype for

the standard Input and Output functions.
a. <iomain.h> b. <iostream>
c. <fstream.h> d. <cstdio.h>
Which operator is used for input stream?
a.> b. <<
c. >> d.<
gets stands for >
a. get stream b. get string
c. get str d. get std.
getch() and getche() are included in header file.
a. <cstdio.h> b. <conio.h>
c. <stdlib.h> d. <stdio.h>
Which operator is used for logical AND operation?
b. &&
d.!
Which of the following operator is correct to compare two values of

variables?
a.= b. <=
== d.bothband ¢

Which of the following needs pressing Enter Key from the
keyboard?
a. getch() b. getche()
c. getchar() d. gets()
viii) != operator belong to which type of operator.
a. Relational b. Logical
c. Arithmetic d. None of these

R
s = 4 & @

L]
. :.L-'l‘

ix) Which operator add the first operand to the second operand and
gives the result to first operand.
a.*= b. +=
c. ++ d. +
x) cout << 12-6/2; What will be the result on screen?
a.3 c.6
c.9 d.12
B. RESPOND THE FOLLOWING:
Use \a and \r both escape sequences in a program.
How many types of comment statements are used in C++?

Differentiate between Arithmetic operators and Relational operators.

Write a program in C++ and use all arithmetic assignment operators.
What is basic difference between Assignment operator and Equal to
operator.

What is the basic difference between \n and \t ?

Get the output of following program.

#include <iostream>
using namespace std;
int main ()
{
int a = 27;
cout << “a i << a << endl;
cout << is now" << a++ << endl;
cout << is now " << a << endl;
cout << is now " << --a << endl;
cout << is now " << a << endl;
return 0;

}

1. Develop programs for manipulating the following formulas.

Title Formula Description u
Calculating Speed of an E i

Object ~
Newton’s second law of N\
motion

Calculating acceleration | a=(vf-vi)/t Accelerat1o: 59, LD (ol =

s=d/t Speed = distance / ti

F=ma

initial v) /
Area of Triangle a='2bh area = (1/2) (base) (height)
Convert the Celsius to s
Fahrenheit F=(c"1.8)+32

. Write a program to calculate the volume of a box.
. Write a program of Marksheet takes input of five subjects, print its total
and percentage also.
4. Write a code to calculate mathematical expression of a2+2ab+b2.
. List out errors from the C++ program and remove those errors, write
the output.
#include<iostream >
using namespace std
int main ();
{
int x ;
cout << “\n Enter the value of x....
cin >»> x
cout << “\n The square of x
return 9;

}

®

Recognize the various types of control statements:

Define decision making structure

Understand the syntax of If and If-Else statements

Use If and If-Else statements in C++ programming

Differentiate between If, If-Else and switch decision ma]{&

structures
¢ Use switch statement in the programs

a &

41 CONTROL STATEMENTS

A computer program is the set of instructions in sequential form.
These instructions execute from top to bottom. We can control the flow of
program with the help of Control Statements. Control Statements are used to
control the direction of program by repeating any block of code, making a
choice or simply transfer the control to any specific block of program. These
statements help programmers to decide which part of code is executed at
certain time.

> @ & N @ |

C++ has three types of control statements:
1. Selection/Decision Making Structure
2. Iteration / Loops
3. Jump

4.2 SELECTION/DECISION MAKING STRUCTURE
They are-used to decide whether a certain part of code is executed or

not.
C++ has three decision making structures;

1 ‘if’ statement

2 ‘if- else” statement

3 ‘switch” statement
421 “if” statement

It is the basic decision statement. The structure contains “if” keyword
followed by a conditional expression in parenthesis and then its body of
statements(s) also called if block. If there are more than one statement in “if”
block or body we enclose all of them in braces.

If statement checks a condition, if
the condition is true the statements in
“if” block are executed and if condition
is false it leaves the statements in “if”

block and starts executing statements
after “if” block.

| Cisihi fed bl PRl bl |
]

Syntax:

i
if (test condition) |
{ .

Statement(s); Fig: 4.1: if Statement’s Flowchart

Following is an example of using if in a program. This program takes marks as
input. If marks are greater than 60 then it adds word “good” between “you are
a” and “student of this class

/* Program 1. “if” statement example */
// writes good on basis of marks

#include <iostream >

using namespace std;

int main ()

{
int ‘marks;
cout<<"\nEnter Marks ";
cin>>marks;

cout<<" You are a “;

if(marks>=60)
{

cout<<" good ";

}
cout<<" Student of this class";
return 0;

}

Nested “if” Statement

An ‘if’ statement which is part of block of another ‘if’ statement is
called nested ‘if’. The inner ‘if’ statement will only be tested if the outer “if’ is
true. ;
In following program, marks and age of a person are taken as input. First
condition checks marks, if they are greater than or equal to 60 then next
condition checks age. If age is also greater than 18 then it prints message “you
got the job”. “good luck” is always printed.

/* Program 2. Nested “if” statement example */
// job given message on basis of marks and age

#include <iostream>

using namespace std;

int main ()
int marks,age;
cout<<"\nEnter your Marks ";
cin>>marks;
cout<<"\nEnter your age ";
cin>>age;

if(marks>=60)
{
if(age>=18)
{

cout<<"you got the job";

}
}
cout<<" Good Luck";
return 9;

}

4.2.2 "“if-else” statement

The structure of if- else contains ‘if’
keyword followed by a conditional
expression in parenthesis and then its body
of statements(s) then ‘else” keyword and its .~
body of statements. It checks the condition, " 55
if the condition is true the statements in if "
block are executed and in case of false
condition, it executes statements in ‘else’
block. It means either ‘if block statements
or ‘else’ block statements must execute.
Syntax:

if (test condition)

T T

{ Fig: 4.2vif- else Statement’s Flowchart
Statement(s);
}

Else

{

Statement(s);

}

on the basis of marks. If greater than or equal to 40 then pass otherwise fail.
/* Program 3. “if-else” statement example */
// shows pass or fail on the basis of marks

#include <iostream>

using namespace std;

int main ()

{
int marks;
cout<<"\nEnter your Marks ";
cin>>marks;

if(marks>=40)
cout<<"You are pass";
else
cout<<" You are fail";
return 0;

}

4.2.3 else-if statement
In “if” statement if we use nesting deeply i.e. one if is nested to other

and other is nested in another and so on then in indentation we see a ladder

like structure which is difficult to understand like below. Here is an example. ¥

This program takes marks as input and then determines the grade by
applying if condition multiple times.

/* Program 4. “else-if” statement example */
// shows Grade on the basis of marks

tinclude <iostream >
using namespace std;
int main ()

{

int marks;
cout<<"\nEnter your Marks ";
cin>>marks;

if(marks>=80)
cout<<"Grade is Al1”;
else
if(marks>=70)
cout<<" Grade is A";
else
if(marks>=60)
cout<<" Grade is B";
else
if(marks>=50)
cout<<" Grade is C";
else
cout<<" Fail";
return 0;

}
However, to make this program look simpler and more understandable,
we may design it in another format by using “else-if” statement. This
format only increases the readability of program while there is no any
change for compiler. “else-if* statement for the above program is shown in
next program where all “else” are in a single column.

if(marks>=80)
cout<<"Grade is A1”;
else if(marks>=70)
cout<<" Grade is A";
else if(marks>=60)
cout<<" Grade is B";
else if(marks>=50)
cout<<" Grade is C";
else
cout<<™ Fail";\

Now, make a program in which user will input two integers and one
arithmetic operator (+, -, ¥, /). Perform the given arithmetic operation on
given numbers by using else- if statement and print the result on screen.

424 “switch” statement I

The switch statement starts
with “switch” keyword followed by
a variable or expression. in i
parenthesis, then a block. of switch
statement in braces. The block
contains one or more case statement
each followed by integer or character
constant and then colon. After colon
there may be many statements
followed by “break” statement in the
end. The switch variable or
expression checks its value equal to
these constants that follow case - £ e 1 b
statement. If it matches to any of
them then control is transferred to
that “case” and all statements after
colon are executed and switch is
broken with “break” statement and
control transfers to the next

Famenard

Fig: 4.3. switch Statement’s Flowchart

statement after switch. If switch variable does not match with any of the case
constants control goes to keyword “default” (if it is present). It acts as “else”.
“break” and “default” keywords are optional.

Syntax:

switch(expression)

{

case constant 1:
statement(s)
break;

case constant 2:
statement(s)

break;

default:
statement(s)

}

In following example, the program takes number of the day of week (from 1
to 7) as input and on the basis of case matching prints the name of the day. If
other number is giventheninvalid day message is shown through default
statement.

/* Program 5. “switch” statement example */
// prints name of day checking day number

#include <iostream>
using namespace std;
int main()

{
int day;

cout<<"\nEnter number of weekday 1 to 7
cin>>day;

switch(day)

e :.;I._ s

5 J| .I_ —_'
L A
. o G
p E

L & |'|1
N '
Tha -4

case 1: cout<<"Sunday"; break;
case 2: cout<<"Monday"; break;
case 3: cout<<"Tuesday"; break;
case 4: cout<<"Wednesday"; break;
case 5: cout<<"Thursday"; break;
case 6: cout<<"Friday"; break;
case 7: cout<<"Saturday"; break;
default: cout<<"Invalid day number";
}

return 0;

}

{

Can you make a program to input month’s number and print
its name on screen?

Difference between If, If-Else and ‘switch decision making structures

“if” statement checks
operators, if th
execute. If co
block and s

ndition using relational and other
ndition is true the statements in if block
is false, it leaves the statements in “if”
cuting statements after “if” block.

“if-else”

ent checks a condition using relational and
ors, if the condition is true the statements in “if”
executed and in case of false condition it executes

ents in “‘else’ block. It means either “if” block statements
execute or “else” block statements.

“switch”

switch” statement checks ‘switch” variable value equal to
constant that follows case statement. If it matches to any of
them then control is transferred to that case and all statement
after colon are executed and switch is broken with “break”
statement. Otherwise, control is transferred to “default”
statement. It has some limitations. It only matches character and
integer data type variables, it checks switch variable value only
with case constants not with any variable and it also cannot use
relational operators like less than (<) or greater than (>) and
exactly matches value with case constants.

Explain the concept of loop structure

Explain for, while and do-while loop structures

Differentiate between for, while and do-while loop structures
and their use

¢ Use these three loop structures into C++ programming c N
¢ Explain the concept of nested loops Pa

.
-

4.3 ITERATION/LOOP

Normally statements are executed sequentially, one after the other. In
some situations, we need to execute a block of statements several number of |
times. Loops allow us to execute a statement or a group of statements several |
numbers of times. A group or block is made by enclosing statements in =
braces. There are three types of loops in C++.

1. for
2. while
3. do- while

43.1 “for” loop

This loop executes a
sequence of statements multiple
times. It is usually used in situations
where at the start of loop we know
that how many times loop block
will execute. It is a pre-test loop as Pem—f

RN]

condition is tested at the start of ‘

loop. It starts with keyword “for”
followed by loop expression in
parenthesis. Loop expression has
three parts separated by semicolon.

First part is initialization which

initializes loop variable; second Fig: 4.4. for Loop Statement’s Flowchart
part is test expression which tests

loops variable and third part in increment or decrement in loop variable.
Then comes the body of the loop which may have one or more statements. If
there are more than one statements then they are enclosed in braces.

When loop starts, first part is executed, only one time. Then second
part tests the condition, if it is true it enters the loop otherwise transfers
control to statement after loop. If it enters in loop then after executing all
statements in loop block, third part is executed and again condition is tested.
It is also called counter controlled loop or definite repetition loop since the
number of iterations is known before loop execution.

Syntax:

for (initialization; condition testing; increment/decrement)

{
}

. The following program shows even numbers from two to twenty. It initializes
loop variable count with two and then print numbers by adding two each
time to this variable until count variable remains less than twenty.

statement(s);

/* Program 6. “for” loop example */
// shows even numbers from 1 to 20

#tinclude <iostream>
using namespace std;
int main ()

{

int count;

for(count=2;count<=20;count=count+2)
{
cout<<"\n Number= ";
cout<<count;

}

return 0;

}

43.2 “while” loop

It is a pre-test loop. It tests the
condition at the start of loop before
executing the body of loop. It is
usually used in situations where we
do not know at the start of loop, how
many times loop block will execute.
So, it is also called indefinite
repetition loop. It starts with keyword
“while” followed by a conditional

expression like if statement in
parenthesis. Then comes the body of
the loop which may have one or more statements in braces.

When loop starts, it tests a condition, if it is true it enters in the loop
otherwise transfers control to statement after loop. If it enters in loop then
after executing all statements in loop block again condition is tested.

Syntax:
¥

Fig:4.5. while Loop Statement’s

L]
}
Following program takes characters as input through getche() in loop. When
user presses enter key equal to “\r” in C++ loop condition is false and it shows
total number of typed characters.

/* Program 7. “while” loop example */
// counts number of characters typed

#include <iostream>

#include<conio.h>

using namespace std;

int main ()

{
int num=0;
char ch;

cout<<"Type any word or text, Press enter to terminate -> “;

ch=getche();
while(ch!="\r")
{

num++;
ch=getche();
}

cout<<"\n Total number of characters typed "<<num;
return 0;

}

4.3.3 “do while” loop

It is similar to while loop, except that it tests the condition at the end of
the loop body and so it is also called post-test loop. Its statements block is
executed at least once. For second time
condition is tested. It starts with keyword “do”
followed by a body of loop which may have
one or more statements in braces. Then “while”
keyword and conditional expression in
parenthesis. It must be terminated with semi
colon.

When loop starts it executes all
statement in block once and then tests the
condition, after “while” keyword. If it is true it
enters the loop. again otherwise transfers
control to the next statement after loop. It is
also indefinite repetition loop.

Syntax:
do

{

Statement 1;
Statement 2;
Statement 3;

Fig: 4.6:
while Loop Statement’s Flowchart

}

while(condition);

Following program takes salaries of employees as input in a loop. We press y
to takes more salaries as input, any other character to end. Finally it shows
total salary paid to all employees.

/* Program 8. “do-while” loop example */

// calculates total salary paid to all employees

#include <iostream>
#include <conio.h>
using namespace std;
int main ()

{

bt

F

long count=1;
float tot_sal=0,salary;
char ch;

LR §

do
{
cout<<"\n Enter salary of employee e"<<count<<"->";
cin>>salary;

tot_sal=tot_sal+salary;

cout<<" Press Y to enter more salaries ";

ch=getche();

count++;

}

while (ch=="y" || ch=="Y");

cout<<"\n Total salary paid is "<<tot_sal;
return 0;

}

Nested loops

You can use one or more loop inside any another ‘for’, ‘while” or ‘do
while” loop. If a loop exists in the body of another loop then it is called nested
loop. The inner nested loop is completely executed every time for each
repetition of outer loop.
The following program is of nested for loop. It prints numbers from 1to 10 in
five rows. The outer loop shows row number, then inner loop prints numbers

from 1 to 10 in one row then outer loop changes the row using ‘\n’. The

outer loop runs five times, so inner loop which prints 1 to 10 numbers will

run five times and prints numbers in five rows.

/* Program 9. nested loops example */
// prints numbers from 1 to 1@ in five rows

#include <iostream>
using namespace std;
int main ()

{

int 1i,3;

for(i=1;i<=5;i++)
{
cout <<" Row no. "<<i<<" ->
for(j=1;j<=10;j++)

cout<<j<<™ ;
cout<<"\n";

}

return 0;

}

e

o F
E

S r

o

o
I.;.-"
.l'
¥

4

ey
P

4.3.4 Difference between for, while and do-while loop structures

“for” Loop

“while” Loop

“do while” Loop

“for” loop is usually
used in situations
where we know at the
start of loop that how
many times loop block
will execute. It is also
called definite
repetition loop.

It is usually used in
situations where we do
not know at the start of
loop that how many
times loop block will
execute. It is also called
indefinite ~ repetition
loop.

It is usually used in
situations where we
do not know at the
start of loop. that how
many times. loop
block will execute. It
is also called
indefinite repetition
loop.

It is called counter
controlled loop as loop
is controlled by a
counter value, at each
iteration counter value
will increase or
decrease

It does not need .a
counter value for its
execution.

It does not need a
counter value for its
execution.

It has three parts first
initialization, = second
condition testing _and
third increment = or
decrement.

It - has only one part
which is condition
testing. If needed
initialization is done
before loop and
increment or
decrement is done in

loop body.

It has only one part
which is condition
testing. If needed
initialization is done
before loop and
increment or
decrement is done in

loop body.

It is' pre-test loop as
condition is tested at
start of loop.

It is pre-test loop as
condition is tested at
start of loop.

It is post-test loop as
condition is tested at
the end of loop. So
this loop executes at
least once.

Teachers Note

4

Teacher are supposed to show step by step output of
nested loops.

@

Recognize the use of jump statements:
o Break Statement
Continue Statement
Goto Statement
Return Statement
Exit Statement

44 JUMP STATEMENTS

Jump statements change execution of program from its. normal
sequence.

Following are the jump statements used in C++

. break
. continue
. goto
4. return
5. exit ()
1. “break” Statement:
It terminates the loop or switch statement and transfers control to the
statement immediately following the loop or switch statement.

e.g.

/* Program 10. ‘break’ ~ statement example */
// Adds five numbers if © is given ends program

#include <iostream >
using namespace std;
int main ()

int " i, num, sum;
i=0; sum=0;

cout<<"\n Enter five numbers to add. Enter © to terminate -> ";
while(i<5)
{
cin>>num;
if(num==0)
{

cout<<"\n Ending program ";
break;

sum=sum+num;

it++;
cout<<"\n sum of “ <<i<< “ number(s) is “ <<sum;
return 0;

}

2. “continue” Statement:
It causes the loop to skip the remaining statements of its body and
immediately transfers control to the top of the loop i.e. first statement.

e.g.

/* Program 11. ‘continue’ statement example */_ye numbers
// Adds five positive numbers. It does not take

#include <iostream>
using namespace std;
int main ()
int i, num, sum;
i=0; sum=0;
cout<<"\n Enter five positive numbers-> ";
while(i<5)
cin>>num;
if(num<=0)
cout<<"\n Enter positive number";
continue;
sum=sum+num;
i++;

cout<<"\n sum of five positive numbers is “ <<sum;
return 0;

}

3.“goto” Statement :

A “goto” statement jumps or transfers control unconditionally from
the “goto” to a labeled statement in the same function. A labeled statement is
any identifier followed by a colon (:). It is not advised to use “goto”
statements in programs.

e.g.

If (marks<20)
goto warning; // warning is label

warning: cout<<” Need very hard work in examination”;

Control of program may be transferred to another position in program
. by two other ways; using return statement or exit () function.

4. “return” statement :

It terminates the execution of a function and transfers program control
to the statement just after the function call statement in the calling function
(or to the operating system if you transfer control from the main function). It
can also return a value from the current function, if return type is not “void”.
Syntax : return [expression/value];

The value of the expression clause is returned to the calling function.

5 .”exit ()” Function:

The exit().is used to terminate a C++ program and closes program
whenever executed. It is defined under “stdlib.h” header file.
Syntax: void exit (int);

C++ has three types of control statements: Selection/Decision
Making Structure, Iteration / Loops and Jump.

C++ has three decision making structures; ‘if’ statement, ‘if-else’
statement and ‘switch” statement.

If statement checks a condition, if it is true the statements in if block are

executes and if it is false, it leaves the statements in if block and starts =

executing statements after the block.
If else checks a condition, if it is true the statements in if block are
executed and in case it is false, it executes statements in ‘else” block.

Switch statement checks different constants after case statement with | =

switch variable; if matches it executes statements after it otherwise goes
to default statement if present.

Loops allow us to execute a statement or a group of statements several
numbers of times.

“for” loop execute a sequence of statements multiple times. And is
usually used in situations where we know at the start of loop that how
many times loop body will execute. Condition is tested at the start of
loop.

Like for loop “while” loop also repeats a statement or group of
statements several numbers of times while a given condition is true. It
tests the condition at start of loop and is usually used in situations where
we do notknow at the start of loop that how many times loop block will
execute.

“do while” loop is similar to “while” loop, except that it tests the
condition at the end of the loop body. So its statements block is executed
at least one time.

If a loop exists in the body of another loop then it is called nested loop.

A “break” statement terminates the loop or switch statement and
transfers control to the statement immediately following the loop or
switch statement.

A “continue” statement causes the loop to skip the remaining
statements of its body and immediately transfers control to the top of the
loop.

A “goto” statement jumps or transfers control unconditionally from the
“goto” to a labeled statement in the same function.

A “return” statement terminates the execution of a function and
transfers program control to the statement just after the function call
statement in the calling function.

The exit() is used to terminate a C++ program.

~

| s

1. Encircle the correct answer:
i) Loop within a loop is called loop.
a. inner b. outer
c. enclosed d. nested

ii) “case” and are ‘also part of “switch” statement.
a. have b. default

c. for d. if
“for” Loop expression has parts.

a. one b. two

c. three d. four
exit(") function is used to .

a. close function b. close loop

c. close program d. close switch
“continue” statement takes control to the .

a. top of loop b. end of loop

c. top of function d. end of function
In “goto” statement label is followed by character.

a. colon (:) b. semi colon (;)

c. single quote (') d. double quote (")
To send value to the calling function we use statement.

a. throw b. return
c. send d. back

viii) “break” statement is used with .
a. if b. switch
c. for d. while

ix) Using “else” is_____ with “if” statement.
a. prohibited b. advised
c. compulsory d. optional

x) “if” and loop expressions use operators to test condition.
a. arithmetic b. relational
c. insertion d. bitwise

2. Answer the following questions:

What is the purpose of “default” statement in C++?
. Can we use “while” loop in place of “for” loop, if yes then how?
. What is the main difference between while and do while loops?
. Write the function of for loop.
. Why we make block of statements using braces?
. Which data type variables can be used in “switch” statement?
. What is the purpose of jump statements?

. Write the purpose of following statements:
a. elseif
b. switch

c. goto
d. exit

3. Match the ¢olumn:

A . B

if i) | Relational operators
loop ii) | break

Conditional expression | (iii) | switch

Loops and switch i operator

do iteration

>> i) |else

ii) | while

UABACTIVITIES

. Write a program that takes a number as input and print whether it is
odd or even.

. Write a program to add numbers from 1 to 20.

. Write a program that take month number as input (from 1 to 12) and
print number of days in that month. If wrong number is given then
show error message.

. Input a number up to six digits and show each digit in separate line.

. Take input a character, number of rows and number of columns. Draw
a square box filled with that character with given number of rows and
columns.

. Writea programs that generate the following outputs

*hkk ; ﬁ 4444

ks 55555

. Write a program that takes a number as input and print whether it is
prime or not.

. Take salary as input and on its basis show different levels of
designations in-an organization like manager, supervisor, worker etc.

. Write aprogram that prints square of numbers from 1 to 10.

. Take a number and print its table from 1 to 10 using while loop

according to the following format.

2x1=2

2x2=4

2x3=6

2x10=20
Teachers Note | Teachers are supposed to encourage students to develop
,” different programs by using the concepts of input/
—— output statements, loops and selection statements.

-—,,,P.EO)

4 h

bl rTT |*|'_" ['r -!'-!'-r:tll': o, | o o e
FERTT b patdlTroery e UNTITRS

&

{EA0ER 4 int heading (void Je—....

{

/[statements
s00Y {return 0

ch__J)

oL

¢ Define the term function.
o Function Declaration.

o Function Definition
o Function Call
¢ Differentiate between function call and function definition N 4

51 INTORDUCTION TO FUNCTIONS

A set of statements written to perform a specific task and having a

unique name is called a function. In structured programming, the complicated
and large program coding is broken down into smaller modules which are

. called subprograms. In C++, subprograms are called functions. Every program
has at least one main() function in C++. When the program starts, the main()
| function is called for execution.

There are two types of functions.
1. Pre-defined Functions
2. User-defined Functions
51.1 Pre-define Functions:
The pre-define functions-are the part of every high-level programming
language. It can be used for different purposes. Predefined functions are also
known as System-defined or library functions.

These functions. do not need to be declared and defined. Pre-define
functions are declared in header file. All predefined functions can be used
simply by calling the function like sqrt(), strcpy(), toupper(), pow() etc. Many
pre-define functions need proper header file by using #include pre-processor
directive. The definitions of many common functions are found in the cmath
and cstdlib libraries.

Teachers Note | Teacher should explain briefly Pre-define function and
=] give some examples of pre-define function for the practice

” of students.

5.1.2 User - defined-function

Programmer can also write their own functions to perform specific task.
They are called user-define-functions. These functions need declaration and
definition. When the user-defined function is called from any part of the
program, it will execute the code defined inside the body of the function.
multiply (), sum(), average() may be the example of User-define functions. A
user-define function based on two parts:

1. Function declaration or prototype

2. Function definition

Function Declaration:

A function without its definition (code block) is known as a function
declaration or function prototype. It is declared before the main() function. A
function declaration tells the compiler about the function’s name, return data
types, and arguments/parameter data types and it ends with statement |
terminator (;).

Pavamelers

Return [hr Type / l \\

[lgat Vavg (inlvall, intval2, intval3);

Name of Function Suwment Terminator

Fig. 5.1 Function Declaration

a. Return Data Type:
It shows the data type of value returned by function. It may be int, float,
double and char data type. If no value is returned by the function in that

case keyword “void” is used.

b. Function Name:

It specifies the name of function. It is recommended that meaningful and
understandable names are given to the function.
c. Parameters:

It define the list of data types of function parameters that are to be
passed to the function. Parameters are separated by commas. Parameters
are also known as arguments. If there is no parameter in function,
programmer uses keyword “void”. Variable namesare optional in
prototype parameters/ arguments.

d. Statement Terminator:
In function declaration, statement terminator must be used at the end.
Function Definition:

Function definition is function itself. It has a function header and
a body or code block. Header has three parts; return value data type,
function name and list of augments with datatypes in parenthesis. Body
of the function includes statements in braces. Function definition may be
defined before or after the main function.

For example:

l Eumetien Name |

Fiffeton ratutn I]
Filln Data Type [— int add [1ntla, Intl b)

[List of Argements |

intc; with Data Types |
';I-u-':nrlu,:lr.' Brady i‘_ c=a+ h,
— return c;

Function call
To use the function code, we have to call or invoke that function with its

name. It is called function call. When function is called for execution, control

will transfer to the function definition and all statements of function definition

will execute and after executing the statements the control will transfer back to |
the calling function (statement after function call).

If the function is without return value and no arguments then itis called
by its name. It means function’s braces will be empty.

Syntax: function_name ();
Example: add();

If function returns a value, then we can store return value to a variable
in the calling function.
Example: x=add (y, z);

Function passing argument or parameters:

An argument is a part of data passed to the function. When function is
called for execution, the actual values as parameters are also given with
function call statement. Passing actual values to function as arguments with |
function call statement are known as actual parameters. Actual parameters
may be variables or constants. They are placed in paratheses after the function
name. These values are received in variables of the header of function
definition. These receiving variables are called the formal parameters of the
function. It acts as a local variable inside the function in which they are used.

Returning value from Function:

In C++, the return keyword allows a function to return a value. When a
function completes its execution, it can return a single value to calling function.
Return data type must be specified with the function header in the function
definition as well as function declaration. It is written before function name.

Syntax: int function name();

Differentiate between function definition and function call

Function definition and function call can be differentiated on the basis

of following criteria.

Function definition

Function call ,Lq

The function definition is function
itself. It has header and body with
statements. Function definition may
appears before or after the main
()function.

Function call is to invoke the code of
function by its name. As the function
is called, control is transferred to the
called function.

Syntax:
data_type function name
(parameters list)

{

statements;

}

Example
int sum(int p, int q)
{int z;
z=ptq
return z;

}

Syntax:
variable_name="function_name
(parameter list);

Different Ways. to “Use User-Define Function: based on argument /

parameters ahd return type

There are four different methods in C++ based on passing parameters

to the function and return values from the functions.

¢\, No return value and No passing arguments/parameters

void function name(void);

e Return value but No passing arguments/parameters

int/float/char function name(void);

e No return value but Passing arguments/parameters

void function name(int, float, char);

e Return value and Passing arguments/ parameters

int/float/char function name(int, float, char);

Teachers Note | Teacher should explain how to write a User-define
function in four different methods in C++.

Using the Pre - defined Function in C++ Program

//Using Square Root formula in program
#include<iostream>

#tinclude<cmath.h> OUTPUT

using namespace std; Enter the value of a
int main () The square root of ais....

{

int a;

cout << "\n Enter the value of a

cin >> a;

cout << "\n The square root of a is
Pre-defined function

return 0;

}
Applying the User-defined function in the program.

/* Program of an_average of two numbers by using User-define .4
function */

#include<iostream>

using namespace std;

flaot average(int x, int y); // Function prototype
int main ()

{

int x,y;
cout << “\n \t Enter the value of x
cin << x;
cout << “Enter the value of y
cin << y;
average(x,Yy);
cout << “\n The average of two number is ? << avg;
return 0;

}

float average(int x, int y)

{
float avg;
avg = (x+y) / 2;

return avg;

OUTPUT

Enter the value of x

Enter the value of y

The average of two number is.....29

Differentiate between Pre-define and User-define Function.

Pre - &Hctionﬁystem Define User - define function

These functi ted by th
These are the library functions. eoe THHICHONS afe credied By He

programmer.
It can be modified by the

programmer.

It cannot be modified.

No need for function definition as that | Their declaration and definition are
is part of C++ compiler. needed in the program.

Example: gets(), putchar(), getch(), | Example: add(), int sum(); float

sqrt(), etc. avg(float a, float b) etc.

Local variable and global variable
In structured programming, generally two types of variables are used.
1. Local Variables
2. Global Variables
Local Variables:
They are declared inside any function. A local variable is only accessible
within a specific part of a program.

For Example:
#tinclude<iostream>

using namespace std;

int main ()

{

int a=10; // Local Variable

cout << “\n _The value of a...” << a;

return 0;

}

Teachéer]\@ The variables declared in the header of the function

definition are also known as Local variable.

Global Variable:

Global variables are declared outside of the main function. It is also
known as external variable. It holds the value of variable during the entire
execution of the program. The value of global variables can be shared with
different functions.

For Example:

#include<iostream>

using namespace std;

void add(int c); // Function prototype
int a=20; // Global Variable
int main ()

int x; //Local Variable

cin>>x;

add(x);

cout << “\n the value of a is...” << a;

return 9;

}

void add (int c)

{

int b; //Local Variable

b=a+c;

cout << “\n the addition of two numbers is....”
<< b;

}

Here “a” is global variable and ‘x” and ‘b’ are local variables. Receiving
arguments are also local variable as ‘¢’ variable in this program.

Teachers Note Teacher are supposed to demonstrate practically about
b/ difference between local and global variables in C++.
. At this point students should be able identify and

remove errors from programs.

A group of statements written to perform specific task is called Function.
Function in C++ helps the programmer to manage the code of the large
program.
Functions are divided into three sections:

1. Function declaration

2. Function definition

3. Function calling

Function declaration tells the compiler about the function name, return

types and parameters types.
Function call is to invoke the code of function by its name.
Functions are divided into two categories.

e User - defined-function

¢ Pre -defined - function

A programmer can write his/her own function which is called User -
defined function.

In C++, Pre ~defined - function are already declared in header files.

A. ENCIRCLE THE CORRECT ANSWER:
1. The functions that are defined by the programmer are called:
a. Built-In function b. User-defined-function
c. Subfunction d. Function
A programmer creates a function for a particular task and the
programmer wants to include that function in program. Which
extension is required to save that function?
a. .obj b..h
C..cpp d. .exe
In C++, int main() returns which data type value by default?
a. float b. int
c. char d. double
The parameters specified is the function header are called:

a. formal parameters b. actual parameters

c. default parameters d. command line parameters
The word “prototype” means:

a. Declaration b. Calling

c. Definition d. Botha &b

The function prototype consists of:
a. Name of function
b. the parameters are passed to the function
c. The value return from function
d. All of these
All variables declared in function definition are called
a. Local variable b. Instance variable
c. Global variable d. Static variable
Which are not the built-In function?
a. sqrt() b. time()
c. exp() d. sin()

B. RESPOND THE FOLLOWING:
1. Differentiate between function declaration and function definition.
What is the purpose of keyword “void” in function?
Why we use header files?
Differentiate between passing argument and return the value from
function.
What is the difference between external variables and function local
variables?
List the five standard built-In functions with examples.
Write down the advantages of User - define functions in C++.
Get the output and highlight the errors from the following program.
#include<iostream>

void Table(void); \\ Function prototype
void Table(void)

{
int m,n;
cout << “\n The value of m
cin >> m;
for(n=1; n<=10; ++n)

cout <<"\t "<m<<?*F<<n<<’=<km*n<<”’\n”’;

int main ()

Table();

return O;

Write a program on the following given series by using For loop.
0,5, 10, 15, 20, 25, 30, 35
Apply the technique (no return value and no pass parameters) in

program.

Write a program to take input from the keyboard and check whether

given number is Even or Odd. Apply the technique (return value and
pass parameters) in program

Write a program to convert kilogram in grams using function. . The
function should take value in kilogram as parameter and should
return value in grams.

Create a function that takes length and height as arguments and print
a box of stars accordingly.

e.g. length =10, height = 4

kkkhhhhirk
hhhhhhhiik
hhkhkkhihk

hkkhhhhhik

Apply the technique (return value but not pass parameters) in
program.

Write a function that returns factorial of a given number.

Develop programs for manipulating the following formulas in form of
function.

Title Q) Formula Description
Area of Rect a=1b area = length x width
V3 ":’A
</ area = pi x radius x radius
Area of Circle a=m*r’

&\ (pi =3.14)

»

hagorean Theorem c*=a?+ b2

Recall that data is represented using binary pulses (0 and 1)
Explain that binary pulses have a respective low and high voltage
Explain the three basic logic gates.

Construct the 2, 3, 4...n variable truth tables for basic logic gate
Explain the universal gates with the help of truth tables. C
Differentiate between basic and universal logic gates.

6.1 DATA REPRESENTATION IN A COMPUTER

Data Representation refers to \-
the form in which data is stored,
processed, and transmitted. Digital
devices such as smartphones, iPads,
and computers store data in digital

| formats that can be handled by

electronic circuitry. These circuits
work on two logical binary states i.e., Fig. 6.1 Digital Signal
Low and High (1 & 0) pulses.

Logic gates are the electronic circuits in a digital system. Logical gates
perform logical operations like AND, OR, NOT, NAND, NOR etc. are shown
in Figure No. 6.1

.:@9;; logic consists of binary variables and logical
a

tions. The variables are denoted by letters of

w’{ ')lphabets such as A, B, C,... ,Z, a)bc,...z, e.g., with each
QWKW"L, variable having only two distinct possible logical values 1
and 0, these two values of variables may also be identified
by different names (e.g., true and false, Yes or No).

6.2 LOGIC GATES

Logic gates are the electronic circuits in a digital system. Logical gates

gates are divided into two categories.
6.2.1 Basic Logic Gates
6.2.2 Universal Logic Gates
6.2.1 Basic Logic Gates:
The logic gate is the basic unit of digital logic circuits, there are mainly

three basic gates AND, OR, and NOT and these logical gates perform AND, | :

OR, and NOT operations in the digital system.

H(A truth table is a tabul resentation of all the
00 's- 4| combinations of values fo uts and their corresponding

%KWPL outputs. A@

AND GATE:

An AND gate is a digital circuit that has two or more inputs and a
single output. AND gate operates on logical multiplication rules. AND
operation using variables A and B is represented “A.B”, here (.) dot is a
logical multiplication sign.

Boolean Expression of AND gate: Y=A.B

usin (0] t variables

Truth table %’operation
A
B

Y=A.B
0

Fig. 6.2
AND Gate using two input variables

B

1

Truth Table of AND gate using two input variables A, B and output is Y. If
any input is 0, then output Y becomes 0. If all inputs are 1 then output Y
becomes 1.

J
F

HE
B S
.

= :."-lg' .r"'1_'

Loy

|
hy

perform logical operations like AND, OR, NOT, NAND, NOR etc. Logic

Truth table of and operation
using three input variables

B

Y =AB.C

0

Fig. 6.3

AND Gate using three input variables

AND gate using three input variables A,

B, C, and output is Y. If any input is 0,
then output Y becomes 0. If all inputs are 1

then output Y becomes 1.

Rl_rlRrlRr|lolololo]l >
R|l=]lolol~r]~r|lo| o

Rlol~r|lolr|lolrr]lol O

Teachers
Note
(=]

4

Teacher gives th@lcept of implementation of AND

operation fo logical input and output using given

diagram. AL Bk

A,B open for logic 0
A,Bclosed for logic 1 A.B . ?
- mp

When Lamp is OFF for A.B=0 (Logical)
When Lamp is ON for A.B=1(Logical)

OR GATE:

An OR gate is a digital circuit that has two or more inputs and a single
output. OR gate operates on logical Addition rules. Logical OR operation
using variables A and B is represented as “A+B”, here (+) is a logical
Addition sign. Boolean Expression of OR gate is Y=A+B.

Truth table of or gate
operation using two Y=A+B

input variables OUTPUT
B |Y=A+B

0 Fig. 6.4 OR Gate usingtwo input variables

A, B and Y is output. If any input is 1 then output |
Y becomes 1 and if all inputs are 0 then ouput Y
becomes 0. Boolean expression of OR gate is
Y=A+B.

A
0
0
1
1

0

1 1
0 1
1 1

Truth table of or operatioc

using three input vari =

C +C A

Y
‘KVO B
I9~ 1 C

1 Fig. 6.5
OR Gate using three input variables

A
0
0
0

&

1
1

Truth Table of OR gate using three input
variables A, B, C and Y is output. If any
input is 1 then output Y becomes 1 and if all
inputs are 0 then ouput Y becomes 0.

==l Bl =N K= RN N el el Nes)
=il =Nl R Bl =N]

Truth Table of OR gate using two input variables |

Teachers
Note

Teacher gives the concept of implementation of AND
operation for the logical input and output using given

4

diagram.
AlY C
A,B open for logic 0 —
A,B closed for logic 1 J__ B i
+

When Lamp is OFF for A+B=0 (Logical) |y
When Lamp is ON for A+B=1 (Logical)

y _4

NOT GATE:
A NOT gate is a digital circuit that has a single input and a single
output. It is also known as an INVERTER. The output of NOT gate is the
logical inversion of input. It is symbolically represented by complement sign
(') Right side on top of the input variable or bar(-) sign on top of the variable.

Boolean expression of NOT gateis Y = A’ orY =A

operation

Truth table of not gate

input variables

using two INPUT E A Y=A

A

Y=A

0

OUTPUT
e Fig. 6.6 NOT Gate

1

1 —
@— Truth table of NOT gate is A asinputand Y = A
ﬂ_ is output.

6.2.2 Universal"Gates:
A universal gate is a logic gate which can implement any Boolean

function without the need to use any other type of basic gates. The NOR gate
and NAND gate are universal gates.

NAND(NOT - AND) GATE:
The NAND gate or “Not AND” gate is the collection of two basic logic

gates, the AND gate and the NOT gate connected in series.
Boolean expression of NAND gate is Y= (A.B)’ or Y = AB.

Truth table of nand
operation using
two input variables

A | B Y = AB

0 |0
0 |1
1|0
1 |1

NOR GATE:

A NOR Gate is the collection of OR Gate NOT Gate. The output of __ :

A
B

Fig. 6.8 NAND Gate

TheTruth table of the NAND gate using two input
variables A, B and Y is the output. When all inputs |
are “1”, the output, Y is “0”. If any one of the inputs |
is “0”, then the output Y is “1”.

Y=A.B

OUTPUT

NOR gate is inverter OR. The Boolean expression of NOR gate is Y = (A+B)" |

orY = A+B.

Truth table of nor
operation using two
input variables

B

0
1
0
1

V'S

-A7E

OUTPUT

Fig. 6.9 NOR Gate

The Truth table of the NOR gate using two input
variables A, B and Y is the output. If both inputs
are “0”, then the output, Y is “1”. If any one of the
inputs is “1”, then the output Y is “0”.

Teachers
Note

av

Teacher will demonstrate thoroughly the concept and
® operations of NAND & NOR universal gates. And also
compare the symbols of NOT gate and Inverter gate.

Differentiate between basic & universal logic gates

Basic logic gates Universal logic gates

AND, OR, and NOT gates are | 1he NAND gate and NOR gat<
the most basic logic gates. By |can be called the universal g @
using this set of logic gates, it is | the collection of NAND &
possible to implement all the | gates can be used to a

possible Boolean Expressions | of the basic AND, NOT

by using these three gates. operations.
Individual logic gates can be | A universal t@a gate which
connected to form a variety of | can in& any Boolean

different combinational logic | expression without using other
circuits. type ¢ .

SLDs Recall that data is re @ ed using binary pulses (0 and 1)

i Apply 12 rule .‘F. ean algebra for simplification of any

expression
Design a circuit for any Boolean expression
Derive xpression for any logic circuit

R 63 BOOLEAN ALGEBRA

Boolean algebra was invented by George Boole in 1954. It is a branch of

mathematics and it can be used to describe the logical operations and
processing binary information. It is based on true or false input values to
produce a true or false output value.

6.3.1, Rules of Boolean Algebra:

The Boolean arithmetic rules are pre-defined rules that help to
simplify the logical expression. There are 12 basic rules which are invented
to simplify the gates. To reduce the number of logic gates needed to perform
a particular logic operation we can apply a set of rules. These rules are
commonly known as the Laws of Boolean Algebra Expressions.

The following table shows some of the Boolean algebra rules for Boolean

Expression Simplification.

Boolean G
Rule Expression Prove these rules with Proof according to their
No. | Simplification Values
Rules Y\
_ If A=0 == 0 +0=0 \2
L A*0=A 1 Ac] = 140=1 ,(\6
_ IfA=0 = 0+1=1 \\
2 ATI=T g 1s1 W)
_ If A=0 —y 0.0=0 O
> A.0=0 If A=1 == 1.0=1 b
_ If A=0 == 0.1=0
& A-1=A If A=1 = 1.1@
_ If A=0 =
5. A+A=A If A=1 §=1
— If A=0 +(0) == 0+1=1
6. A+A=1 Z
fASL-= 1+(T) = 1+0=1
_ Iféa)‘_. 0.0 =0
7 AA=A T Al = 11-=1
5 A fco |HAS0 = 00) = 01=0
N IfA=1 —y 1.(1) == 1.0=0
5 Foa IfA=0 == (0)=1==(1)=0s0,A=0
' IfA=1 == (1)=0==(0)=1s0,A=1
_ If A=0,B=0 == 0+(0.0) = 0+0 =0
1&‘(A+A-B=A 1a-1,B=1 — 1+(1.1) = 1+1=1
0 If A & B=0==0+0.0=0+0==0+1.0=0+0=0+0 = 0+0
4, | A+A.B=A |Hence0=0
\ +B If A & B=1==1+1.1=1+1==1+0.1 =1+1
==1+0=1+1 Hence 1=1

(s

If AB& C=1 == (1+1)(1+1)=1+(1.1)
— 1H)@) =1+(1)

— 1.1=1+1
—

SRS
If A, B=0 and C=1 = (0+0) (0+1)=0+0.1

i
— 0=0 6

Hence 0=0

(A+B) (A+C)=
A +BC

" 6.3.2.1 Example to apply Boolean Rules for Simplification expression.

a. AB+AB=A
Solution:

AB+AB=A

Take L.H.S

Here take common variable A

A(B+B)

According to 6th Rule of Boolean Algebra is A+A=1 so, B+B =1

A. (1) Or AT == According to 4'h Rule of Boolean Algebraie A1=A = ¥
A 1=A

A=A

Hence L.H.S = R.H.S

A =AProved

b. (A+B)+(A+B)=A
Solution:

(A+B)+(A+B)=A

Take L.H.S

(A+B)+(A+B)

ANDing (Multiplication) of both expressions

AA+AB + BA+BB

Apply Rule 7th of Boolean Algebra i.e. A.A=A and Rule 8t of Boolean
Algebra i.e. A.A=0 Or BB

A+AB+BA +0

Take common variable A from A+AB +BA expression

A+A(B+B)+0

Apply Rule 6t of Boolean Algebra i.e. A+A =1 or B+B=1
A+A(1)+0 = A+A+0

Apply Rule 5thof Boolean Algebraie. A+A =A
A+0=A

Hence L.H.S = R.H.S

A = A Proved

lusy

6.3.2.2 Draw Logic Circuit of the given Boolean expressions.
a. Y=ABC(A+D)
Solution:

Fig. 6.10 Logic Circuit

& Explanation:

Above logic circuit consists of AND, OR and, NOR gates. The
expression A NOT and B, C gate connected with AND gate and A, D is a

connected with OR gate and converted in NOR gate. Finally, ABC and A + D
connected to AND gate.
b. X=AB(C+ D)
Solution:

Fig 6.11 Logic Circuit

O

Let:- Q=(A.B)+(A + B)

Q=(A.B}+{A+B)

Fig. 6.1 Logic Circuit
6.3.3.3 Derive the Boolean expression from the given circuit and make a
truth table of that Boolean expression.

Z={A+B){A+B)

Solution:
Boolean Expression of the above circuit is Z =(4 + B) (A+B)
Truth table of the Z = (A + B) (A+B)

~_INPUTS TRUTH TABLE

A+B | (A+ B).(A+B)

Teachers | Leacher usually find it difficult to teach Digital Logic &
Note Boolean Algebra since these are abstract concepts. These
® concepts may be presented to students with the help of

./ images and videos. If students can visualize these concepts,

— they can better assimilate them.

ENVE

Data Representation refers to the form in which data is stored,
processed, and transmitted. Digital devices such as smart phones, iPods,
and computers store data in digital formats that can be handled by
electronic circuitry.

Logic Gates are the electronic circuits in a digital system.

Logical Gates perform logical operations like AND, OR, NOT, NAND,
NOR etc.

The logic gate is the basic unit of digital logic circuits, there are mainly
three basic gates AND, OR, and NOT and these logical gates perform
AND, OR, and NOT operations in the digital system.

An AND gate is a digital circuit that has two or more inputs and a single
output AND gate operates on logical multiplication rules. Boolean
Expression of AND gate: Y=A.B

An OR gate is a digital circuit that has two or more inputs and a single
output. OR gate operates on logical Addition rules.

Boolean expression of OR gate is Y=A+B.

A NOT gate is a digital circuit that has a single input and a single
output. It is'also known as INVERTER.

Universal Gates are logic gates. They are capable of implementing any
Boolean function without requiring any other type of gate. There are
two types of universal gates

A NAND Gate could be construct by connecting a NOT Gate at the
Output terminal of the AND Gate. Boolean expression of NAND gate is
Y= (A.B)orY = 4B.

A NOR Gate could construct by connecting a NOT Gate at the output
terminal of

The Boolean expression of NOR gate is Y = (A+B) or Y = 4 + B.

The Boolean arithmetic rules are pre-defined rules that help to simplify

the logical expression. There are 12 Boolean algebra rules.

A. ENCIRCLE THE CORRECT ANSWER:
1. The universal gate is :
a. NAND Gate b. AND Gate
c. OR Gate d. None of these
The is Inverter.
a. AND b. OR Gate
c. NOT d. None of these

In Boolean Algebra, the bar sign (-) indicates
a. OR Operation b. NOR Operation
c. NOT Operation d. Both b and c

The Boolean Algebra is used for .
a. Creating Circuits b. Apply 12 rules of Boolean

c. Simplify the Boolean expression d. Differentiate the gates

With the combination of three variables, how many outputs are
expected altogether?

a. Three b. Six

c. Eight d. Nine

A+A=Aisa rule of Boolean Algebra.

a. 3rd b. 6th

c.5th d. 7th

AA=Oisa rule of Boolean Algebra.

a. 1st b. 8th

c. 6th d. 10th

Simply form of Boolean expression of ABC + ABC + AB

a. A b.B
c.C d.B

e

Simplify form of Boolean expression of ABC+ABC is
a. AC b. BC

c.B d.A

10. Boolean expression of the given circuit is

A

a.A+B
c. A.B
B. RESPOND THE FOLLOWING:

Explain all basic logic gates and their operations.
Differentiate between NAND and NOR gates.
Why do we use Boolean Algebra?

Explain the function of Inverter.

Explain the purpose of Truth table

Simplify the following Boolean expression.
Z=AB+A(B+C)+B(B+C)

UABACTIVITIES

Draw a Logic Circuit of 10t Law of Boolean Algebra.

Design a Logic Circuit from Boolean expression Q = (A.B) + (A.B) +
A+B)

Derive the Boolean expression from the given circuit and make a
truth table and simplify that Boolean expression.

g

ils ¢ Explain scope, possibilities and limitations of scratch.
¢ Demonstrate downloading and installation process of Scratch Editor
OR Working with Scratch Online.

o

71 SCRATCH

Since the emergence of FORTAN in 1950s, computer languages have
evolved enormously. Programming languages are used to create instructions
for computers. Using these limited instructions, we can instruct the computer
to perform a desired activity. Nowadays, programming languages have -

become very user-friendly and easy to learn and program. Now, there are some |

visual languages which do not require memorizing of code syntaxes. Instead,
a program is developed by simply dragging and dropping some components
of that language and entering their values.

Scratch is one of such programming languages. It is very easy to create | -

programs in Scratch which include games and animations. Interactive stories,
games, animation, music, art, and presentations can be created by simply
dragging and dropping colored blocks. This programming tool was developed
by Massachusetts Institute of Technology-(MIT) Media Lab. Scratch is free to
use and distribute and will remain free forever.

When students create programs, they learn important mathematical and
. computing concepts that improve their creative thinking, logical reasoning,
problem solving, and collaboration skills. Scratch can be used for multiple
purposes. Kids can make animations, teens can develop game and even
teachers and students can use it to create effective education tools such as math
quiz, science simulation, and educational videos. Scratch is so easy that anyone
can master using it within very short period.

Scratch can either be downloaded from MIT website for offline use or
used online directly in the web browser.
7441 \Downloading and installing scratch offline

You can download and install Scratch on a computer or an android
device to work offline. The latest version of scratch can be downloaded for
Windows 10 or Android 6 or later versions. However, Scratch 2.0 is a good
version that works on most of the computers. Scratch 2.0 can be downloaded
from this website: https:/ /scratch.mit.edu/download/scratch2

.
. .
. .
- .
! .
» . .
5 .
. . .
- . .
. .
. .
. .
. .
F s

The instructions in this unit are based on Scratch 2.0. However, teachers
and students can use the latest version as well.

FE T Rroasy) OfMann EHmes BIporTy i bt nss

-
o~

Fig.7.1 Scratch Downloading

To begin, Scratch Offline Editor for Windows needs to be installed on

to your computer.
Installation of Scratch is very easy.

After downloading we need to just run the executable (exe) file.

. The first screen will appear which will ask the location where we want to
install the Scratch.
It will also ask about =~
the shortcuts to
create. You need to
just continue with
default options.

. This will initiate the
installation process
and after installation,
Scratch will be ready
to use.

7s
L

Fig.7.2 Scratch Editor

7.1.2 Scratch online

Scratch can also be used online by simply loading its editor in our web-

browser which is available at:

https:/ /scratch.mit.edu/projects/editor
After loading the editor, it will function just like the offline editor. We canalso

create our account on Scratch. This will enable us to save our projects online.

I |m @ s

£
..
2
2

A H!haﬂﬁl Hie'

I
|

Fig.7.3 Scratch Online

o

¢ Explain the environment and tools in Scratch including sprite and scripts
p ¢ Demonstrate the use of Code, Costumes and Sound Tabs

7.2 UNDERSTANDING SCRATCH ENVIRONMENT

Before we start understanding the environment of Scratch, we must
understand the two basic concepts, i.e., Sprites and Scripts.

Sprites The sprites are the images of cartoons,
characters or objects that we add in
our project. We can have multiple
sprites in our project but at least one
sprite is always needed for the proje <
Cat is the default sprite in the Sc (
Scripts To create a game, interactiv " ,

)

animation or artwork i .
you must add visual in tions

to tell a sprite ex*yhat to do.
The scripts are e? tions that
erfor

make sprites

m a task. Each
palni in direcilon 00

|'bring up the script area of that

sprite.

7.2.1 Scratch editor:

Following are the different components of Scratch Editor.

B e L —

——

Fig. 7.4 Stage Preview

e Stage or Stage\Preview Window:

This is' where you can immediately see the output of your codes. The
project runs physically in this window. It is the main working area where the
sprite moves and performs actions according to the given instructions. It is
divided into x (horizontal) and y (vertical) coordinates. The coordinates are
displayed at the bottom right corner of the stage. These coordinates indicate
the position of the sprite on the stage.

e Script Area:

This shows your code or program. You can drag blocks from the palette
to this area and create scripts by placing them together. Script is the set of step
wise instructions that you give to the Sprite to do a particular task. Each Sprite
has its own Script Area.

@:;5555::'

Sprite List:

It displays the thumbnails of all the sprites available in a project. You
can click the blue information icon on any sprite to change its name-and
behavior.

Backdrop:

A backdrop is the background that we can add on our stage. By default,
there is no backdrop is added in a project. You may change how your stage
looks by adding new backdrops.

e Script Block:

Script Area has three different Tabs. A Tab is a small form or area that
contains similar command or options.

Script Tab (Code Tab in Scratch 3):

You can think of this area as your toolbox. When you click on this Tab,
the block palette will open. You tell the Sprites exactly what to do by giving P
them commands. A command is an instruction to do a particular task. In
Scratch these commands are shown in the form of Code Blocks in the Blocks
Palette. The block palette consists of every block of instruction that is built into
Scratch. The commands regarding specific tasks are joined together in different
blocks like Motion, Looks and Sensing. Each block has an associated color that
differentiates different commands.

The following table describes the purpose of each block.

@

Blocks

Purpose

Examples

Motion

These codes are used to move
the Sprite on the stage.

Move; Turn; go to

Events

Events trigger specific code at
a particular time or action.

if on edge, bou :
when flag 1is %(ed;
when spac y is

pressed, n backdrop
switche

This is used to play sound.

Play sound; play drum 1
0.25 beats, play
60 for 0.5 beats.

Looks

These codes are wused to
change the appearance of the
Sprite and Backdrop.

for
n

Think, Switch
‘gpstume to and Switch
hackdr‘op to are some
commonly used codes.

Control

These codes control the actions
on the stage.

wait 1 sec, repeat 10,
forever, if then.

Sensing

These codes sense any specific
happening

touching mouse pointer,
touching color, ask and
wait

Data

These are wused to initialize
variables and list

variable and lists

Pen

This. used to draw lines,
rectangles and other shapes

pen up, pen down,

color

Oper@

AYaN

This shows the available
arithmetic, logical and
relational operators

+5 -5 K5 <5 0 =

e Costume Tab:

The appearance of a sprite can also be changed. You can change

the costume of a sprite clicking on “Costumes” tab and clicking
on the desired costume of choice, or by using blocks to select the
sprite’s costume. New costumes for the sprite can be Imported, Created,

and Edited in the Scratch Paint Editor.

Fig. 7.5 Costumes Tab

@

Sound Tab:

Some sprites additionally have
at least one sound. Unlike costumes,
sounds are an optional field, so you
can have a sprite with no sounds. The
sounds tab allows you to add, delete,
and edit sounds. Sounds can be played
in the sound editor or with blocks that

Fig. 7.6 Sound,Tab
play a specific sound.

e Cursor Tool:

You can find Cursor Tool on the right KA e
top (?f the editor. It mcluc%es five options; L + iy oA
Duplicate, Delete, Grow, Shrink and Help. To
Duplicate a sprite, just click on the stamp and Fig. 7.7 Cursor Tab
then on the Sprite. Same is applicable on Delete,

Grow and Shrink.

Teachers Note ave many questions at this point. Teachers
b/ to spend some time to demonstrate important
—_— example.

e Basics about-Creating Program:

Few points should be kept in mind before developing a project.
e Most of the Scratch Programs contain Sprites, Backdrops and Code
Blocks.
Every Sprite in a program has a separate Code Block which controls
its actions.
You can develop programs for different logics like storytelling,
sprite animation, simple game and others.

Following steps are generally taken to develop a simple program in Scratch.

Open Scratch Editor

e From Events Option in Script, drag
and drop on script area.

From Control Option, drag forever
and drop on script area. Inside the
forever block, drag and drop the
illustrated commands and change
values accordingly. Colors will help
you to find the option.

After completing the codes blocks,
Play (Run) and Stop the program.

Ilr.l

Fig. 7.8 Sample Program

Playing and Stopping the Animation/Program:

To start your program or to test your code [
click the Green Flag icon located above the Stage F .

panel. To stop your program, click the Red Stop icon.
_ What is the output of this program? Let’s try
' to break the logic of this program.

Fig. 7.9 Play and Stop

1 j‘ Mt s am event. i runs tho progrem when the Flag bs clicked.
" |forever block keeps repeating the commands for infinite tme.
Maoves the Sprite 20 steps forward,
| Malees Spete denlt for hatl (0.45) seconds

When Sprite towches carner, it retums back
This ke=ps turming the direction lett — right. |

Fig. 7.10: Program Explanation

@i

Coordinates on Scratch Stage:
Scratch has a two-dimensional (2D) coordinate system; “X position” and

“Y position” to determine the location of a sprite on the stage. The “X position”

value determines the horizontal location of the sprite and the “Y position”
value determines the vertical location.

As shown in figure 7.15, the screen in Scratch is a 480 x 360 rectangle.
The X position can range from -240 to 240, where -240 is the leftmost a sprite
can be and 240 is the rightmost, and the Y position can range from 180 to -180,
where 180 is the topmost it can be and -180 is the bottommost it can be.

W | LG YrLARR

I LR

Fig 7.11 Coordinate Stage

ers Note | Teachers can connect the concept of the coordinates in
mathematics. For better understanding some sample
programs may be demonstrated and given as lab
assignment.

@

722 Some Important Commands in Scratch:
Here are some important commands that are usually used to develop
simple programs.

Command Purpose QS

It triggers the following code

blocks when -~ is clicked

It triggers the following code
when space key pressed blocks when a specific key is
pressed
Moves the sprite in current
direction for specified steps

nove eps

turn (X §E) degrees Turns Sprite to specified degree

go to x: € yv: © Sends. Sprite tq 'specified X,y
coordinates (position on stage)

€ secs to x: O v: O Sprite glides to specified x, y

coordinates (position on stage)

L Waits for specified seconds

Repeats the following code blocks
for specified number of times.

Keeps repeating the following
code blocks for infinite times.

Executes the block when given
condition is true.

play sound meow Plays the specified sound.

Plays the specified drums sound
for specified beats.

D beat- Plays the specified note for
specified beats.

play drum for beats

e

play note m for

st et et b Changes the musical instrument.

— for @ Says the given words for specified
seconds.

say Says the given phrase.

Pretends to think by showing
think [CTM for € secs given phrase for - specified
seconds.

Pretends to think by showing
given phrase.

Changes the costume to the
selected value.

Changes the background to the
selected value.

think

switch costume to costumeZ

switch backdrop to backdropl

Changes the size of Sprite.

Pen is down. Now a line is drawn
as Sprite moves.

Pen is up.

Sets the color of the pen to draw

set pen color to]
line.

7.3 DevelopingPregrams in Scratch

After learning some frequently used
commands, let’s develop few programs. Try
developing the illustrated program.

1. Changing the Costume:

With this small set of code blocks (Fig.
7.12), the costume of the Sprite changes and it
looks as if the Sprite is moving,.
Can you explain this program?

Fig. 7.12 Change Costume

Adding and Moving Sprite

For next program you should right click on the Sprite (Cat) and delete
it. Now you don’t have any Sprite in your project.
e To add a Sprite, click on “Choose sprite from library”. This will open
a dialogue box showing all available Sprites. Select Beetle from the list.
On the Stage, Move the Beetle to the Upper- left corner.
Now add the following codes.
What is the output? The beetle is moving clock-wise in rectangular

shape. Can you change its movement to antilock-wise? Can you write the logic
of this program in simple words?

prhay wlrmeey foar [[TESL TS

play mmkEan i m b ats
-
e

Fig. 7.13 Scratch Program

@l

Playing Sound in Scratch:

% We can add sounds in our projects. It is very simple and easy. We can
- ""-'1} play different sounds like beat the drum or
~ play different notes. You can use these sounds
to make any animation, game or even just
creating music. You can find complete list of
Eg{tes//and l:eﬁts .kf).r;f jollow'mg link. e
ps:/ / en.scratch-wiki.info B -
e In this sample program, notes are ' IL: :__ g i g ::::
used to create the music of a song.] st ETD e LD s
Try to develop this program and ‘4% note EER 1vs CED b=uis
write the output of this program. sats EIED tus CED busts
i

OUTPUT

| sy e 5D tar (CEE) b |}

. ey alruen ELY i PETY Leaiu

play wlanien m He - m Ie=wt=

""h‘ dwums T foe GEER fsntn ||
- a

Fig. 7.14 Playing Sound

Changingthe Backdrops:

By default, the Backdrop of stage is white/ blank. It
can be changed. Place the cursor on “Choose a Backdrop”
button and click. It consists of four different options:

e, “Choose a backdrop from library: e
You can choose a backdrop from available library of 1 backdrop
backdrops.

Paint New backdrop: Mew badedrop:
You can also paint a new backdrop £
Upload backdrop from file: — /H &
An image on your computer can also be used as backdrop

e New backdrop from Camera:

You can also capture a picture

through webcam and wuse it as

backdrop.

After adding a backdrop, you can use
it in your program. Let’s practice this skill.
For developing this program, you need to
add two backdrops in your program; add
Blue Sky and Desert backdrops. Also delete
cat from Sprite List and add Dinosaurl as
Sprite.

By using relevant blocks, try to develop this
illustrated program.

After finishing coding, run this
program. If you have done all things right,
you will find a dinosaur, moving lazily on
your stage and as it crosses the stage, the
other Backdrop (Desert) appears on the

stage and the dinosaur feels happy.

B Now, try to understand each line of your
| program and in your notebook write the
purpose of each command.

ol o0 Dims Wilregs Fai ilwsart

i

]
stz dy Torwlears s |l o=

s OB

W, Naoee
b::

Fig. 7.15 Changing Backdrop

. .
B
oy

i"i i

E1 0 .
A

(%=

L

@

Using Multiple Sprites:

We can have multiple sprites in our project. At least one sprite is always
needed for the project. Just like New Backdrop, there are four ways to add

~different Sprite in our project. These are; Choose sprite from library, Paint New

Sprite, Upload Sprite from file and New Sprite from Camera.

=prites New sprite. ‘6’ / -ﬁ

Fig. 7.16 Using Multiple Sprites

Here is a program in which two Sprites are used. Follow these steps to
develop this program.
Add Bat as the second Sprite in you Sprite List.
This time you need to write codes for both Sprites.
Write the following code for each Sprite.

= |

For Sprite 1

Fig. 7.17 Multiple Sprites Program

To run this program, click on flag ’~ icon. Then press the Space Key
from keyboard. Observe the output of this program and write it in your
notebook. In a group, discuss the logic of this program with your class-fellows.
Remember, using multiple Backdrops and/or Sprites make your program
more interactive and interesting.

6. Taking Input:

Scratch also allows developer to
take input from the user. This illustration
shows a simple program to take the
input. In this program you can use ask
command in which you may write your
message, like in this example, name of
user is asked. The third line is important
and you need to add say command and
join the answer command with this. The
input that you take in ask is stored in
answer and it is displayed using say. Fig. 7,18 Taking Input
Let’s develop a program.

1. First line will start the program.

2. you can find ask and wait
commands in Sensing Block.
You may add your message in
these code blocks.

3. You can find set-to command
in Data block. For this program
you will also need to create two
variables from Data Block. For
creating a variable click on

Make 2 VariAblé./ Fig. 7.19 Program for Input

N\ button. A
message box will appear which N Vallibie
will ask you for a name of the
variable. Enter a name to create \arabe name | Cotaned Mars
the variable. Drag set command
and set variable names. Also & ior sl sprins () For thin sprte anlb

add m from Sensing il O arical
Block. This line will store the

value given by the user into _ _ .
variable called “Obtained Marks”. Fig. 7.20 Creating Variable

4. Same as Line 2.
5. Same as Line 3.

6. You can add say command from Looks Block and enter your message:.

7. For creating this code, first add multiplication operator o from
Operator Block and give the value 100. Now add Division Operators from

same block 940 =55 . Now inside the both operands set the variable

Oilsbmed Warke | Tutel Marts ~ @D . o
. Place this code inside say command.

8. Same as Line 6.

By understanding the logic of this program, now you can calculate
many other things. Remember, developing program is great activity and |
coding is going to be an important skill in future. Through some basic skills
that you learned in this unit, you can develop many complex projects by using

your creativity and imagination.

@:_;}-5:'

Jeioan

Scratch is a programming language. It includes animations and games.
We can create interactive stories, games, animation, music, art, and
presentations.
There are two basic components of a Scratch program; Sprite and Script.
Scratch Environment includes: Stage or Stage Preview Window, Script
Area, Sprite List, Backdrop, and Script Block.
We can use Scratch online and offline.
The Stage is where you see your stories, games, and animations come to
life.
The Script is the set of stepwise instructions that users give to the sprite
to do a particular task.
Backdrop is the background that the user can add on stage.
Scratch blocks are organized into different categories in the left columns.
* Motion block has instructions to make the Sprite move, such as
number of steps to take, direction of motion, etc.,
Event is used to trigger code at a specific time or action.
Sound is used to play different sounds.
Looks is used to change the appearance of the Sprite and Backdrop.
Control is used to control the action on the stage.
Sensing is used to sense any specific happening.

Backdrop is the background of stage.

Costume is the appearance of Sprite.
Scratch has a 2D coordinate system: “x position” and “y position”.

User can choose Backdrop or Sprite from library, Paint New, Upload from
File and Capture from Camera.

Variables can be created through Data Pallet.

ENEREISE

A. ENCIRCLE THE CORRECT ANSWER:

i)

ii)

vii) el 1o BEEERES can be found under

The feature of Scratch is .
a. Itis a visual b. Its free forever
c. No need to remember codes d. All of above
In Scratch, the character which moves on the Stage is called a
a. Sprite b. Command
c. Script d. Event
Repeat 10, forever and if ... then codes are available in
a. Motion b. Control
c. Look d. Sensing
The Looks of Sprite can be changed by using
a. Backdrop Tab b. Costume Tab
c. Script Tab d. Control Tab
A Scratch Program is at least made up with .
a. Many Sprites b. One Sprite and Code
c. One Sprite d. One Sprite and Backdrop
To change the position of Sprite on screen, we use

a. Coordinates b. Stage Information
c. Command Pallets d. Costume Tab

a. Look b. Motion
c. Sound d. Control

viii). Turn command, turns Sprite to specified:

Coordinate c) Steps
Degree d) Seconds

10
ix) This E command is available in

a. Event c. Control
c. Motion d. Looks

x) In the given picture identify the x and y coordinates (positions) of
Point - A.) T
a. x=100, y=-100
b. x=-100, y=100
c. x=100, y=100
d. x=-100, y=-100

B. RESPOND THE FOLLOWING:

1. Explain the following:
i Script
ii. Sprite
iii. ~ Backdrop

. State the difference between repeat 10 and forever commands.

. Write the use of the following codes: forever, wait, say, play sound, go
tox,y

. What is the difference between using Scratch online and offline?

. In your notebook mark the color of each
pallet in Script Tab. One is done for you. - Pen
How are these colors helpful for the user?

. Divide the class into groups. Make two sprite using photos of two
students and write scripts for them to do an activity of your choice. Use
your imagination to make them do actions by using motion and control
blocks.

. Draw a matrix of 480 x 360 and then mark these points on the that
matrix:

a. x=-170,y =100

b. x=110, y=190

c. x=-120,y=-120

d. x=150,y=0
Now with the help of go to-x-y command, check your marks on the
matrix.

. Make a list of your 5 favorite Backdrops and 5 favorite Sprites. .

. Make a sample program in which two Sprites talk with each other. Try |
making few jokes.

. Develop a program to enter Radius of Circle; calculate area and
circumference of the circle and display the result.

. In a group, try to develop a story by using multiple Sprites and
Backdrops.

. If available, explore few ideas from https:/ /scratch.mit.edu/ideas and
make programs accordingly. You can also download Coding Cards and
Starter Projects from this website.

Teachers Note
Teachers should encourage students to explore different
resources and learn further themselves.

	Starting Pages

