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PREFACE TO THE FIRST EDITION

A better appmch to define physics is to know whay Physicia,

are concerned about. Physicists attempt to understand the basie
that governs the operation of the natural world tn which we
Physics & truly a fundamental sclence, encompassing a range

subject matter from atoms 10 galaxies and even beyond, nto thy

miniature world of sub atomic particles and unimaginably amg;’?;/ |
the nature of universe.

The :ecbm‘qug and concepts of physics bave been adopted 14
every otber sclence imaginable such as archacology, molecular

Itve,

bfology, ;ne!eom!og, sefsmology, ocmnogmpby, geofogy,” elc. A

Modern bospilal {s equipped with laboratories in which the most
physical techniques are used. A knowledge of physics helps, to

understand the basic concept involved and Intelligent use of I

everything such as light microscope, electron microscope, X-rays,
ultrasonic probe (ultra sound machine), C.T (computed tomography)
scan, elaborate radiation detection system used in nuclear medicine,
etc. In short, the physics has played a vital role in the achievement of
scientific, engineering and technological know-how which are known

fo us. R!cref?!% keeping in view the role of physics and hence its

importance \the Iracking of new developments and concepss in

mtt%enﬂaly'wuﬁ:b 1o keep abreast of what s bappening in
 tbe broad technological segment of the human activity.

- Many devélopments have tasen place, since the publication of

Physics Vol I published by Sindh Textbook Board, Jamshoro.

—

et ing in view, the advances made in physics and its redationship lo

er [ields of sclence & engineering, the Ministry d'y““"m;

a 0N ™ -
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lan in general and ibe p’@g‘“ q'SM ‘“

© :
Mentmy Physics textbooks are classifled by the level of
1atics employed, this is g non g{adus textbook whick requires
wledge of bigh school a{g;\&},’mg

undemarxdfng of the

mental laws and principles of
S with their applications,

7be language used in the text is
?‘_::;_; le,  Straight forward, easily understandable and of the level of the

Aension of 1he) studenis of ibe bigher secondary classes,

itendec ‘_ ._or hig} Studies in enginecring medicine, natura]
s, :ag@ture, etc

tllsprepamtwn qfthzs edition startmgﬁ'amﬂn
anuscrip lemcwqpmmon qﬂ'omm
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CHAPTER 1

The Scope of Physics

1.1 DEFINITION OF PHYSICS

The colours {n the rainbow, the dropping of a mango from
the branch of a tree, the rusting of an fron plece, the: growing of
Plants, the motion of bodies, the formation of the solar system, etc,
are all phenomena of nature. Such Phenomena lead us to the |
study of science. - » ' \

The subject of science is classified into two main branches :
() the physical sciences and :
(i) the biological sciences.

The biological science deal with living things where as the physical
sciences are concermned with the properties and behaviour of non-
living matter. The branch of Physical science which deals with the
interaction of matter and energy is called physics. This is based on
experimental observations and quantitative measurements.

Physlics fs therefore an experimental science which depends
heavily upon the objective observations and measurement of natu-
ral phenomena.

'Ri‘\c«\h!smry of physics Is as old as the history of mankind. Even
the cave man was aware of the production of fire by rubbing two
Stones together. The Chinese for the first time manufactured paper
;n&hwmei. Egyptian used to measure the flood level in the river

~ The people of Euphrates and Tigris valleys were aware of ca-

lendar and they had the knowledge of geometry. The people of In-

- d“‘ “Cy were the ploneers of decimal system.




* The history of Greeks Is full of inventions and d13C0Veryey
1d of all sclences, and specially tn physics. Archimedes Prin.
~ clple is still an tmportant toplc in elementary books of phygjeg "
. invented lever and screw, Pythagoras, Galen, Ptolemy, ang Othery
~ are famous In the field of mathematics, astronomy, medicine et .

The contribution of Muslims in the fleld of sclence n €eliery)
“and in physics in particular will be described In detall in section
B - L _

We are fi

Significant contribution was made by Gallleo-Galilet (1564.
1642) through his work on the laws of motion in the presence R
constant acceleration, Johanne Kepler (1571-1630) was his eon.
temporary and presented Kepler's law of planctary motion.

Prior to 1900 AD, physics comprised of mechanics,
sound, light. heat. magnetism and electricity. The new era of mod.
em physics began near the end of 19th century. There are two S
main branches of physics now, namely Classical Physics and s
Quantum Physics. Einstein theory of relativity not only revolution- -
ized the traditional concept of mass, time and energy but also mod-
ified Newton's laws of motion for describing the bodies moving G
with the speed comparabie with the 'speed of light. The other -
branches of Physics are as follows: | y
(i) Particle Physics .
(i)  Nuclear Physlics |
(i) Molecular and Atomic Physics | 4
(iv) Plasma Physlics _ = ;
(v}  Astro Physics | |
(v) Medical Physics.
(vi) Solid State Physics.

1.2. ISLAM AND SCIENCE 1.3

In thg\iijﬁffd of scientific research the strong {ncentive comes
from no @tr book and no other philosopher as it comes from the

Holy Quran. We are told tn Surah Nooh. Proph
~ "Do you not see how God made seven heavens One above the oo
other ?* 5 P

: rived
And He has placed the moon as a light tn them. Batta
- He has made the sun as a lamp i
‘ nome

-...-!__— ‘ Surah Nooh Ayah 15 and 16 (rel’crcﬂ‘-"d:

-




_____

may sall there, In together wilh his command.

And you may seek of lg“é grace and In order that you may
~ give thanks &V

And He has o \fér your benefit whatever is in the heav-
ens and what S in the earth, all is from Him.

- Most su cre are signs in this for a people who reflect

@asm (Ayah 12 and 13)

NTRIBUTION TO PHYSICAL SCIENCES
- BY THE ISLAMIC WORLD.

red by the Quranic verses and teachings of the Hﬂy
unad (S.A.S), the muslims translated the amm:t
theongmalswchat lhemdol‘lnnlb




|.r .

tstanding Muslim scientist. named. Al-Khawarlzmy, .

cr of Analytical Algebra. His famous treatise; "Hisaby.
' _ is the first work

x. on this subject. He Inventey
" the term Logarithm (algorithm). Omer

, Khayyam was one of u“
prominent mathematicians of the Istamic world. Bertrand Russe|
muked about him with the following:

man known to me who was both 3

*Omer Khayyam Is the only
poet and mathematiclan®.
great physicist of the Islamic worﬁ

He wrote many books. His master plece work was the book named
"Kitabul-Manazir”. It {s the first comprehensive book on' light. He

developed the laws of reflection and refraction. He constructed the
pin hole camera. The most wonderful chapter of his book is on hu-

man eye. The information glven in it is still valid and correct.

_ Ibn-al-Haitham was a

= - i, &
Al-Razi was the most prominent and greatest physician. He
wrote about 200 original monographs, half of which pertained to

medicine.

Abu-Rehan Al-Berunl was contemporary of Ibn-e-Sina. lic
" was an astronomer, physician/and mathematician. He also lived In

India for sometime during the reign of Moghul emperor AKBAR His'
famous book Kitab-ul-@anoon-ul-Masoodl is considered as Ency- |
clopaedia of Astronomy.

~ Yakoob Bin Ishaq Al-Kindl wrote many books on mathemat:
ics. astronorqq.@cdl&e and other subjects:

- lbr@f(yglna was famous for his original research in the fleld of
mcdlcl@s e discovered the use of catheters. He gave intravenous
injections by means of a silver syringe. He Is famous because of is

medical text book named. Al-Qanun-Fi|-Tib (Qanoon). He als®
‘wrote Al -Shifa an encyclopaedia of philosophy. This comprisé: 1
: mecbenslve reatise on logic, physics, mathematics and mek .'




. .jn 19th century the scientists were able to useé electrical
7. The use of electric motors and generators.accelerated the
[ industrialization. With further advaneés in the fleld of

s and technology, we are using mlcr Wwave ovens, refrigera-
:a!rcondmoncrs. vacuum cleaners, w&;ﬁng machines, etc, for

': S of recreation and luxury hm also provcd a mile stone In the

'md of communlcations and educann

~ The Intelligent use of /physncs Is observed inn many fields of
‘clne and surgery Qg/’rrom ordinary microscope to a sophisti-

| microscope, the usc of laser in surgery,

of elabog(‘g adtation system In nuclear medicine, the use
asonlic tion for diagnostic purposes.

Jr dced been great and it Is very likely that future discov-

_fvelopmcnts will be exciting challenging and of great
s\ n
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- InCGS the fundamental units of udu‘.j mass -‘n‘a’ I'_'il_:..___.__

timetre, gram and second respectively. :

In the British engineering system, the unit of force, lengy
‘and Ume are chosen as the fundamental units. In it the unyg 4
mass is a derived unit. The unit of force, length and time g,

pound, foot and second respectively.

In another system known MKS, the length, the mass

time are measured in metre, Kilogram and second respectively,
In 1960, the genral conference of weights and measures,
mended that a metric system of measurement called Internationa)

system of units abbreviated (MKSA) SI in all languages, system
d'internationale be adopted. The SI units are dertved from the earii.

er MKS system, 8o called becausce its first three basic units are me.
tre (m), the kilogram (k@) and the second (s), These are expressed

shortly. -
1.6 MEASUREMENT OF TIME &

Before 1960, the standard of time was defined In terms of
mean solar day. Mean solar day is the length of a day measured |
throughout the year. A solar day Is time interval between two suc- =
cessive appearance of the sun gverhead. Thus mean second, repre-
senting the basic unit of time, was originally deflned as {1/60) (1/
60) (1/24) of a mean solar day. The time that is referred to rotation 5
of the earth about its daxis is called universal time. For reasons §
which we need not discuss, the length of the day varies throughout =
the year so that an average value has to be taken.

A high ‘precision device for measuring with tremendously
large accuracy Is the atomic clock. The time can be measured toan
’cc“"a‘:{:é one part in 10'2, This s equivalent to an uncertainty of
less than one second every 30000 years. The atomic clock 18 100
complex a device to be described In detall, but briefly it is @ radio
transmitter giving out short waves (about 3 cm long), the frequen®’
wmch Is controlled by energy changes in gaseous caesium atoms:
The great advantage here is the frequency (L.e the number of vib™
tions per second) of the changes Is constant and not subjected ¥
error. With this much high accuracy of atomic clock. the

6317!

Wasredefined in 1967. as the time interval occupted by 9192

—

e
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T dlation coresponding to a specified energy change In the |
M mh the basic unit of length, mass and time there

mm. candela and mole in SI. For the sake of com-
prehension all are given below with briel description.

- 1.7 BASIC SI UNITS
(a Time - Second (s)

A second s the duration of 9192631 770 periods of radlation
corresponding to the transition between two hyperfine levels of the
ground state of caesium-133 atom.

(b) Electric Current - ampere (A)

Ampere is the current which, if maintained in two straight
parallel conductors of infinite length, of negligible circular cross-
section, and placed 1 metre apart in vacuum, would produce be-

o tween the conductors a force equal to 2 x 10" newton per metre of
: length.

ed :

o (¢} Thermodynamic Temperature - Kelvin (K)

e- Kelvin, the unit of thermodynamic temperature, is 1/273.16

17§ of the thermodynamic temperature of the triple point of water.

B 3 (d) Luminous Intensity - Candela (cd)

B ..

it Candela is théluminous intensity, in the perpendicular di-

rection of a surface 1/6 000 00 square metre of a black body at
the temperature of freezing platinum under a pressure of 101325

newton pch'quarc metre.
A
) @?‘ Amount of substance - mole {mol)

Q\QAole Is the amount of substance of a system which contains

4s many eclementary entities as there are atoms tn 0.012 kilogram
of carbon-12, ' |

1.8 Dimension
g ;;” word dimenslon has special meaning tn physics. It Is

denote the nature of a physical quantity. Whether a dis-
> Measured in any units, metres. miles or even light year, it Y




qu: ﬂon the dlmcnsion@cf a physical quantity n
1 sides of equatlon.(lhc dimensional tables atta

,a is aoeelmuon and tis time

F b “ﬁ" ..:..

J

i 4

.-;:i.'- _." .:LQ”L; ‘.;'

j - * * F' (n r4

¥ - .‘ ’ ;

; ‘!"dn 4"’34«’4 W' -li Ii' i, vaase
v ll“l -N- : : h -

-.r'.




urements of physical quantities involvs sorm
in them due to instrumental error and
fore the knowledge of precision of a
t. It is essential that we unders ‘
=xperimental accuracy places on num _
W Investigate how we handie numbers that are not exact.
> that the length of an object 13 recorded as 16.7 cm. This
ment Is an approximation to the nearest length of a centy-
and its exact value lies between 16.65 and 16.75 cm. If this
rement is exact to the hundreéth of a centimetre, it would-
been recorded as 16,70 cmsThe value 16.7 represents three
it figures (1, 6, 7), while the other
nificant figures (1 6.7. 0).

value 16.70 represents

‘ ¢ which is known to be rea-
rly, a recorded mass of 64C8.2 gm means




VWY OLUDE.COM/C/IVIDUALD Y FU | UFRE
we g%t could be written as 2.500 x10N. four signifienn,

\ lfauro stands between two significant figures, 1t 1g “Bél

If a measured value is 8.3867, only three of whose g, o
are significant, we round it off to 8.39. A number is roundeq
to the desired number of significant figures, by dropping ong g,
more digits to the right. When the first digit dropped is Jqq,
than 5, the last digit retained should remain unchangeq, When
the first digit dropped is more than 5 or when it is followed by digite
not ab zeros, the last digit retained should be increased b

\

If two numbers are divided or multiplied, the result has g, |
same number of significant figures as the less accurate number,
For example, the two numbers 4.71 and 5.642 are multiplied, the
result Is 26.6 and not 26.57382. Here we can claim three stgnifi. ‘
cant figures only since the less accurate number is, 4.71, containg-
three significant figures.

Problems. |

18 Find the area of a rectangular plate having length

21.3 £ 0.2) cm and width (9:80 = 0.10)cm.
: = ( Ans (209 ¥ 4) em?®

2. Calculate (a) the circumference of a circle of radius 3.5 em
and (b) area of a circle of radius 4.65 cm

Show that the expression S=V¢t + -lé- at® is dimenstonally

correct, when'S is a co-ordinate and has unit of length, vis |

velocity, ads acceleration, and t s time.,

A
4. Sup the displacement of a particle s related to a time
acerding to expression S = ct®, What arc the dimensions of

the constant c.

| 5.  Estimate the number of litres of gasoline used by all Pakl*
stan’s car each year

glven:
- No of cars in Pakistan
" year by each car =16000 :
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CHAPTER: 2

Scalars and Vectors

e
- 2.1 SCALARS
e
1. Quantities which can be specified by a number having ap-
propriate units (positive, negative, zero) are called scalars. For ex-
= ample, quantities such as temperature, density, volume, etc are
scalars. The number representing any scalars is known as its mag-
nitude. The scalars can be compared only when they have the
J same physical dimensions (units).
Two or more than two scalars measured in the same system
-.’ of units are equal only if they have the same magnitude (absolute
' value) and sign. The scalars are denoted by letters in ordinary type.

Operations, with scalars such as, division, subtraction, addition
and multiplication follow the rules of elementary algebra.

2.2 VECTORS

Physical quantities having both magnitude and direction
with appropriate unit are called vectors. For example, displace-
ment, velocity, acceleration, force, moment of force, electrical feld
strength, are all vectors, because none of these quantities have a
0&: meaning without a mention of the direction.

A vector is represented graphically (Fl_&_’ 2.1) by a-directed
line segment or an arrow-head line segment, QP, whose length and
direction colncide with the magnitude and direction of the quantity
under consideration respectively. The tall end-Q is regarded as ini-

S Point of the vector and the head-P is cafled terminal point of




_--ld=|—- I

":-.'“ : gﬁ'l
. Gt 8 y|[ﬂgﬁﬂ x _'__
jﬂﬂ..- |

quma?w

e fis
-_:.-..'!etters. symbol, such as A, B,C respectivel
t is convenient to put an above the =
(= A —)

sasA’, B, C and their @mmdes are denote

n without any consideratlon of !
s. fig 2. 2(a) Thus

f@n () OA = OB

jon' 'fOA is similar to the dlrection of OB- 2%




DDITION OF VECTORS

Consider two vectors ax'and starting at a S
‘shown InFig 2.3. Let two vectors be the two a@
sidesof a parallelogram, cox;:}p!e e the parallelogram OBCA and
the diagonal OC. Assign&gthe direction by an arrow head to

sfmﬂar to tha; ofOA and OB respectively we get

( _-OA x.)
. O

 Definition the sum or resultant of the vectors OB and
= 0A') is given by a vector OC. (The diagonal of the
). This is the paralleloglam law of vector additior hh
the initial point of BC on the termmal M__
ng the terminal point of BC to the initial point
-** ls then regarded as the Initial M _
M ﬂw tmnhml polnt ef me. esull vect




J- -' quanuUes havmg mag "'-;
ma law of vector addition. ‘l‘hu

m the vector of same kind,
n with acceleration, force witl

-- @
h an!nat!on of resultant éF”tﬂ’O bector

der the triangle OCA.\{zapresenung OA.
R:especu\re!y. we ha@y the law of cosin

‘= A? +.B? - 248 Cos £ OAC 2

+B?-2a8 céz OAC 2.2

es(?/é}nagmmde,n of the result veector.
m@g@ ;

u- R | 3

i=3 e
k'

o1




3‘ (@ Represents orlg!?tal vector
- ) Represents new vector after mu!t:plicaﬂon when auh‘
e mulipher@p’ost tive A1
- [d Repres new vector after multiplication when m

. multiplier, m, is negative

he multiplication of a vector by one or more W .'7 Ve

s governed by the following rules: _
= Am . commutative law for multiplication 2.
=(mn)A . associative law for multiplication
1 J'&x-tnz . distributive law

_' 'I'|| -y

A+mB




tion of new vector B Q@me as that of if
g2.50)




important set of unit vectors are those havin@)the direc-
of the positive x, y, and z axes of a three dimensional rectan-
oordinate system, and are denoted by i, j ‘and k respective-

angular coordinate system as shown in Fig. 2.6 (ck Then by
on [Eq 2.6(b)] the vecto,rs IA;Ii 1Ay jand IAzIk are referred
component vectors of the vector A in the direc-

z axes respectively. Also |Ax| |Ay| and
gular components of A along positive x.y and




| A _

finitior memmumd&(of‘umz vector Is 1 and there

k our result by c&iﬂat:ng the magnitude of unit
, QO '

i .
VG Gr@)

440 VCIC

Bt o

=
| : B s
[} -
=
e
D i -

y PA $ :
e = L




x
DSITION VECTOR
»pose we have a fixed reference point |
v the : position of a given point P w.r. to the@&i‘lt O by means
- having g magnitude and direction re_%ented by a direct-
e segment OP as shown in Fig. 2.8(41 This vector is called
jon vector. We call OP a position .@)\:I’or. since it determines
- ':I'_'_ don of the point P relative to the flxed point O.

l-'. be a position vector QI}.h“pomt P relative to a rectangu-
rdinate system defined by unit vectors 1, §, k and starting at

O~




d‘r bmby

I ‘ll"-]’{-z’

to note that while all vec

e seen that thevec ﬂ? binc or add accorc s
n law. We woul to examine whether the

cat .- c¢tors are subtracted.

- =
ors A and B represented by d
respectively, as shown in Flg.z.ﬂﬂ

1e directed line sugmcntXY dengt)a the n
_mg,l. and parallel to vecltor B but dr: .._‘
h ﬁ ] ey

.. ”l l‘. L : ' --'I
Wwea them i'l
;-:»ﬂ_a, :




e ‘| el

|.'; F " 9 (o) Mﬁ'ef Vectors A ar@'ﬁ
3 e - umgntwcofv:ctor-pg ;‘
N fdpm'mmtrectw4+(-ai
x

N o M

0 mrxg@?m VECTOR ADDITION
m@&:nt{u law of vector addition.

! .\i_; $t\vm vectors A and B Let these two vectors repre-
| acenl sides of a parallelogram. We construct the par-
u‘i asshownml-‘lg ZIO.Mmewocm
tvcctorR. From Fig. 2.10 we have
.“_I '. i* a

. = .l.. o ..

=Ll R




?lg 2.11. Once agaln uslng ‘

.t-v &
L J?ld\-i-B) +C

R . = A+(B+C)

'-‘Bﬂ +'3=A +(B+Cl Q?"

e language of vector algebra, thi Q/pcrty of vector ad-

m:red as assoclative law of vector addition. Consequent-
Or basis of these laws we conclude that the sum of vectors

me 1mspectlvc of any order or grouping of vectors.

~ g
c O ¢ o
0’\ v
A A I c
o R s

ngzu
or addition Assochmlawofmwr




QR g@ whose initial point lies on the termin:

---_-:331 AQ




[d) Sum of

leJSumg(Qtorsb_' OB° and 0T

UJS%Q;W.;O—' 0B'and OC
e segment 5T’ e by applytng Head-to-tal rule.

& 3

: =
P is Su-bject@% six different forces such as F,. F'
as in Fig. 2.13 (a). Find out the results
a*s«

l +

ach a way that thevecwr Fz
thclnit.la! pomtofvectar







GULAR COMPONENTS Q\Q
phical method already dlscussed(\J/ﬁr the addition of
wenient for vectors defined i@\@wo or three dimen-
g;;m view this situation we now discuss a method for
ctor, which is analytical. {ere the given vector is re-
-omponents w.r.to a particular coordinate system.

Consider a vector A whose {riitial point is placed at the origin
mensional coordinate System. Fig.2.15(a).

m the terminal point P of the vector A fig.2.15(b), we
pendicularlines PQ and PS on x-axis and y-axis, re-

line’ \39 Is denoted by vector . Xr as it Is s directec

and the line PQ is denoted by the vcctor.Ay. and it
¢ y-axis,




tor is resolved into its rectangul:
: usr.d to speelf? ﬂ"v‘




r urnt vectors flg. 2.15(d) such asf'\f\

~ X

-'_.:" '_ * ij ' ,M\\'\j 7

(<'

. can pass back ‘a forth between the description of
terms of its m deAanddn'ccﬁonOandmc quiv
iption in terms of its components. -

ealt @a the resolution and the composmon 0!'




de twovectors A and A, having mlﬁmde A and ‘5 . |
. The vector A maku an angle §, ‘and the Vtc!orA’ h -

' ange 6, with the + ve x-axis as in Fig 2.16 (a).
- R g‘,/}

the vector A into itajéétangu!ar components A




s, + A,cos6, &O 241t
rly the sum of compone\ht vectors along y a:ds




the positive x-axis to be east and positive

dlrectlon Fig 2.17. First we draw the line C
'kmg the +ve x-axis which reprcsems




de ort.he resultant vector s g{/@n

Q/ 375 (ikam) = 0.4723 | :
\g‘*
,ulmnt vector = 304.138 lun and d
ector Is 25.28° north of east.



| — - — - 'En'l-—',"--.- & »
i S R T

150km f 6

~2~
0= dﬁ’ (0.4271)-25.23 S ‘b‘ sy 1

h gives the direction of the resultant le\gég; north of

¥

4'.
| <\ 5
The two methods produce same resultséawever. the secend ‘

-

hot bﬁmstﬂcted to the addition of. two\ﬁctom only, while the
nore generz! and oan he useddo ﬂnd the sum of two or

P N\

(3.4)—w (6.4)



'-., +B +%(:§5+3+(-2l=6

A + B, @% 24+ 4 +2 =4
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studied earlier the muitiplication of :

w twm to multiplication of a vector by a vector. Like
of different kinds can be multiplied by one anothe
itities of new physical dimension as explai

e
o

LAR PRODUCT OF TWO VECTO @Qj{
operation of scalar product g&iﬁ’o vectors involves the
on of two given vectors lqzsii:ch a way that the product

“onsider two vector Aénd B having magnitude A and B re-
and having ar@ee between them as shown in Fig.2.19
lar produQ@af two vectors A and B is defined as "the.

‘Hés of the vectors and the cosine of the angle
m”". Thus

A.B.= ABcos0; 040

e 0 between A and B is the smaller angle bem-.* Sk
ction of A and B, L.¢ 8 £ 2x - 0, which is In equality
sible choices. The quantity (ABcosf) is a scalar




ic toﬁ’ i.e 0= 90‘ orone ol '
vcctor then -

uJ.Js k.k =1 (//
e S
e k=k.l =0 - QCJ

/E LAW FOR DOT PRODUCT

| &
m the knowledge (:é')ﬁjecﬂon of one vector ont&
her thatth ﬁ;arproductofvector A and
1e mangnitude, A, ofvactorA ﬂmesthem
'_ he dire onofA as shown in Fig. 2. mmr
g. 2.19(c), L.e.,




-3
B

TR
(c)

b

. | = o | <
. 2.19 -(a) Two vectors A and Ei’ and havgn’g%ngle 8 between them
i - (b) Projec;ton of vector B onto t{té«f'“d"trectton of uectorz

. 5 ~ o 4
. [c) Projection of vector A onj‘Q\the directton of vector B
il 5 3 =4

7. o N\ L

e -5
re Ag represents the projection of vector A

the direction of gejeigr Y comparing eq. 2.35 and
.36, we get _/.\(:}







<é<
&
V)
e the scalar product of mé:Po!lowing

: ) .5 (i) k. @31)

v) | !‘ - 2k). (15{3 ’

)| .

ered. jand k represent unit vectors along x.y and z axes of
ensional gular coordinate system.

I|| LQ
g I-) l‘, g

= i
/

= lil1il Cos0° =1
T ik Cos90° =0




2k




ent. work whick s
%%
is applied force %"{/Qz
O
is d!splaoement whlcbi%ven by
= (xGx)l + (gr’y!)j + (2020 kg
= (2- G +/\\(1 42)] + G-k
O
= (1) ({/Qw (-3/) + (5k)
| :... = (- bQ (-3j) e (5k)

DS
=F.d = -3 +2k). (-1-3f +5k)

II

;; _néi.t e QN

= 449410 = 15







tion af twu vectors In such a way that th,

. a scalar quantity. When deann’fgﬁ
angulac momentum, the force on a movin,

field, flow of electro magnetic energy. etc
tion of two gtven vectors in such a wa

uct {s a vector quantity. This prod@lsknownaa .-_,
d "torcrossproduct

ecto productoannd B Qv\ancwwctorc -AxB by
thevectnrc lapcrpcndjmlarto the plane contauungthe.
and B. Byd&lmtion“(l) the masmtude.lA X Bl of the
.ctoruzemagmmlic. IC I, of the vector € 1s given by

2.39
. B represent the magnitudes of vectors A and l
] smaner angle between the positive direction of A '




A
U +

uectorpmducmx B In rfgmrmndedcoardim
mwdn-edmnqrmoec:orc {s that in wh
ances when turmned from Ato B
desmedﬂ'ecmnoﬂheuectorn change@f%’oughlso'm 1

.Ll‘g'lng’) _
5 _ ;'-'-(BXAJ @0 B A sint) )




plane containing both A and B

~ the vector product. A x B, g

.11

.and Eq 2.44, we conclude the Cross produet is

perpendicular to the paralletbgram defined by vector A
- and Vector B and its magmtude is equal to the area of

W

~ the parallelogram.

N
,t }
¢ \./

OM PHYSICAL Ex@mi:u:s OF VECTOR




@li-Aji-Ak

QI' {(/

&\)Q. B! + B j + Bk
due orvectorproductmnbewmtenu _




,\0‘?“ |
The éi'e'a of t.rlané@(;ﬁ terms of vector product is given
l. B)l

@Q:s; 2k) x (4i -j + 3K) .
€81 x (41 -j + 3K) + 65 x (4f - J+3k1“"
2k x (i - J + 3K

121xi-3ixj+9ixk+24j







f\'\
12) Calorie
~ (4) Momentum
(6) Energy
(8) Distance
(10) Magnetic fleld mmay
(12) Work _
5 (14) temperature
ational potential  (16) Charge
g stress (18) frequency
(20) Electric field tntensy.

(5) scalar
®8) scalar

1) vector (2) scalar







force on the ship.

\ns. 10392 N \}C'o
. The position vectors of poirx{&@and Q are given by =2

= 4i - 3j + 2k. Determine PQ in terms of rectangular
cto: i’.;,j and k and find 1@ agnitude.

Ans. 2i “6j + 3k, {‘){J
B <

e vectqrsx =31+ j-2k,




Q\\?“
veighing 10,000 N on ahﬂlym!chmakes
: t.he horizontal. Find the gg?rrponcnts of car
1d perpendicular to the m@; ‘

\..

‘f

O N, F1=9400N

1 the angle beAQm +2j-kand
+2k.

je ction of the vector. A=1 -2 + k onto
Q« -4 + Tk,




- - =
3 (a) A X B. (b) B b ¢ A. (CI‘A + B) X (A- B)

- Ans.(a) 10i + 3j + 11k (b) -10¢ -3f -11k
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3.1 DISPLACEMENT

The change of position of a body in a particular dirgetion is
called it displacement. By definition it s a vector quantity. If a
body moves from a position A to another position ‘B’ as shown in
Flg.3-1(a] we can represent its displacement by drawing a line from
A to B. The direction of displacement can be:shown by putting an
arrow head at B, which indicates the direction of displacement

B |

't.

4 |

1

|

A |

A |

|

FIg. 3.1 (@ Fig: 3.1 ()

5 from Ato B. The actual path of a body may not be a straight line
frm}\?‘g- to B, it may be a curved path as shown in fig.3.1 (b). The
@9‘{' Tepresents the direction of motion of the body.

2 VELOCITY

The velocity of a body s defined as the change of its dis-
~ Placement wyyy, respect to time. Alternatively it is also defined as

the rate of change of its position in a particular direction.

g h...._

55



the body be at poirit P in Fi
ct to origin O, is represe

Q

 time for the motion bctween -
to (t,- t)) Le'at = (t,- t,). The




 have a uniform velocity, >
s. a body is sald to have uniform velocity 1f gt fray
tances In equal intervals of time in a given direction howeve |
linterval may be. The S.1 unit of velocity 1 per | '-.";f.'
;'.'_'_"’@ FROM DISTANCE - T@&z‘ GRAPH:-
. L

velocity of a body can be deteoéh%ed by distance ‘

S

hen a body moves with uplfél}m velocity it will travel equal
aquéhmervals of tl,,n@ﬁ graph of distance against m_, B
a straight line as shown in Ag. 3.3 (a). If we take any point B
e graph and dm%wmm AB on the time axis, it is -:."_

- e e e e E—







el
 limits of a very small At the average
value of lnstantaneous accelerauQn?'i‘hus the instan-
ation, a. i, 15 defined as C:}((/

—_—

lim AV x& |

At—0 At A a8
sy

the velocity of a bodgbﬁkdecrcasing the acceleration is neg-
e negative accele@ﬁn is also known as retardation or de-

&

s m/s?




on

T L \\» — .

V4
£

W
&

: that if a boc )@Tnoving with constant accel- ‘
1 velocity is (..“gnd after time 't' its final velocity |
otion of the body is governed by the following |

(1)




. i 4
b _“ . =i " "
i
S =
1

- the time during which this dsunu"p

-
& oz

\

ying the eq: 2

- D S
V;,_ljt 2 at

nilarly for the motora&\ o
Y gl |

ed of the motor<c§§l§r. =V = 36 km/}, = 10m/s

ime = taecorag/

S = vxt
.,,'__ = 10t : "
gt

1 ;.u. -
e
'IgT







0.
L ow the dlstaaé):overed by the car In 5th second
. Q"‘ S % S‘ - 36 m
3 «5 ’

L '-f:'

INg Eq.(2) from Eq. (1) and-putungtbmnhu )

s 128 - @8a

aﬁ- 4.5a | LA

"!‘i‘q?-.r ! A




umformly accelerate wmotic:rn. The accelerat

: y_represente&l “g. Replacing acceleration:

uations of motion becomes

due to gravity g the ¢
% O

+




‘._r__

= 122.5 metres

4 1
he 425

e | e Y L
Let Vy be the velocity of the ball with which it strikes the
| %@ :

N




| o

Wi nse is taken to bc negative Qﬁﬁs&;[

(</<'/

= 2aS {<,\'
2(-9.8) x {h\

-19.6 @ h,
98(;
@Ox a8

| e 5{0— = 490 metres
19.6
&




98T - -é- X998 xT

98T - 49T

- 98T= 0
= 20 seconds




fa f98 m/s

+ 98 m/s corresponds to t
up and thus -98 m/s Is hﬁc velocity with wtuch
1e ground. The nega e»sign tells us that the d

“the ball. when lK{%ms is opposite to that of
So the ball retumns with a speed of 98 m/s in t
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‘“ net force, which Is stated as roum. Fomh:u‘:m
mmuppnedwabody,dmguortmdsm agency

. ‘ﬂgad’ uniform motion 1.e produces acceleraty g ks sate

onin the body.
law s also called th - o
This ehWOfmemam'uae

it s to- )
. " wards a very important property of matter which s ca.lledpommg ﬂl/

Inertia is that property of matter by virtue of which If it is in
state of rest or motion it tries to remain in that state.

~ If two bodlies of different masses are maving with the same
velocity under {dentical conditions, it will be more difficult to stop
or change the motion of the body of the larger mass, because the
body with larger mass has more inertia than the body having less-
| er mass. Thus the mass of a body is a direct measure of its inertia.

(i) Newton’s Second Law of Motion.

From every day experience we know that, if we push a body
harder, it moves faster. Its velocity change in the direction of the
force exerted, from such experiences it is established that when a
force acts upon a certain body, the acceleration produced is pro-
portional to the force. Symbolically it can be expressed as

E ‘e a
gcg = ma 3.9

%ﬂel’m (vectar) sum of all the forces acting on the body.
M8 the mass of the body and tlie equation 3.9 can be regarded as
# 8tatement of Newton's second law of motion.

. mq:S.Dcanbewﬂttmas
. -
5 m A

69 i



Mw ol' Mot!on.
ef motion can be stated as follows: F

»n there is always an equal and oppos (€reae.

ol Sl e e » :
” dy A exerts a force on another body@g\t is calleg |
force A on B. The body B will aJ%Qxert a fom”
I be equal in magnitude but opposite in dicection,

lled the reaction of B on A. \>

/(‘* -

j',--Astﬂke block B with a_ force F,p and the b!acka‘
. a force F on the (hlbck A whlch will be equalm
topposite in dlrecgch further more the forces lie

mass of the bodies. therefore




S = 20 metres

vf = V" +2asS
02 = (10)* + 2x20a

| Vi
-(10? 2 Q\'@
s oA (\

(:ninus sign means retardation or dece{gration)

r- Knnwing “m" and having I'ound axﬁe now substitute in
a, to ind F.

1000 x -2.5

- 2500N
 Average retardation = 2.5 m/s’
‘&Vcrage re;etd ng force = 2500 N.

MC ‘{@? OF BODIES CONNECTED BY A STRING

; Newton s third law of motion “to every action thcre

ol‘ a string. out ﬂngers will feel a force. thi_
0 in the string. Stintlarly, when a body
""ded*by a string the weight of the k




tder two bodles of unequal masses m, 2 °°m"'i_
ing which passes over a frictionless gull’c)' as shown fp |

masses are suspended by a string from a pulle
move vertlcally.

*tha.nm . Hence bodyAham
w!th an accelmunn say‘;‘ |




\\\\\\\\\\\

) the tension in the string which 1s-acHng (n s

on and (1) the welght W2 of the boc ‘... ’h

wnward. Since the body 1s moving in the'lgward dircctlon s'c:th_er £ ‘&
‘net force acting on B in the u pward direction i £33

== 1S T = ng l ."
A Again we can calcul s.forcc on block B by the ap- 5 ‘
e 8 - plication of Newton ﬁtﬂaw N
= -:" :’?‘- n. |
V. Thus we @get the cquadon of motl(@f@r block Balsoas o
< T - mgs ma 3.11
% ; (& % A
N For c@laﬂng 5‘: d equations 3.10 and/3.11 i I{'
| }
i . E‘J‘
Ty




a - .'_'.l _Il_'llu.:I -
oo 1o aol

I lﬂalau 95

e

3
v
O\.
ne body moves vertx%l]y and the other moves
0oth horizontal ce.

%{:B&Of masses m, and m, respec-
d o@ string which passes over a pull

rection of the tension in the string at that
ves vertically downward with an acceleration
y B moves on a smooth horizontal
he same acceleration.




:. net horizonta] force acting on the

| ¥ e Strlng which pulls the block toward

nce the block is moving with accele
of force by applying Newton's scc&ég w of motlon.

T — mza \C")




g = -9.8m/sec’
bodies be ‘a’ and the tension of the sty
te the acceleration, we apply the fol




us L ém case we say that the body having m@. |
ter quantity of motion than the body having a lesser
e
1y, if we want to stop two bodies oQ& same mass
n distance moving with different \(El%tm: we have to

n'is defined as the product of mass and velocity
can be determined as follows




ind B (a) before collision (bj when colliding with each
" colltston. )
w\%

AW OF CONSERVA@QN OF MOMENTUM

- we have a Qem that is isolated; such that he




 average force acting on the body B is also e
! of its momentum during the time lntelv%

.

F ] ,mzvz - mU, Q‘Q‘?‘

I 5 t
Simila ly the average force acting upor@(: bodyA Is
1 <O |
mlvl R, "\>\>
t

As the forces are opposlte!,y;&ﬁi:cted therefore
X 'LI \/

L .m,V, - m,U, m,V, - mU,




! two smooth non-rotaung spheres moving inmaﬁp
ie joining their ccntxes they, after having a head-on @ﬁ

.,u‘alght line without rotation. Due o As t
2@ straight line =
wo non-rotating spheres of masses m, *

y along the line joining their centres with Ve
In-ﬁg 3.10. U, is greater than U, s0 th "



. '-l_. 'J'-'-"‘"}.h _I.__._
|__b .«}\;,\’# Y
3 ;.-,mu.-;;w

Trom [mr)j s

 collision is e §Uc ‘so Kinetic energy of the system is
ed and frorq@) above equations we have

1 2 1 2"
Bl

2
sz2

- U}




, M~ m =
3(1 .2)Ul+(m+m ..
‘ _n'll + m: L , %
1y we have from eq. 3.23 Qj{

o
\&O -

O
_..um va!uc in eq. 3 ghwe g"(‘




A N
7N

BN
comdcs with a massive body at rest,
m, ; under these conditions m, is so small
d to/Q;}that it can be neglected in eq. (3.24) and eq.

| we have V=-Uand V = 0. Then body B will
___whllc body A will bounce back with the velocity




ver :
(§>lvo bodies be in contact with each

ry ‘gﬂne of them over the other, a force is set
,{ tact, tending to resist the motion. This is




y Mg
Fig; 3.15

f rest the upward reaction R balances the weight mg and
riction is brought into play. \\1{}

. { \"; <
- Ifnow a small force F be applied to "G" parallel to the sur-
fac "rgglstance say f is offered to the motion. If this body is still

it is in equilibrium g{p’der the action of the forces R. mg, {
L w\i\";

" AsRis equ ,a‘;’;;g'Opposlte to mg, the force "f*

ust be equal '_ ppositetoF.

nce “f* which is thus brought into play by the -
1 a direction opposite to that of the latter Is a se




swﬂlbe lost and the body begins to move,
tl said to be sliding or rolling according as one

_, §’“
: liding friction is slightly less than the l.llglah! |
: '.umlshm!ﬂng.themmmlmaeﬂonandthe&l@

. 'mﬁ&npoundedmwammtantﬁnﬂcfome.them
xuultantmhuwlth the normal to the surface is called

xw /

Friction plays a vntal Qp in our daily life. Without friction we
walk, fix nails Belts cling to the pulleys, drive the ‘
y because ol'

n ha ?oth advantages as well as disadvantages. Sm




@Q mxfw

§\

hen one body 15 at rest In conta\i;ﬁvith another, the friction
them is said to be static. whmumjustonmepomof

fiif;f:mxcmg/r or FRICTION :-

The ratio oi\lﬁ?nmng [riction to the normal reaction acting be-
- in contact is called the coefficient of friction
denoted by u.

lf F be the limiting friction and R the nonml reaﬁif,_._,_:;




a llquid. He four \<at unlike bodies falling in vac- inclined s
ve with the ac e,;ratlon due to gravity these spheres
) be moving with constant velocity. :

Whe
as shown

ese spheres experience an upward re- | Itsstae o




Thus il a smal] metal sphcrc is allowed to fall thro a lq-

-the value of F creagé\s and be-

a uniform ve-
with Newton's First
7

0ad may be ratsed more easily by pulling it along an
inclined surface than\by Lifting it vertically. @

When we place a ‘% of F ooth horizontal table

asshownlnngs 19. it rematk MItlspush&a;puued.




d by vector W. The Incline i ol
pendic

r to the plane m

s also the force of @%Bn which opposes its slipping |
resented by “f™. If the block moves (which will be
rictional fo(ggls very small), it will moves down the.
‘take x-axis parallel to the inclined plane and Y-aﬁ
: K’%w resolve the forces along these axes. The
perpendicular to the plane is W cos® and that

16 as shown in Fig 3.20:(c):




£l el Wiy

s B |||v ﬁ?"W’M& l .I L
“ f =Wsing

* R = Wcosd =

+ R = Wcos0
W

r, the block does slide down with aq&&?:cleraﬂma. :

a resultant force whose magnit els glven by the
-mass of the block and the achgrauon with which it
S
O
A

. Wsing - f = ma, - 3.28
-~ W = mg wecan wﬂﬁ the above equation as

T

i mg sin® -f = ma - 3.29
ind if the force of ﬁé’u:m is negligible it becomes

m 10 = ma

or a = g sind
Q\)

Xpression is lndependcnt of the mass of the block




e of friction, the. b%unbalanced force ac
_ sme acting alo e X-axs or parallel |
 an accelcrau@a)and{m]bc the mass of




.!'*"I I@]’ +2x0.2 x49

I = 19.6

Jectron gun of a television set éa/électron with an ini-
of 10° m/s enters a regl‘p} where it is’ electrically
ted. It emerges out of thls region after 1 micro sec-
speed of 4 x10° m{s ‘What is the maximum length
stron gun? Calc‘tﬁate the acceleration.

(Ans. 0.2 metres, 399x 10 m}s

, wal @Et a traffic signal and when it tums green.
'ts ahead with a constant acceleration of 2 m/s’.

 time a bus travelling with a constant speed of 10 I* 173

s and passes the car.

"thccarbemovtng
e (Ans. (a)l m




Uu,é IOON (i1). oosm

ng with a speed of 40 kmlh
rakes it comes to rest after travel-
. Calculate the average retar

(Ans. 1234.57N1




BT - A
102 kg and 45 kg are
WWﬂh m or a g
Myormass 10.2 kﬂm mn
md the other body hangs vertic ind ¢
ofthe bodles, the tenslonofme i
orc e which the surface exerts on the be gy .-

?»

0 grams bullet is fired from a l%gg gun with a s
)X mls What is the speed of r of the gun.

&o (Ans. 10 m/s)

, 50 grams bullet is fired;mto a 10 kg block that is s
a long cord so /ﬁb it can swing as a pendultm. I
dlsplace at its centre of gravity rises by 10
hat was the é/p& of the bullet? -1
(Ans.281.4 m/s).
| gun fires 10 bullets per second m &

” t weighs 20 gm and had a speed of w
fnmnecessary to hold the gun in pam




es on whlch the blocks are resth-h
the acceleration of the blocks -

If the planes and "c}s are frictionless, find the
1 and tension %[§yie cord. |

(Ans: 2.45 m/s’




WO Dlmension

ative discussions of motion are based on the M 5
d calculations of positions, displacements, velocities,
erations. For this, we developed the equations of }m
jon with constant acceleration. The discussions con-

) one dimensional motion that is, motion alo% straight
her the line was vertical or horizontal. e

cinating. Majority of the most important phenomena of
simply could not take placein an one dimensional world.
study various physical phenomena around us, we certainly
d take to describe motion in two dimensions and'ultimately in
e dimensions as well. The projectile motion and circular mo-
good examplesof motion in two dimensions which we shall

here in thischapter. -
R

ECTILE MOTION

us'begin our study of Physics in two dimensions by con-
1€ motion of a projectile. Any object that is given any ini- |
Y and which subsequently follows a path determined by .
force acting on it and by the frictional resistance L
here is called a projectile. Kicked or thrown
15, object thrown from a window, a missile shot




Jotion can be analyzed by considering moy
‘will be vertical plane. In that case we

ntal coordinate and y for the vertical @rdl
ary first to choose an origin, positive d on ang
for the coordinate axes. It is convenient'to measyre
izontal coordinate x and the vertlcal(coordinate y of
n its starting point. Also, we choosc the positive di-
f x-axis toward the right and the positive of the y-axis up-
. the object always moves downvéard. this choice means
value of y will always be negative. That is, the acceleration
on is -g. just as in Iree falls and the acceleration inx
s zero (because air {Iﬂct,ion is neglected). In addition to
arate the motion in two parts, the horizontal motion

tions are found to be independent of one

rtical motion (motion in the y-direction) does
zontal motion (motion in the x-direction), and
.._u’ently. the x and y componenfs of the displace'




S
Y\@

o

4.1l L ial horizontal
city oz , this horizontal velocity component r ains constant while the
eonmtt increases linea.rty with the ﬁme.'(@m the motion follows

- gt <> 4.1 (_aJ
<&

ince there is no horizontal component of the acceleration,
P w velocity, Ox. is simply given by its initial veloci-

- 4.1@®)

4.1 (a) and Eq 4.1(b) are summarized by the impor-
that the instantaneous velocity vector, o,, ’ m-»-
ner tswluchactmdependently Onlythe ical
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- compo mmesunwlymmume.musthemoumofam ,

jectile follows a curved path.

Fig. 4.2 is a stroboscoplc photograph of two balls that gy al.
lowed to drop simultaneously, one of them with horizontal velociy
component. The picture shows that the vertical motions in by,
the cases are Indeed identical. However, the path followed by ¢,
projected ball (1.e the ball with initial horizontal velocity, 8,) 15 a

parabola as shown in Fig. 4.2.

addition to the initial velocity, 8qx . in horizontal direction:
if we also allow the vertical motion to have an initial velocity, Doy ,

then the equations which govern this motion are:

stumultaneously: the one the left
was merely dropped while the B
other was given an initial hori- @&
zontal veloclty. The vertical com- kS
ponents of the motion of both pmm

balls are exactly the same. The /5N
stroboscopic photograph was [§
taken with a flash interval of
1/30s.

’ Fig. 4.2 The two balls released S8

4.2 (a)
4.2 )
4.2 ()

4.3
430

4.3

™
,ﬁ“




n, we therefore constder the motion @ncll sh‘dt
1gle 6 with the horizontal as shown 4.3.

Maximum height h
at time T

Range R = distance
at time 2T

l velocity 5:, of the shell can be resolved into two
ponents dqx and Yoy along horizontal axis and ver-
ctively, as shown in Fig. 4.3. The magnltudes af
ts are glven by




ht of the projectile occurs when the y
ocity given by Eq.4.5(cireduces to
S

9, Sind -

T be the time when the vcx\'u;%l component of ve-
to zero as mentioned earl!e;--f.\(:} 4
1g ﬂy =0andt ={ﬂ;\‘*‘ln Eq. 4.5 (b). we get

f then gives the maximum hagt?”

O
0&




- anc ‘--13 répresentcd by R, as shown In ﬁg,.; 3. , S
|_|;l .

- to find the range of the projectile we make use of the =

al flight requires a time that is twice @m nce. A0
1 the maximum height. Therefore we set. " o
R :whent =2T _Q?
q. 4.2 ¢, we find C
BN 5

i

\\*’}

R2n, T

.-- A
tuting for T = (—— , we get

x Goy . 49

ng for 0, and Oy from Eq. 4.5 (a), 4.5 o), we find




02
= —2 ;at 0=45°
Qﬁo
ectile must be launched at an ang
to attain maximum range. For all oth
er than 45° the range will be less th

l{lﬁm 4.




0,Cos8 |
- substituting for t in Eq 4.13,
~ weget

= o0 (— s
o

%) . projection angle ® and the w .
dhe quantities 0, 8Inf, cosd and g are
lump them Into another constant suc




also show awmwfonmm
/2 thm nruwthnnm pmmm

MMMO-“‘ the range Is tv gn 27
ed by the slower projectile. '_ this £
1“ lllnmnonable agreement with our experience (1)
Inlplteol' the fact thatwelmommmm%
; mﬁyobaemdmﬁg44fordmuon sym- pe dir
- t 45° 1s due to the fact that N mine
12(45'-011 = Sin[2 (45° + =) |. (</<<(//< Jectile
_. Mnngewﬂlbethe same for anytwoelcvauonm D el
tﬂvhichareequalamountsgreqt&man or less than’ ball. £
ﬁmmngahlforclmuonanglewandwmem ’
dnch pair produccs a flat, traJcctory and the large angle S
wo of th catanyuutantmnbemlwht‘ @
; _@e mmmen e vclodty at that Instant ‘
“'. _,'-‘ - (6‘ QS% 419 beusa
Be -~ re some numerical problems on projectile 0~ orizq,
I&ctosummaMWhatwchaveleamedwfm hi Ple,
alr mee is negligible, the hortzontal campmi gle see,
mains constant smcethmumhomn!llm ;1‘?@&

h. .
d‘mlulmuqnﬂﬂ
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. MemlelnAtlﬂeucs

me varfous formulas developed for the projectile

tly used to analyze a tennis serve. While a pla
¢ his or her own best serving angle by trial , the pro-
me motion formulas can be used to predictQhK\ angle given the
’mal speed. The advice given in text book Qé/(emus is sometimes
based on this type of analysis. Many atl{k:ttc games such as base-

football, hockey, cricket, etc involvlng projectile motion that
Mlm kicked, or struck can be dlscussed using projectile motion
formulas.

2 Horizontal jumping

Constant accelération formulas developed in chapter 3 can
med to ana]y;g\@rﬂcal motion by animals. Similarly, to discuss
zontal motion' we can use the projectile motion formula. For ex-
calculate the angle at which the jumper projects
’ﬁ: value so calculated is in close agreement with the an=
u photographs of competitive long jumper. Um” ﬂ'-“'
1 velocity of jumper and the angle at which M
lﬁmself we can evaluate the range. .+ o

m in an another application of pm ”

e smal ange produces ¢







= (12 Sms’ ) (1.28 5)
‘ 'Y = 7.97 m

_ - Thus the ball is 7.97m above a point o
1 away from where it was kicked. CD({/
| N
- /\Q
- A tennis bal] is served horizontally from 2.4m above the

ound at 30 ms™. (a) The net is 12m away and 0.9 m high. ‘Wil be
the net? (b) Wherewill the ball land?

Solution oV

\/
\ V4
Aeons

To find the height of the ball at the nét, we must first find

it the time reguired by ball to reach the net. From this we can

the height.

Solving Eq. 4.2 (c) for t
1 h 12m
30 ms™

' .- !.ig —— =

8- 0. and 0y . i e

.|1|

ryg(e%nmd which is

A
=y |

fis
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| 'bulletﬂredwlththesameimtIaIco onswwldnut

y this far. Because a rifle bullet h(s?a much larger sur-
mass ratio than does an artillery shell, air resistance effect
nuch more severe and drastically re@g s the range.
- \.

P AN
\\/m.
a player throws a ball gg‘an initial velocity of 36ms’". (a) Cal-

ate the maximum dxsb@ce the ball can reach, assuming the
ught at the s <eJheight at which it was released. (b) f he
7&9 throw th-'\@l‘l half the maximum distance in the shortest
ssible time, eo@ute the angle of elevation in this case. (el'm
s es in the two cases?




me elapsed in the above two cases.c: lated
6, and doubling the result, sL@éé/the T represents

total time elapsed between launcleiiég and landing
;\

\,'

'213 sin 45°

_21\
é%ﬁm ) (sin 45° / (9.8ms”)

21?0 sin 15°°
g N
i 2(36ms") (Sin 15°) / (9.8ms”)
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eel rotatin

! ga ut ana:u
of circular motion, One important consig
that each point in such an object is.r

| S
When an object such as P in Fig4.¢
th in such a way that fts speeq
tude, 9, of its velocity, 9. is conet:

8 as uniform circular motion. &Qescribe the uniform cir :
~ tion we would like to deﬁn&@‘e"following : :
' - (1) Angular disp ent

- .. 2 Angular velGeity/angular frequency
: (8) Period of Gircular motion,




.7 The position of an obé@%ouhg in circular path
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 —— = 0.01745 rad

ote that the measure of an angle whe
 not have physical dimensions of fe
the ratio of two lengths. Altho carry the il
ated rad through our cal ns to remind us Mm '
ing measured in radians,é; ever, this unit doeamq. i
e the final answer. For example, the length of arc s on a ]
cle of radius 0.15 m whif£®<%Ubtended by angle 0.5 rad.. then
S =10 = (0.15 q\Qj@fs rad) = 0.075 m . e

s the unit@é{ does not appear in the final answer '

| Q-
) Angul . \Poclty 1

uppose a body P moves counter clockwise in a circle of ra-




e <O s
1e Eq 4.25 gives the magnitude of the average angular ve-

Ve W4
S .
istantaneous angular speed,®, is defined as the limit
as At approaches zero:

 lim _(A®




Direction
of rotation

Y

 Flg. 4.9 (a) For counter clockwise rotatlons o is directed out of the page.
' (b) @ is directed into the page Jor clockwise,

(¢c) Curling the fingers of the right hand in the direction of rotation, the
thumb ;{Qif}h perpendicular to the disk in the direction of 5;.

ame time. vihe- angular velocity is characteristic of :mf
g body iﬁ(a whole. By definition the angular velocity dep
he rate of change of the angular displacement, thert







antiparallel. The g,
and a,.of a pointson

object moves In a circle whose centre Is on the axis of rotation,

_ : Consldcr a(pgrudc P In an object (in x-y plane) rotating
along a dreular path of radius r about an axis through 0, perpen-

dicular to t@plane of the figure (the z-axis) as shown in Fig 4.11, { y L
~ Suppose the particle P rotates through an angle 48, ma i

T r

Mding both sides of £q.4.29 by At the s SA
300 occurred, we get |




nall(At —0), As is very small, aml 0
ous linear speed, 9. Therefore the Eq. 4.3




The tangential velocity 9, of a particle m

path is given by the product of the distance of
- axis of rotation and the angular velocity.

ﬁe rotating object has same angular w?éioclty whereas the hu 3
wvelocity/tangential velocity is not same for cvery point on the rotat-
ing object. The Eq.4.33(a) also shcws that the tangental velocity of
2 point on the rotating object increases as we move outward from
- the centre of rotation 1.e,as r increases. Eq.4.33(a) has been de-
rived using the equation which defines radian, hence the equation
- is valid only when tl:;e angular speed, o, of the rotating object is .
medmra@ns per unit time. Other measures of the angular
= s@as revolutions per second or degrees per M.

) (ﬁ‘i’pose an object rotating about a fixed axis,
ar velocity bnmmaumean'rhmthechaneem

.Ao.attheendofthlsmtewﬂlls

i
et

,J'r

I d

= - ; '-.I' rj
.. & f"{ = |' " .I_“. " )

o

Sl &



tangent! acceleration of a point on a roty
of the distance of the point from the axis of
\

leratt

al !4‘.‘1.

‘time required for one complete, rcvq&?al or cyc
alled time period. The period L\‘é:&oted by T. We

er the angular velocity, the‘shorter the tme re .

""r olutlon or vice versasw'l;l\bs the angular sp

ne perfod, T, are mve@ related. Therefore

- | 2 Q 4%
e .

b g

RIPETAL ACCELERATION

N

se @h object moves without acceleration. 1F S I |
! "huuvelocuyofmeobject.lnm
‘ dthevelocltyvcctor ar
Me in the vebclty
m:hanae in the v

mcm
ll'n ject

*'l I’I'-r

’= A
¥y o l .I
*




m ‘!‘hua. the acceleration produced by virtye or 6t ..
c d‘l.ﬂn@ng di-

rection of the velocity of an object moving In a circular
called centripetal acceleration, a. B

Some times the centripetal acceleration, a, s denoted by

a,
indicating that this acceleration actspe!'pcndlmllartothepath_y;\

shall now sbow that the magnitude, a,. of the centripetal accelera-

ton. a . I8 —ﬁ— andltsdlrecﬂonlsalway'stowardthcomtreofthe

drcle.

In order to calculate the magnitude, a_, of the centripetal ac-
celeration, 5;. we must first find the velocity difference, A0 for two

successive positions of an object moving along a circular path, say
attime t = t, and t = t,. Suppose the object takcsatlcht=t,-tl

to go from position 1 to position 2, as shown in Fig 4.12 (a).

Let at time ¢, the velocity vector of the moving object be 3, At

tme t, the motion has progtmscd by an angle A8 and the velocity
vector at position 2 is o as shown in Fig 4. l2[a) For uniform cir+

cular motion 9= 6, =1 but the velocity vectors o and o are difter-
ent. Thus

4%, - 3, 4.37

Qﬁ‘he vector difference, Eﬂ {s solely due to the different di-

rections of the velocity vectors at the two positions. If there Is no

change ln the direction of the velocity vectors.then the vector differ-
m-

m A® . vanishes. The vector difference between two velocty

sketchedmvectordlagram andﬂl”m

Note the angle A8 between the velocity vector o.o and 9, a1
~ same a3 A9 In Fig 4.12(a), since the velocity vecto™ 7 _——
e '_ _—




Hnes and s (Fig 4. -12(a) )is similab the
vectors 9, O, and AD (Fig 4. 1%‘?}. sinu

les, and the angles A8 are th

)




‘.the centre of the circle. Since the dlrwuon ef Y
tion vector, -ac. is same as the direction of A_-'D . the
points toward the centre of the circle. RS

ﬂ = o

Solving for 9, the Eq 4.41 reduces to (</(<§<

= 1 \5%}
A \.J

442

ln order to %Q!%rstand the difference betwe.cn the centrl
celerat {éﬁand the tangential acceleration, at. ;

m:)%ng in a circular path. If the object is movlng. it a!-
‘ntripetal component of acceleration, because the 3 .' '
1 of the object and hence the direction of its velocity lsr
y changing. If the speed of the object is lnm'easlM ﬂ 1
g (t.he speed is not constant or motion s not unifc 3
tangential component of acceleration. .‘l.‘_h,ab
'aat aeceleraﬂon arlses when |
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s Component Is tangent to the clrcular Path whereas the

acceleration always directed toward the centre of the W
as shown In Fig 4.13 [aj.-'.lhe centripetal accclcraﬁon, .‘: Paty
tangential acceleration, 8, , are also represented by 541. anq g,

Fespectively, since the former acts perpendicular to the tng

..Mia

§\q

ous velocity and the latter acts along the direction of the Veloey,
These two components of acceleration are perpendicular ¢,
other, then total acceleration, a’, by using vector dlﬂmm%
4.13 ). is given by R
T o=aen A
The magnitude, a, of the total acceleration, a', Is
a == %2 + a: 444
The direction of 2’ with respect to as, 18
given by
Ay A
$ = tan'(—) 45
A

where a_: and a-:_. represent magnitude of the tangential and

the centripetal acceleration respectively.

ation vector respectively for the same Ins

¢ a i.t
_( ¢
W 2
Fig. 4.13 {a) L - 2
Alternatively, Fig 4.14 shows the three vectors £.9 %7
2 vector, velocity vector and centripetal
representing position r, ty from ¢

tant, all drawn Jieul®”

centre of the circle. The velocity vector 0 , Is always Pefl’j‘;__/

126



8 _direcﬂon-ol'the Pposition vcctoi drawnmng4 14 Because
 the position vector, T, is directed away from the centre of the oir-

ular path, therefore, the ccni:dpetal acceleration vector, ais al-
w j-'_d!rectedtaward the centn: of the circulation path.'l‘he magni-




2
aabsutuung a = ‘3

V404
{

o/
o

e
Bame? - <O
i r O "
A e tripctal force, or, F‘_. acts toward the centre
object moves. In the absence gﬁ ch :

nger move in its cln:ular path' r

uon. such a force or @
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13N A
_ me dlr u 355 ) r- .‘._-i-. " v‘n\'
T ection of a, at each instant is pare, m
ity vector and directed toward the °°“";om ﬁ
A 200 gram ball is tied to the-end of a cord and whirled tna
Lz _tal circle of radius 0.6 n’l\&l the ball makes five con aal
olutions in 2s, determine the ball's linear speed, its centripetal
eration, and the centripetal force. Lo GO
Solutton -

~\/ 1 o

=

N
al

~ The ball makg/s five revolutions in 2s, traw,lmga distane
A c IeaCh r CX@OH - .

Time for one revolution T = -'5-s-=0_.48; e i
o 5 Mo
The linear speed of the ball is

.Il
3

o 2w

| R e—
e




equal to the radius of the earth he i
n in about 24h; hence, his speed is glv 0 by

2y 27 (6.4 x 10m) é ;-
ms

T 24 (60) (60)s

‘centripetal acccleration is C ‘s\'

L D

LA -1. 2

g UsSms)” D337 x 10" ms®

R 64x10n\1\1

tripetal force Is fQ\v”
:me = (80 kg 13.37 x 10 ms)

| &
P - 2.69N. &\}

ﬂant relations of linear motion
ia1 _.m'.QtlD_n.

l‘ constmlned to rotate about mm |
ables 0, ® and « are related to each
ey ‘ﬂ are the variables, s,0 and a Ni'
shown In Table 4.1. |

E |l|'l %

S
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' hese equations. one direction along the

= m 3 "
~ positive and the other as negative, 8t tation axjg g Gt

andﬂmbemiuve

negative. or
Table 4,1
I{near motion Rotatiany uoﬁ‘m

Constant linear Constant angular
acceleration,a. | ‘akceleratton. o ?‘S;\
s = Ot 190 = wt —%_
ﬂr = 0! + at q il ml & ot

E) 9 + U

av _ f 1 A O + 0

2 v 9
1 2 1

et = 0 =t + > af

2 2 ] : | % 2

B0, = 2as G- o = 2ad
Problems

1. A rescue helicopter drops a package of emergency ration
to a stranded party on the ground. If the helicopter is
tx;avcllng horizontally at 40 m/s at a height of 100 m
above the ground, (a) where does the package strike the
ground relative to the point at which it was released? (b}

'What are the horizontal and vertical component of the

velocity of the package just before it hits the ground ?
(Ans: (a) 180 m (b) 40 m/s, -44.1 m/s)
und atanangleofm"to

2. A long-jumper leaves the gro does
" the horizontal and at a speed of 11 o [:,n!:::sr ? As-
he jump ? What is the maximu® h:ﬂa, of projectile:
sume the motion of the long JumPer 722m)
. | . (a) 7.94m ) 07
1 m — ==y L




ball {s ‘thrown.in horizontal direction from a heig
‘af 10 m with a velocity of 21 m/s (a) How far will it }

~ the ground from its nitial position on the
&nuh what velocity ? 5
(Ans; {30 m. 25.2 m/s)

-
L] -

S. roeket is launched at an angle 6f 53° to the horizontal

g with an initial speed of 100 m/s. It moves along its ini-

~ tial line of motion with an ‘acceleration of 30 m/s” for 3s.

At this time the enginw fails and the rocket proceeds to
. J'l B )

' ve as a free éc)dy Find (a) the maximum alﬂmde

( tl@x}ocket (b) its total time of flight. and (¢)

ange.

(Ans (a) 1.52 x 10 m(b)asls(cuosw

ﬁ'ematowerwithanhuuﬂhomonw’w:

1C

1]



the optimum angle with respect to InG.>
T thie
TR (Ans: v, = 6.41 m/s, v

K. oy = 15.3 m/3)
IF._I'@' Amrterahdllsﬂndatamndleva 500
B aniina) veloctly of 90 o/ Wiet o
launch angle ? ; i its

9. Whazlsﬂwtakcoﬂsmedofalocustlflu

: launchangje,
is 55° and Its range 1s 0.8m ?

{Ans: 2.9 m/s)

10. A car is travelling on a flat circular traék of radius 200 m
at20m s’ and has a centripetal acceleration a_ = 4.5m
s* (a) If the mass of the car 1s 1000 kg. what frictional
force is required to provide the acceleration? (b) If the
coefficient of static friction pg is 0.8, what is the maxi-
mum speed at which the car can circle the track?

(Ans: (a) 4500 N, (b) 39.6 m/s)

11. The turntable of a record player rotates initially at a rate
of 33 rev/min and takes 20 s to come to rest (a) What

Is the angular acceleration of the tumtable, assuming
the dcceleration {s constant? (b) How many rotation

s the turntable make before coming to rest? (c) If the
radius of the turntable is 0.14 m, what is the initial line-
ar speed of a bug riding on the rim? (d) What is the mag®
nitude of the tangential acceleration of the bug at time

tuo?

(Ans: (a) - 0.173 rad/s’ () S.Suf

(c) 0.484 m/s [d) O-
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Torque Angular
Momentum and Equilibrium

Chapter: 5

mmucrchaptm.wchavcdmmtheﬂnwmdmagu’
motions of bodies in detail. In our dally life, we come across vasi-
ous types of motion, for example the motion of a train from cne
station to an other, the motion of a car along a road, the motion of
a celling fan, the whirling of a stone which is tied to one end of a
string. the other end being held in the hand, etcThe above motion
can be divided into two groups (i) translatory totion and (il) rotatory
motion.

The motion of the train and the car belongs to the first group
{translatory motion) whereas the motion of the fan and the stone
belongs to the second group {rotatory motion).

Even a common man can differentiate these two types of mo-
tion according to his‘ability. As a student of Physics one can difine
thes¢ motion as fellows:

Translatory motion:- Consider a frame of reference (X', y z)
which s imagined to be rigidly fixed to an object. For an observer
the lgéﬁon of the object is said to be purely translatory if the axes
the frame of reference of the objectrmmmarwaylpuand:
the corresponding axes of obeerver's frame of reference (. y. =
8 translatory motion the object may not be necessarily moving
along a straight line. Hs.s.l.shmmdnﬂ:ml g
hum;mawamc.ommmmm |
- Yon every paint of the object undergoes same -
D M-MLWemmmthowmu‘ -
' 135




gk

Fg. 5.1

: -'_ Rotatory motion:- A body (a rigid body) is said to possess a
purely rotatory motion if every constituent particle of the body

s in a circle, the centres of which'are on a straight line called
the axis of rotation This motion is of two kinds (i) spin motion and

‘ " tal motion.

~ Before we define Qﬁ“givc some examples of spin and orbital
] V4
wotions, we first deﬂ.rke’;he axis of rotation.
b wﬂn axis 0 tation, we mean the line about which a body
tate Kﬂu@ (the axis of rotation) passes through the body it-

Wmdlng motion is called the spin motion. Evety
: - objectmovesalonganarcofaclrdchi

fnterval of time and the centres of all these circles lie along 2

ht line. This straight line is called the axis of rotation. Howe""

e axis of rotation does not pass through the body. ve &4
otatory motion as the orbital motion. -



Wen passes through the mach.lne and is Derpend
the plane of rotation. The motion of Planets round the sunys '
n orbital motion. In this example the axis of rotaﬂon X |
gh the centre of the sun. The motion of electrons
us is an example of orbital motion, Here the
s through the centre of the atom.

. 51 TORQUE

Conslder a particle of mass ‘m' whlcﬁ Is acted upon by a
- force F Letr be the position vector of the particle. This'is also the
pesmon vector of the point of appucaﬁon of the force We can Te-

b solve this force into two rectangalar components (i) F,, and (if) F
- The component F" acts In the direction of r whereas F,actsina

direction perpendicular to T as shown in the Fig.5.2.




i
LI |

une
. of th
cast
v the |
of T can also be given by the right hand rule. R J,‘\: '; tang
>oint your fingers of right hand towards T and curl them g,_ sim’
= Then the direction of the thumb will give the direction ol T"x suc
~ We can represent the torque vector T .in the determinant
" form as shown below : |
ijk
E:' T=rxF =|xy? (5.3)
-‘- E ECE
.I ¥  Here (,j and k a\zc,:;ﬂae unit vectors pointing in the positive th
- directions of the ms@fx. y and z respectively. The elements X,y ot
“and z as they appear in the determinant are the components of
' They are also _"Lcoordinates of the point mass _rg whereas . |
“an i E are %}}, y, and z components of the force F respectively. l ::
* the right-hand sid of -

i ke jﬁ@aﬂangement of the factors O




mwmtubodybyam.“
: lcatazreaterdmaneelmmm
ation than when it act.sclosettomebody m
se when the line of action passes through the
s body stopstorotatebecauscthemomentarm
ntial push on the rim of a wheel will cause a.

Fig. 5.3 The Turning e,[fect\o_fa _force

Is greater, the farther is the line of

action of the force fram the axis of
rotation. SICYY

", , .
’0'. The turning effect on the wheel has been
a force at different points on the wheel.

A Q&r can rotate clockwise or counter-clockwise. Asa
fon, counter-clockwise rotation Is taken as poslam
: rotation as negative. Hence a torque w produces
-clockwtse rotation is considered to be [ > and tha
aclockwlserotauonlstakmasnmm | f:'* !




PESY
ve: '- al in magnitude but oppum
m same line constitute a cm

hupkeomposedoftwoforces? \“‘
mﬂ 'B' respectively as shown in Qg 5.4,m
ibOut the origin '0' is Q/Q/

re r, ' is the position vecto &Qihc point A. The moment g
Mtthesamepol%\(]}s o

00




" '-"9-211-‘} ) =
- The perpendicular distance 'd' is called- BN .
ple. Consequently. (he mome

Magnitude of the moment of a co {3—
Magnitudc of any of the forces ing the couple x ‘

Area of the couple.- &O

. As r is the dlsplacem ector from -F to F, ltisf

depcndent of the lgqg,tlon of origin.

N }
CENTRE %/D%ASS

 In tras@onal motion each point on a body undergt X

€ dISp ent as any other point as time goes on, s

body, called the centre of mass, that moves 1
ngle particle would move under the influer




‘apply N
e the acceleration and hence the vel

1ass at any instant of time by using initial
The motion of the block is same as the motion of the o

itre of mass is often confused with the centre of gravs
rms are so similar in many respects . one can
ns interchangeably. The centre of grayity of an exten
ides with its centre of mass if the object is in a ¢ :
iform gravitational field. If this ls\rizﬂ the case the centre
y does not coincide with the cem{&)f mass. - s

letx.,y.and z be thocoenéihﬁtas of the centre of mass,
i R o < {"\;\ . iy 1
hen in a completely untform gravitational field, these are given by

~\J

Lmy X ((/@”}

y -z, are the coordinates of the particle ofr

|_|‘ __'




ke the two adjacent sides of ((s
ordinate axes. Let x. and

oS




uon nelther Ilneai nor a

fum do not possess any w
quilibrium

hak lying on a horizontal table is in stauc quult
g and bridges are also In static equmbnum
amples of static equilibrium around us. {.(
bynamlc equilibrium Vi«(/@
>
N
Consider a vertically downward matlon of a small steel ball
gh a viscous liquid like mustard oil contalned in a vertical
; _ ‘which: is clamped with a stand The ball s dropped gently into
ﬁl. Initially the ball has accelerated motion. But after covering
certain distance it attains a uniform vertical velocity. This unl=

vertical motion q ‘the steel ball is an example of dym
- \'/ aal!

gfmard on it. Hence a net external force act.mgm
@? As a result of this the ball acquires uniform Ve

b

‘Another example of dynamic ':qum‘i'ﬂ'*““'5‘“‘ile
' g the Jumping of a paratroaper frﬂm b
| ---g(m-aets on the p
dir ereas nmﬁ
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the system (the parachute and the para

B hoves downward with ' ) is
ystem M a uniform velocity, Ze10. Henge the

ey

Flg. 5.6 After a parachute opens
Jalls a certain distance, it mtmd

dow[ "wf"’d thereafier with a uniform

5.4 FIRST CONDITION OF EQUILIBRIUM

The condition states that a body will be in equilibrium if the
resultant of all the forces acting on it is zero. This condition is re-
ferred to as the first condition of equilibrium. |

Let FT . E-f e ey P: be the n external forces acting on a body.
The first condition of equilibrium states that

OB 4+ E 4ot E =0 5.7 (a)
ten
Using the summation sign, the above Eq 5.7 can be writ
as
) 5.70b)
i=] E =0
xX- plane. then
If we restrict to forces in one plane. say, the y




2y HeeeetF, Jj‘

 the x and y compa@ms of the forces - on both the
e equation w




"?‘
\&

important polnt to be noted he; -4 ~ it all the

0, 9,..... . 6n be the anglcs@gch the forces 13 * g
th x-axis respectively as sh\ in Fig. 5.7




the bl/!s t rest, we will apply the first condi ol
laate T, and T,. As shown in the force d

e forces sact.lng on the block. They are
T, acting along the string L




T,sin30°+ T,sin60°- w = Q

1 /3

2

on(ng x 9.8m/s") _ gay

_Q/__ 5

R T,
_ 1 @t 2,wcget
= 169.74N

COND CONDITION OF EQUILIBRIUM

rlier we have studied that whenever, a net
a s produced in it.The body is salﬂ

§ nue acls

_,L_sm" are the tmmmm
T+ + 134 ceeves M,‘ e
i i o e

K - 3




or weighing 600N rests against a smooth
thc ground. The centre of gravity

w up. A man weighing 400N climbs h

g that the wall is smooth, find t.h
thewa.ll.
,é

v ': term smooth we mean that there ﬁ"ﬁg friction and that the
" . cfthe wall on the ladder s p,crpc'rvndtcular o the wall. Here
s the ladder as the body u‘ndct considcration. The forces

gn the laddcr are shown in Flg 5.9 (b). The wc!ghl W of the
m vertically down\\#a’(d at the polnt C so that m AC --

3. The weight W of qfe/ man acls vertically downward al the nlll
9 ol' the lm:!)g}> and F the reaction force of the wall acts

wall. The unknown force of reaction of the

m Wder is represented in terms of its horizontal and

rnl H and V respectively. From the geometry of the
.’ we get

?h.mﬂ? 3mand mAJ = 4.5m
e Nirst condition of equilibrium to the




& Fx -‘“‘Ka" wx (mAK) - wx (mAT) =0
'gr Fx12- 600x3 400x45=0

12F - 1800 - 1800 = 0

12 F = 3600

F = 300N
Since H=F

L~ |

S —ceao=o Y PEERER wh .

The magnitude of the force of reaction of the

R = iF+V

= /(00" + (1000)°




ler of weight W and radius R is to be r
h' as shown in Fig. 5.10. A rope is wrap
2d pulled horizontally. Assuming that the ¢
 on the step, find the minimum eF necess:
dinder and the reaction force at thepoint P..
0
. AN

. N
Ve \ N

hen the cylinder is just feady to be raised, the reaction
';_.,goes to zero. Hence only three forces are acting on the
as shown in Fig. Er\k{')(b) From the dotted t_riangle drawn in
‘we see t.h@ﬁhc moment arm d of the weight W relative

' Pis g\g@}by
b (R- h)2 x

_ent arm of F relative to the same point s




» rom these equations /{(t_!}%an easily get

(@ tand = ——@Q(u) = INI = |/F w‘

, m@[wekaW‘:smN h=63m
QQ 8m, then

_.f'-_'-6=‘§24 and IN | =631 N




linder of weight W pulled by a force F

1 step.
» free body diagram of the cyundgr
~ when it is just ready to be raised.

c) The vector sum of the Uwee forces (s

Q ,




_ T ~H'| 1 ‘Irl &~
- F‘,(—-lﬁ- +x)+W x x

yroves the statement. Wgoa\re
about which the m t is to be taken. This is 2

alt because this rovides a suitable choice for the location

is. By this w&:)ﬁiéan that one should try to select such ar

which & '

‘The Uﬁ\kh wn forces, if any, may be inactive while aking
r((ﬁds is possible only if the moment arms of t




y the angular momentum of a parti N
'm’. Let r be its position vector |

Z

—

. deﬁnmon of the angular momentum! qfa-
ﬁl ! =rxp we see that the vector L is perps




; for circular motion we have

Q

= 1= (r) pl)=rp &
are the compoxfents of ' and p, . Py + Pz
ts of p .then {\@rxg the definition of vector prod

&
QQ*

| ;;-'-'j_'-resslon forl can be ; L (e
SR

- R

. 1a




1ass 400 gram rotates in a circular orbit
tant rate of 1.5 revolutions per second.




l = mdrsind
= mr o Sind
Where

O =row

\

m = 400gm = 0.4kg "~
."‘\\ :

r = 20cm = 0,2 ‘metre
N\

o a\ 4

8 =90 O

&
- 0;{3&.2)’ X osin 90°

44(})\.}4 x0.04 x © x1

¥ &%a 0.016 ©

Butw= 2nf




_I..‘-ll l—.b. j

*"’" %m'
."ﬂ*” eﬂu :
"'I hﬂhelmearmomemm

)
the vector product of both the s?(? ggér _
j_':_:."!",- the left we get \} 5‘_ 4
<O
S \.
Q.
Mtion T x F is LK@brque acting on the p:
O
e
' 3-'='+ e angular momentum is

-

te above equation with respect to ti

I
" “*4“'

R | .F
* Wl H




a8

(8

L] .‘r'

w"e""-‘“'lill'l)duct<:|!'aw:zge“mh““' _ .:_.

) v- o, 0 i | ol

- & F ] .'III

d! ‘2‘ '
?..

. ?- o

dt

~ This Is the required relation. uation states ﬁlﬁ L
rque acting on a particle is the UI'DQ) te of chan, ”ﬁh
ge of its
O

momentum.
_ & i

If the net external torq@chng on the particle is zem: h -
q- 5.16, reduces to, ,&Q ' " 8

o P

.-'hﬂ @ | I
. 1 =cog<{§~t

the angular momentum of a particle is conserved (¢
¢he net torque acting on it is zero. :

¥ o=

* conservation law obtained for single p
nded to demonstrate conservation hllﬁ
&s;stm of particles.

y L1




1g on the i th particle.

t external torque T actingonthels
tum. (Eq. 5.19) is gvenby =




¢ e .--ki

el 4
-r!c:
s TOREN

~:w~

-"—-_

Q
) You mi ve seen a figure skater under going a spin
fon in the fiiale of an act. We assume that there Is no friction
and the Ice and hence there are no external

ques deting on the skater. ThustheangmhIMI
- Istbeproductofmomentotwth.l.dﬁ
gular velocity, m.ormemm.umm-l
m on the distribution of -n_. :
H‘hﬂ'mmt ol'lnclﬂlw
huly Ml




'. momentum of a body is co

r- & S Zero.

t torque on a body is zero, it is sa!é




_n_ame as that of angular momentum.
The torque due to action - reaction for

) Angular acceleration is in the << dlrection as the S

-angular velocity if the latter is'de ing with time.
) An electron of an atom po\ga:escs only orbital angular

. momentum.

The orbital anm.tlar‘xﬁo;ncnmm of a body is its angu-
t an axis passing through the




Q

o

-

direcﬁon of torque is O O |
the same as the direction/%f the corresponding

w/\
" \( - :
j opposite to the dlr&guon of the applied force. -
{c) perpendicular t@)(tﬁe direction of the applied force.

entre of x@(gof a system of particles




_::mmﬂ‘ '-I.P" =
th brquo acting on ltum
origin. Does this necessarily m
L ing on the particle 1s zero.Can you ¢
vclocily Is constant? Explain ‘?‘

8) Suppose that the velocity of Qmude Is
specified. What can you sa '

angular momentum vector \@1 respecg to the d . —
- of motion? «Q 1

9) Why is it easier to k ourbalanceonam
cle than on a bicy rest?

mej A projectile is fired into air and suddenly e
several fra . What can be said about tbe

. the frag!né/ﬂ& after explosion? 7

™ o
nge the centre of mass of a system of particles eact
~mass 'm', arranged to correspond in p tion

. corner of a regular (planar) hexagon.




ErESDe '-tive geometr!c centre, how far from he
4 ~ the sun is the C.M (centre of mass) of the e;
~ tem? Compare t_his distance with the méar

: - sun (6.9960 x 10 km)
' (Ans. 4.54

A particle with mass 4 kg moxe@along t.he x-axis
velocity v = 15 t m/sec, wherc t = O is the ins
the particle is at the origin<

particle about a
~ from the ori

 pa ticle? R
0& (Ans. (a) 720 kg m>/sec: ®)3

g ..
 (a) At t = 2sec, what iﬁae angular momentum of %
: (b)

t P located on the + y-axis, 6m
What torque about P aeta .




st a :ﬁicﬂor'nless vertical wall at

d rests on a flat surface wh 1) COE f
(static) is 0.40. A student vé\ \ass (NEE

ttempts to climb the ladder. ction of the |
1! of the ladder will the stud ave reached whi
Jadder begins to slip? , \}f(? o
/\
at its cmrc}}@bes are (2,4) m, its velocity is (3i '

w 'sec. At thiUhstant determine the angular mo:
: _j n of the €§B.lcle relative to the origin.

Q{o (Ans. -121:

1 fferm horizontal beam of length 8 m and welg
O} is pivoted at the wall with its far end suppo
¢ that makes an angle of 53° with the hor
person wcighlng BOON stands 2m from the W
n and the reaction force at the pivot.

tension = 313N
reaction force = 581N




IPEICOM/C/IVIDUAT B Y FU IgR

Gravitation

. INTRODUCTION
‘| All of Isaac Newton's efforts in mechanlcs were focy
 toward the explanation of the motions of the planets around L&gg
| . un

and of the moon round the earth. In 1666, Newton Promp} d by 5 magr
simple observation (fall of an apple toward the earth) concludeg
that the force that caused an apple to fall to the ground and the
force that kept the moon in its orbit around the earth were only g.
ferent manifestation of one universal force called force of Gravits. |
tion. From the above assumptions, Newton made the hypothesis ‘
that every body in the universe exerts-a gravitational force on every cen
other body. This gravitational force'is responsible for the motion of us ¢
the planets around the sun, the‘motion of falling bodies towards
earth, etc. |
the
6.1 NEWTON'S LAW OF UNIVERSAL GRAVITATION :|
In order to explain the gravitational force_Newton formulated | tu
* the law of universal gravitation as under:
Newton began on the basis of approximation that the moon's
orbit ig-circular, he then calculated centripetal acceleration of the gi
moon, arm, about the earth applying Huygen's formula for centripé e
tal acceleration in the form ti
i V2 A 610 a
e =" ¢ e P
Where ? is a unit vector directed from the centre of the clrclé b t

|

us st

to the instantaneous location of the moving bjd)’- The ':1:: ardS

in the equation specifies that the direction of ac 1S lﬂ“"’f _
— p

k"l ;_J L] I;JAI

2 170



,_ ]  equatig or
de af the centripetal acceleration of the moon. Q

\33?"

where (Q(OQ

R, = 3.84 x 100 km and_re @gﬂs the distance from :'__,_'j"f-,;_;
eenia'e of the earth to the centre o‘Q e moon and called orbit radi-

0“” | i

. ;.
S =27.3days =2 3@3&? 10°s and represents the time taken by
~ the moon to complet@?& revolution around the earth. B

Substituting the values of R, and T in Eq. 6.1(01-‘ the m
tude of the&trlpetal accelemtlon of the moon is found to be

- 272x10 o
’\

The 'magnitude of the cenu'jpeta'al ae'eéleﬁi'




witational acceleration of
he earth. Moon and appl




The magnitude on A by 8 Of the gravitauowg: l:‘;,,,;w, m? -
B

ied on body A due to the presence of the b Is glven In ﬁe
rsanisn) 3('3:;?/ g
\S
Where r,.“mlﬂ Bio A describes\@e position of body A with re-
ect to another body B as shown\m Fig. 6.2
o’

W 4 ]

q.n ~ The magnitude,F, {)\}, of the gravitational force F, onAby B
- must also be proporu_%@)to the mass my of the body on which it

| - Fﬂn\bya i

—

ing,
Eonavys Fornasyz
d B

- s S & r'--.--..‘-

"_"
T FromBtoA

ravitational force between my and mg




nauues are taken together

Combining Eq. 6.6 & Eq. 6.9, we get
B W

‘V‘ ec m, mg / (rfmm B to A)2 %Q/

n written in form of an equationb%

m, mg ,\Q
A E
6.10 gives the magr}{u e of the gra\ntational Iam‘
' gavitation(a}gonstant (G=6.673 x10'' N-m?

equation 6. <3ﬁn be expressed in vector form
1 : well as magnitude. As shown in.




wo gravitational forces constitute an
dance with Newton's third law.

| &
) FﬁomMoB= Fas &

(1) FfmnA:oB‘ Fm :
QQ“

W) Ty, un= e

]
' M rtmmAwB&B

consequently, werewriteEq 6.10, Eq. 6.11 (a)andm.

5) in th &5
= p m m
G A




ompute the gravitational forcidnb attraction bet
ach weighing 5kg, when plqég at a distance o

w

O
A
o




6.67 x 10" (N=r

= 5.98x 10" kg /&O g "

- The average d%@y Or mass per unit volume, p, of the Ez
1. ah

en by Qg,

¥, = I Q y

- Where V is the volume of the earth
e%Y ‘* "

=




-

_,:‘-_'_g,{re' T is period of revolution of earth @uz’

d su




low let us consider the variation of g when a badymes
upward or downward from the earth’'s surfac g
ue of acceleration due to gravity at the su n_-,‘o t?he-'- :
at a height h above the surface of the earth: If the eaﬁh.ﬁ
ered as a sphere of homogeneous composition, then ‘g at |
as the square of the
Eq 6.15 we found that

6.18

~ Similarly, the vf?eofg ‘at a distance (Rg + h) as shown in
ig. 6.3 1s glven b Q







4n Rep G

i - = ——
by 5 |
éepth d the valu@cceleraﬁon due to gravity is equal m.

the value of Mg in the above equation we get

= .('RB_-'d)!




can be observed from both the cases é( acceleration

decreases at a faster rate for a ts above the surfa
han for the same points belm:i tﬁe surface of the earth.
. o R 3
The variation of 'g' in the e@m‘s interior is shown in
a8




g "I‘hls force is a measure of the weight in theis ne of refer-

of the observer. Thus we can define tha;gﬁ@t ofabodyina
certain frame of reference is equal and op e to the force re-
quired to prevent it from accelerating fromkr?gt in that frame of ref-

A force is measured by the acceleration, it imparts to a m

. When a body of mass m is @tawed to fall freely, its acceler:
- __"__-';_e to gravity is g and the<<1§:>ce acting on it, is its weight w aé-
cording to Newton's seaq@law of motion force is given by
. F = ma 0\)
Q

Replacm@ by W' and 'a’ by 'g. in the above equation, we

! Qq,g

%e welght of a body is not a fixed quantlty It dep




5 A body suspended
i an elevalor.

ﬁa} from a spring balance by -a- '
2ac attachcd to l.hq’e; ng of the elevator. Fig 6.5

‘When mﬁe{}gator is at rest, the force along the thr

equal md OppoQ to the force of gravity experienced by




: that the force of grav wstxll acts upon the bloe:&_""'

th w is given by mg’ ,J\Q‘s is referred as the state of

veightlessness” in satellites. Bodnes
re 1@( welghtlcss the earth's gravi.t_,atim
-to act on them JUSt as lhm.i’gh they weref tr




essness may be a severe handicap to the astronau
ming experiments. In order to overco\fgﬁ this problem an

i,/"\
s W¥4

\ ™

that normal force of gravity can be supplied to the occu-

he spacecraft. ()

ider a spac t consisting of two chambers connecte

de of centripetal acceleration in this




= 0.158 rev/s
v=9.5 revolutions/minute

s the astronaut should feel comfortable
' at 9.5 revolution/minute at distanc
of rotation as shown in Fng §|

OQ“

Q axis of
rotation




5 e square of the distance between t

» with which the earth-repels a body on its ghy.
towards its centre is equal to its weight. ?\9
G value of g increases with the mcr@ az‘-_'i :
ce of the body from the centre of@h,

Bravitational force is of a very largesider of about 6.2
ry ggéfd about 667

*! Nmkg”. o

SAad A -
f.  Ifthe cable carrying the clevator breaks, the elevatorwill

"_‘-'L‘ I;-!ga up with an accelemtig;bequal to g. 4

]

N
-

- o

i

Fill in the blanks o~
o \ {&.,/

he moon’ rcvokv&g%tround the earth due to the pres A
. ben@h the earth and moon. : |

ing bodies. * -8
<eseun.. as the distance from the centre of ¥




tl) average density of earth @(
-un) mass of earth. \)‘b

If we go away from the,@face of the earth a d
~ equal to the radius of the value of g will b

(0 one fourth &@(:me eighth (i) onem o

- Weight of agﬁy Is: | .,
| (l) vec (1) scalar (11f) rotational quantit




[
=y
'!’_' = . i

: ;'igf.;‘.  is at a distance of ] mﬁmﬁ 18

. Find the gravitational force of attraction ,
" lOkg maés exerts force on the lookgm R 4
() 100 kg mass exerts force on the 10 kgmw Y

b Compute gravitational acceleration at Ql?surface of the
planet Jupiter which has a diameter as 11 times .
compared with that of the e.ar%afhd a mass equal i
318 times that of earth. ‘\i\”} | _ :

' (Ans. 2.63 times that of earth)
3. The mass of the planet J;pltcr is 1.9 x 10" kg and t at
~ of the sun is 2.0 @o"’ kg. If the average distance be- |
‘tween them is 7.8.x 10''m, find the gravitational force of

tﬁe sun on -{g@gér.

A
RN

‘much will a 424N body weight there?
i (Ans. 1.613m/s?
t is the value of the gravitational accelerat




Det ne the gravitational attraction & ¢en th
and the electron in a hydrogen atom ‘ ming ¢
the electron describes a circular or vith

mass of eleclr@& ;
Q

&

A woman with a ma@df 45 kg iIs standing on aae*
~an elevator. The ﬂc%tor accelerates upward wltka ‘: 3
~ stant acceleration of 1.2 m/s’. What is the woman's
~ weight as '@ sured by her in the elevator. '
N3
A
Q\b

4 puL o i
- :r',‘.e'\,i' St bis x _, '::' JJ.J.'WL. .i.l

y ||, -"Ilillf‘;¥ '5'1‘# 'Il.‘ :
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Work Power and Energy

WORK AND ENERGY

In chapter 3 you have studied Newton's laws of motionv,w;,
€an use these laws to write an equation for the acceleration of any body
acted upon by any force. In addition in this we have techniques for
finding the solution to that equation. The solution determine how the
body moves when it has started in a particular manner. Thus the motion

of almost any mechanical system can be studied by direct application of
Newton's laws,

In practice, however, it is often much easier to study the me-
chanical problems by using other relations. A very important set of

- such relations involves a quantity called energy. However, it is im-
portant to realize that these energy relations are not independent
of Newton's laws and,therefore, do not involve any new physical
principle. In fact these energy relations re-express Newton's laws in
a form which provides us much simpler analysis of a complex
problem (problem involving a variable forces such as gravitational
forces between bodies) than the direct application of Newton's laws.

Energy is the most important physical concept which is
studied in all sciences. It is not a simple concept. We cannot define
what energy Is, yet we know what it can do, clear understanding of
energy and its application was realized in 1847 when a German
physicist Hermon Von Helmholtz enunciated the general law re
-garding the energy. Since then the consideration-of energy in phys”

fcal and blological processes has been a crucial Ingredlcntm“"
effort to understand natural phenomena.

192




:§>

Quasar explosion
Y\@

&

Supernova explosion

O 4

Sun’ é%utput in 1 year

Rotational energy of earth
#a \ Earth's annual energy fromm ‘“ g Q .
. Severe earthquake y 1 :

H.bombs
'First atomic bomb

Rocket launch
Lethal dose of x-radlatlon - .-,

Wy
Rifle bullet - _._,l-ﬁ_ -




'
«\
\J _,-

} ’l‘he work done by a constant force, F, is dcﬂned
juct of the component of th;\{brcc in the direction of dis

8. and the magnitude <dfﬂ1c displacement. Using Fig 7.
: work done by the force analytically as '

- regémtsﬂwmagmmdeofmcvcctor?

=

eprese. tsthemagn!tude ofthevectors

-1  angle between F and s .
ively _-_'_:; ¢ Eq. 7.1 can be written as




s alway. Pl'ﬁdlh‘.e thcsam .re’umu 5

finlng work, we have used two vector c e’ tidinn
. the force acting on the body and thedlsplacemof |
e now attempt to show that work Is a scalar quantity, ?,

" In thaptcr 2, we have defined the scalar produc
‘f and b as g»
- cC = a « b \2\®

mc Is a scalar'quantity which is given I-Q

. ¢ =abcosh )
1 \;,g/
—

MB Is angle between two vectors a;?;nd . Applying the above
Mnmon of scalar product in t.hls casc. we Immediately write

W= F ° d ;
thre W (work done by the force) Is a scalar quantity by def-
and 1s given by the product of the magnitude of the one vee-

by the oomponc%\?ﬂ' the second vector in the direction of the
mm:. Tha {5{2‘

" chis e @mc same as before.

é‘k Is an algebraic quantity. It can be positive or r e
depending on the value of angle between force. F. and displace-
_=;;_'_. ) 5 » We have the following important cases: i1 * T 2




e force acts at right angles to the :
(6 = 90°), the work is zero, i.e. the force Yy
o work, For example, it is considered "hard
" hold a heavy stone stationary at stretched hand,

- mk 1s done in the technical sense. If a pers

~ along a level surface while carrying a box, no work i
done, because the force has no component in f °W )
tion of the motion. When a body slides along a m
the work done by the normal force acting on the body is
zero. Also when a body moves ig\ax circular path, the
work done by the centripetal force on the body 1s zm
because the centripetal force‘ls always at-right ang!ato,
the direction in which the‘body is moving.

of work

‘Work is a scalar quanuty and its unit is the unit of force
ultiplied by the unit ol distance. In SI unit, the unit of work is 1
swton- metre (1 N-m).‘Another name for N-m is the Joule ).

- 1Joule -s(<‘{) newton) (metre)

N

‘Joule = 1 Brit{sh Thermal Unit




E

+ b
L% 1
i

~ body and it 1s positive, where as when the por.. . 2 X"
~ direction of the gravitational force, the 7 g

‘negative.

e 1., measured fromthc surface of the earth
as shown In Fig. 7.2, During its upward motion, the only force act-
ing on the body is the gravitational which s its weight mg. Here we

- - e

&@
O
R
ey sume that there is no force of friction. The displacement of the
 body is clearty (hy - hy)=h. Hence the work done is given by

W= ;.: = Fscosd = F(hf-rh;) cosd

i 4

= Fhcosd - "
B/ Sl
T L I‘ g

e -

it

e —




This work done is stored in the body in the form o | i

~ rE- oo ©
E In the above expression for work against the gravitationa
force, only the difference of heights, betwem_érc two posl,m %
Henceltisnotnecessarytomethememueal
the surface of the earth. The refe:mce level may be

. We may take the inlual posltlon of the ball as thezﬂ

it
- AA v ! - g N
= el s £ \
3
</ ;

Consider a ball of@ass m in our hand and takeittoah
: rface of the earth. The initial posi

_ MBAan its position is B. (as shown in Fig. 7.3). There
e several p ths through which the ball can be taken from po-
A_m,Q@monB In Fig. 7.3. we have shown a few of them. -

(}?’




Fg. 7.4

done In carrying the bodyfrom Ato B. B to C and from C to A are
 represented by W, 5, Wy . and W, _,, respectively. Thus

L o

o
Wr-p \g\\% = (F) (5,cos0) = (mg) (h) = mgh

e ..

w%% F.S, = [F)(S,cos90) = (mg) (S, x0) = 0
"o@g:m"
m«:h mAD

il work done along the closed path ABCA

—-b-)

= (F) ( S, cos (180-P)) = (mg) (-SycosP) = -mgh-

i e U




pendent of the path s called a o
e ..ﬂeldlbaeonsemuvenel;d.- (T

1 the practical point of view, it is mteresn@ 3
‘done by a force on an object bu&

_ rk is being done. ({/((,
Wz define. power as the rate,qbdomg work. Wi 8

rk AW is done in time At. e average powet . -

"‘3 w‘.

Mick lscalledlwattm




W~
If W is the work done when a constant n;&‘, F,

| | F. of magni-
~ tude F points in the direction of the dl@cement. S_. ® = 0,
~ cosO=1), then '

& -
S g gD
- = : = FT/ = Fﬂav 75

Here Pyy Is the average power and 9,, is the averagé speed.
Work done by a variable force

P”B

3 The work done by a variable force cannot be calculated by
- the direct use of tﬁt‘fonnula F.S for the entire displacement §'
- because the f ’gb is continuously changing with the displacement.
ﬂe mnsldg{%erc a simple case in which the force is changing only
jittde. We assume that the force is pointing in the positive
of x-axis and the body is constrained to move in that di-

s Yasdi
_H-
We can obtain an approximate value of the work, m '
foree in the following way. - e

1, ‘iﬂ_lﬁﬂ‘l"l~
. !

We divide the total displacement into a large n
tervals each of equal width Ax. A m




STCOMVCIVIDUUAL B

* which really acts at the beginning of

) usly such a chosen constant force 1s d cach of y.e
.‘l‘h_e_ work done by the force Fix) acu:l‘ent for duy . w
‘constructed at x is £ 1n the
AW = F (x) Ax ‘:[’e
We calculate the work done b ¥
. y the force for J=1
‘the above manner. The total work done in dlsplacm?g:m'“‘ﬂh Th
:;‘ to X, Is approximately equal to the sum of all the tenn:;ih" N\ show’
Fty as o
: N - & , moves
o W = Z Ftﬁ, A"f] . is nearl
J=1 Net 0 i TT.
Where Fix) is the force acting in the jth interval of wid i
Aﬁ = Ax, and N is the total number of intervals. . “
b lar stri]
though the width of each interval is-small but st finite which t
Hence the force acting at the beginning of each interval is not n,,_. to the ¢
force which is actually acting at each point of the interval. It canbe mately
taken only approximately for the whole Interval. The result so gb- Fig.7.5
tained is, thus, only approximate. In order to obtain a better result | the wic
for the work done we divide the total displacement into a larger
number of intervals so as to make the widch of each interval small- ‘| ¢
er. As a matter of fact the accuracy of the result depends on theex- | &
tent to which the width of each iInterval is made small. A far better
result approaching the exact one is obtained by dividing the dis- \ E
placement into an infinitely large number of Intervals so as -
make the width of each interval infinitesimally small. An exact re- . ‘
sult is Qgﬁined if N tends to infinity and so Ax tends to zero. Thus 18-
e o
im- N
W = z Flx) Ax
' N—soc  ja) J
The above stimmation is equivalent to the integral |
=
| Fba) ax
*
\

L 3



~ The force Fix) is plotted versus o

1 in Fig. 7.5(a). The work donext;o l‘.:: :: r::lah'i * v

~ moves through the first interval is Fix) ax, = F ):x.me o

s nearly equal to the area of the first rectangul;r imilarly

&wk done in moving the object through the secosmp w

. Flddx=Figjax w ).

: It is approximately equal to the area of th @M rectangy
lar strip. The process goes on till we reach the final interva l'er
which the work done s Flxn) Axy = Flxy) A%. Which 1s nearly equal
to the area of the final strip. Hence the total work done is approxi-
mately equal to the sum of the aréas of the rectangular smps
Fig.7.5(a). In Fig. 7.5(b) the number of strips is greater and hence

the width of each strip is smaller than that in Fig.7.5(a).

B

o i
I1 1 1]
o
|
'
|
'

X
. ' Fig. 7.5(c)




es to rest. The fnitial kinetic energy of the
g work and is used up in doing work agal
1e m;num height the kinetic enel'ﬁ' of




o - |
T
ii*teee&mtlonorthebady :
ﬁ s-maamum hclght auamedby ebody >
N
Q‘?‘
&

. i,
ﬂ:‘l,‘ S
<

-

Lo ‘Qw i
al work done =mgh = (@@ = - mV

R I.

nce the Kinetic 6(;9! of a body of mass m and movmg h‘ ‘
( QV|S * el -- =

<‘I

K.E t ]= _mv’ : ' |_
_m@g "~1! .

shoul¢ note that the expression for Kinetic enery ﬁ?!«‘r




| égagamst the elastic l'orce Slmll ,t - wt
red against an electrostatic fo ﬁ( work {

. work done is stored in it ln$/ orm of elec

rgy. Similarly when a bo mass m is lift

st the gravitational forqe<\ eight of the t
it. This work is stored énét in the form of gra

<O |

to derive a ression for the gravitational pc

 height (v fy near to the surface of the earth)

ass m \ is taken very slowly to the hel
he very slow motion is possible only

1e body by an external agency is equal in m




- mrk done on a body by an external agency (
al force) against the gravitational force is storei

- j.-_--_:jgn.,.;-ge_,@ ’ reprcsented by U Thus
Lh' Ug" Wex -'wg = - (-mgh)

‘bitrary zero potential energy

- Sl unit of grag/taﬂonal potential energy is Joule (J).




tant. In.fact. i.t_ decr_eases wlt_h the iner
lculate the work done (which is a

me this dl’ﬂ]cu‘lly we divide the entire displ ” __
umber of small displacement '"t“"'?('%nd appliyie i

»<</

*t__he earth, in the gravitaﬁ_bnal fleld. We want .I;‘
‘work done against force of gravity, in taking a MY'@E

w of Gravitation.




T
Here M, Is the mass of earth, G is 1
tand r, is the distance of the point 1

e _
y the. magnitude F, of the for(:%/é' acting at mz
'.i.:--'Ez' 3 r.2 : O
o B .
~ The average frocz ﬁ&i'lk/ throughout the first interval
"+ F '

i

i
i

0Q_{Q;:urcm:nt.?. the magnitude of the average




icd force f-' and displacement ﬁ%’&

. ) ﬁ?ﬁr LI |;I ., Ar = b&

1g for F, Ar in the abov\sgluauon. we ge‘t

: - )if—;’"—{.f‘chdem(“ >

ln lifting the body from polnt 2 to




when the point B lies at an infinite dist&&. r,= a.ﬂi’ﬂ’ -

at point is zero (this point becomeé eference point) then

&

- (BElyps = - —— \5% 711 (@)
, _

g an arbitrary value to 1, (ie.. 1, = 1), the Eq. 17.11 (a)
.
E)ps= - :\j\ 7.110)

efore e absolute BE of a body of mass m lying at tha!'

given by

. QO&OGMem

, ’ SRE is the radius of earth




ERCONVERSION OF P.E
i saLnG nooy) S

in ‘_ : m Q/ ie surface of the earth. We a:

. * ?




Murmmmsmuua est,
wward motion, Its velocity Increases and so there
“mmetlmmmlsmfomed rictior
ion of the body thus the loss of P.E m
nKELe. the P.E is being converted

: " ~ Eventually when the body rcachc(ﬁét above the point O, its

hnarlyzerolewholcoflts Is converted Into KE. It

ans that at every point, dur ¢ fall of the body, assuming
ha Mla no friction, we have'

2 "lalsofPE-Galn‘ .
.

h practice the {is&always a force of friction f, say |
* downward motion-of the body. Here a fraction of the P.!Q_
:, up @ork against the force of friction. Thus am.
m equation is
“_ of P.E = GammK.E-rworkdmemm

ninKE = Lossof P.E - workdoneamw

- = mgx - fx
‘r mwmm ﬂ‘lh
e R
S . kl‘lwl .-:_.:.I .

&) A y

I1‘—'-:-."\"




'. according to Einstein's famous mass-energy'relatia "

: f:_pmduced is

The law of conservation of energy i{ﬁ)ﬁlversally a,
ere ls not a single example m w<hlch it is conn'adlczed.._ _

¢ For example if one sa}ré Yhat a machivie SRS Invent-
1 works without e lturc of energy or fuel, we will ﬂ?
ly discard his sta{)ncnt because in every real machine
ways a force of friction which must be overcome by

€ of 4::114".1'%&\> .

_____'.,gf(conservauon of mechanical energy (Kmetlc-




Y gh | N
R

“H ence KE = ?l mV’ = .%. mx 2gi}(/ %gh.
. 2
~ The potential energy at 'O’ is t@}}\}n arbitrarily equal to zero
with respect to which the potentialentergy at the point P is mgh.

~ PE+KE=mgh OQ“"
- We now calculate potential and Kinetic energy at any
nt Q at a distance @'elow the point P.

r

8 &.:WQ&Q"‘ x) and KE. = -li. A




nitial potential energy of the body at ihc tép o

Examples of conservation of energy ﬁowgﬂﬂ day lfe: |

Wt en we switch on our electﬂc\bﬁlbs. their filameznts

;\ are heated up and begin to eﬁut light. In switching on

the bulbwe supply c!ectncal bncrgy toit. It is converted

" into heat and light meggrcs Here one form of energy

; A '{elecmcal energy) t(apsforrns into another forms (heat-
and light) of But the electrical energy sup-
plied is equal@ e sum of the heat and light energies.

e the energy is neither crw.tednorde-

il fuels e.g. coal and petrol are stores of cher
. When they bum, chemical energy Is conv

t energy. that is, J

| chemical energy = Heat energy + losses.




S« farw: have discussed the KE & PE. There are many her

1s of energy extracted from different sources e.g. Wind energy,

‘0 electricity, Chemical energy, Fossil-fuel energy,
- Geothermal energy, Solar energy ,Tidal ener
m a brief description of each as follows. Q\®

()  Wind Energy (Wind Power)

<<

The source of this energy is the wi - This energy is used in
running flour mills. In Karachi near Suhrab Goth you can sce a
wind mill for drawing underground water

l’lﬂ Hydro electricity (WateerWer)
’s

‘Mangla dam. Tarbela dam and other dams in our country
are used to produce électrical energy. Their prime function, is to
:metaln river waler@ﬂ]\at it can be shuttled off to a water turbine
!hat drives an&l.ncal generator. The principle involves a way of
Supplying power to a generator other than by a steam turbine.

1) %&sn Fuel

> Fossil fuels are remnants of plants and animals which
s of years ago. Depending on the conditions of fc
can be “quid (crude ofl), gaseous (natur-al gas). or




reaction, if 'unc'ommlled can cause much more

1 that caused by fission reaction. On the ot ‘,,

itrolled fusio reaction (CFR) may generate enormous v
y fo meful purpose for which the scientists z

Energy N/
@)
hermal energy is the earth’s, @Q:ral heat. Heat, in H.,
d out from the interior of Lpe ‘surface of planet (earth) ata

approximately 1.5 p cal/cqza-s and over a time interval of a
s nux to the entire su’fface 1020 cal. D.E. White and B

_' 10km is of@; order of 8 x10%* cal. Of course, alat
. Practically, heat must be concentrcxtd

voirs where it is to be exploitable. It is Inter S

weve that in the upper 10 km (when the temper:

5 ..'c) the total stored geothermal energy exce .
mal energy available in all nuclez '




OU | mkua"mqorlmmasm* ner;
heaung. space cooling, and hot w:
n fuels and (3) generating eieemmy'ﬁj'

Tl _ 1ought of harnessing the enormous energy
e ocean and tides have pervaded the minds of.

cent The tides have their origin in the
erted on the earth by the moon and the st
rating from tidal motion were used England in the 18th
. Sewage pumps functioned i Q\dbrmany and London by us-

- Mﬂdal power. These systems weré\ placed by the more economi-
- cal and convenient electric motgt§

Although no source \(ts that renders less. environmental
mage. tidal energy is g@cult to hamess and marginally eccnom-
fcal. O
~ The fossil fuel is used as the main source of energy In Paki-

tan. It requ uge amount of foreign exchange to import it.
HB its & ing environmental damage is done on a very high
X electric generation is also limited and also m
ug-present and future needs we must provide in '
> reactor to generate electrical power. Alongwlﬂuohfr ne

uld b _:wplolted to a greater extent. Solar enem is M

lanthmughmnﬂaew o
P L e

_il IL‘

T




5" = FS = (5N) (1m) = 5J

_ﬂal kinetic energy Ko is zero, so the In;

\2\




g .\__I f‘

‘5"%_5' =7000 Nx (300m)

= 2100000J

=21 x 10%°J

<~b?ody from position B to position A
¢ position vectors A & B are




@?‘ 742’(1542 )

> -pulls a cart horizontally wi igg; orce of 40 Ib 2
ﬂ“ above the horizontal aq@ oves alongatas

?7(b) What is the pO\Qnut put of the harst S
¢ VlAns. 1.8x10° . b (b)055hg ¥

body -=of mass ‘m' a(é?erates uniformly from rest te a speed

' height 30.0 m above the surfac
¢ potnt. In the process + 425




YOUIUDE. COM/C/NIDUAIDTFU TUREDULTUIRS

el Chapter: 8
Wave Motion

and Sound

iy -\ 8.1 VIBRATORY MOTION
S : :
| p::: - In our surrounding we come across many: things which
'- un dergo oscillatory or vibratory motion. Some examples are the
motion of a pendulum, Prongs of a tuning fork'when struck  sj-
2 hp) tar's string when plucked, etc. A weight attached to a stretched
' spring, once It is released, starts oscillating. The atoms in a solid
at an possess vibratory motion. Similarly, ‘afoms in molecules also vi-
Speeq '; brate relative to each other. The eléctrons in a radiating or receiv-
. ing antenna are in rapid oscillations. An understanding of wih.
i 10 ratjonal motion is essential for the discussion of wave phenomena
| 8.2 MOTION UNDER ELASTIC RESTORING FORCE
hp). (HOOKE'S LAW)
peed An important type of motion occurs when the force acting on
as a a body is directly proportional to the displacement of the body
) ' measured {rom its equilibrium positon. Since this force acts only
toward the equilibrium position, the result is a back-and-forth mo- -
-' tion called simple harmonic motion. Consider a body of mass m,
] attached to a horizontal helical Spring Fig.8.1. The whole system is
. l ,,Ql”accd on a horizontal, smooth surface. If the spring is stretched or
2” 1 ”t?‘eompressed, a small distance from its equilibdum position, and
:: @Q then released, the spring will exert a force on the body given by

M- 8.1

€re.x is the displacement of
tion and k s 5

the Spring. The

the body from its equilibrium posi-
Positive constant, known as the force constant of
-above equation is the mathematical statement of

223



ffonx-o

etched spring, the spring force is to the left
stretched spring), the spring force is zero.

Hve (c ompressed spring), the spring force i_s_to the

librium position and then x_'eleased. it will
through Oto + xp, posmon. This Sy




: _ = - constant x x

sor ad-x ) e

here the quantity (k/m) reprgécQs the constant ofPfOPOf“@m“* | '
y. Minus sign shows that (h; acceleration is always directed m' -3
. is the equilibrium p \ﬂmn This back and forth (mmm '1! -II

otion .in which the insta ntaneous acceleration is proportional & :
the displaceme 1%5@.3 oscillating body is called a simple mmm

motion. It is ated as SHM N i

. 4
N CTERISTICS OF SHM

e we derive expressions for displacement, velo fty
md time period of a particle executing m
Mm circular motion. :




» diameter AOB. At come Ins _
and the x-axis is wt + . \\ﬁjien ® is the angl: whi
h the x-axis at time t = 0. This angle ¢ is known
- angle. We take Lh{&:. our reference point for m
displacement the particle P rotates on tl
make the x-axis changes with time 2
+axis, moves back and forth along the diame!
etween the two extreme positions x =2 X,

ht angled triangle OPQ. the displacemen
1 position Is given by R

a




 constant or phase angle. The cons tells us what the
displacement was at the time t = e quantity (ot+9) is

| the phase of the motion. We s%,ate here that the function
lodic and repeats-itself when creases by 2:1 radians.

' e time T which the partl/ée takes to go through one full cy-

--mouon is called t.hg%), eriod or time perfod. This means the
fx at time t is e to the value of x at time (t+T). We

W _he_re that théﬁcrlod of the motion is given by T=2x/w.

We kn‘ow %@the phase increases by 2r radians as t in-

oy 'T,?

il @&wzn:m(t +T) + ¢




“ A
the l.u??’s
9p = X, @ represents
4 O\}

Wi T v_ the left (along negative x-axis). W
. ééceledﬂon of P is toward the: righ




uonor time required for one cc

smed of the point Q is the componea%e e speed of
ong diameter AOB as shown lné@. 2 (c)

B, =0, sin0d &O N

'__d'l =y g%msmo as p XQQ\

:‘ ubstituting for sin 0, w@ct




placement x from equilibrium po

positions wherex = ;{;3“1/} (P-E)max :Ji kd a
m at the equuibriuntﬁosiuon i.e., wherex = o
O

Eq 8.10(c). the-éxpression for the K.E is given by




. .throughout its displacement inclu& nean and

Finally. we shall now define some im tcrms used fre-
itly when dealing with simple harmnnh(giﬁon (SHM).

Bwt!on If the motion @ﬁtscrlbed by a periodic function
Fpenod T, then O

)=f(ttnT) {:)
eren =0, Q/g>3

‘is '&gfme required to make one complete vlbrat lon/os-




———

e S

\6 Q/Q/Q

: de.ulum of length L. The &'ce on the pa‘r;em

the gravitational force Fgand the tension in

g to Fig.8.4 there&‘ two forces acting on
lly downwar avitational force, Fg = m

;r:;sﬁs'.penstring . The net force actl




<O
ubstituting for sl@“&e write

Q

ration of the pendulum s ¢
. and is directed towards




- oo/ B80T
9. s’)
O

= 1.885s A
O

O
ON ‘A WAVE PULSE.

aty disturbance travelling through an




‘in a transverse wave the particles

itself is propagated.

oj\g@ medium (string) vibrate at
gles to the direction in which the C?u i

 The shape of the dlsturb;d part of the string containlng the

Ise can be describcd@t -a given time mathematically by a
inction f (x) such th,a\év

y=f(x) §>*/

'Here yis thq"g/e%

cal displacement of a part!cle from its equi-
librium Posit

nd x is the horizontal distance of the particle
where the displacement y is zero. Hence x, y are the-

-
-
AL

‘.,‘ri.; :




waves produced on the surface of water
waves. A travelling wave can also be produc ;
ing one end of the string to a vibra ’?Blade. As L
ates with simple harmonic motion, segment of the
be treated as a simple harmonic tor vibrating Wﬂﬁ
7y equal to the frequency of ﬂpﬁuon of the blade Mf
the string. \

»/\ v .

‘wave is characterized b; \‘,three important physical con-
wave lengt.h the frgqﬁcncy and the speed of the wave.

CQ/ ﬂcally For example, in the case »4
length is the distance between t.he- adja

e medium through which the wave is pro
the sound waves travel through air with




s end {s flipped to prodgci;ia wave In it. A portion of wave Is
d this manner. The wave consists of a hump called pulse
pe. This pulse tg,g@E to the right along the rope with a
locity. This type of disturbance is obviously a travelling
g. 8.6 (b) gives four consecutive snap shots of the travelling
Ing is the medium through which the wave
ther assume that the shape of wave pulse remains
le the wave travels along the rope.

tion. A travelling wave such as this. in wh




© a stimple mathematical treatment of one,
travelling waves. Conslder a wave pulse
lling to the right on a long stretched string with .
I I”W L as shown in Fig.8.7. The pulse travels along th
~ and the transverse displacement of the string is measured »
axis. Fig.8.7 (a) gives the shape and position of the pulse at ty
The shape of the pulse is represented as Y = f (x). Here y is.
tion of x. The maximum displaecment denoted by Ymax is ¢al! ed

amplitude of the wave. The distance travelled by the in time

7 (a) apeof a string (in this case a pulse) at t = 0. (b) Aﬂ!l,_
time t the @Q 2 has travelled to the right a distance x = vt.

A S e

"Ig. 8:7(b). Suppose the shape of the pulse does not change
s condition we can represent the displacement Y for all |

> measured in a stationary frame with the origin at '_

<




y‘.?or_dlnat_e of _polnt at any ﬁme t. Fu Thore
then the wave function y as a function of efines :
tlng actual shape of the pulse at

3
m
.short time and then divide t tance by the inhetv&l.

t of the pulse corresponds 8? t point for which y s

um. In order to follow the motl@ f the crest, some partic -

, Say Xo, must be’ substltuted\ (x - ¢t). In order to staywﬁh
we must have x - m{;\ . no matter how x and t change.

s the equation of @ﬁﬁm of the crest. Puttingt = 0 In tﬁ
uation, X = X afid at later time dt, the crest is found ata

us the distance covered by the crest in

s clearl = Xo + Udt - Xo= Wit. Thus the wave speeds

1is also referred to as the phase veloclty as given by =

dt

ey '

L =




(b) ~\>

water regains its oﬂglnal po’%!uon due to the dlff erence o
) pruced but then 1 tjead of remaining at rest it
s position because ofiits inertia, just as does a pe

2 3 .for S his expands into a large circle :
cond €ircular ridge which expands and so on




B OTTUDE . COMC/VIDUATDYFUTUREDUL TU

&

6 volts

Lo

Flg. 8.9 The Image of the waves (s seen on the screen which is just a plece of

white drawing paper placed under the ripple tank.

of First we dip a finger or a pencil-in the water and notice .
er- that the circular waves spread out from it whenever it moves ‘
Im slightly. If the finger is dipped in and out regularly at the same r
us place, waves consisting of alternate crests and troughs follow one
is another at regular distances. The distance from one crest to next
he - one is called the wave length.
: If the finger {s replaced by a dipp_r fixed to a vibrating steel E
ta strip, this will make the dippings occur at perfectly regular inter-

vals and, further, these intervals can readily be altered by altering

the length of the vibrating strip. !
of i

- R ‘The state of affair set up on the water surface is called a wave
h gﬁM. and three important terms are used to define it completely.
" N, HEse are velocity, wave length and frequency. We know that the
(s frequency s the number of complete waves produced each second.
¥ In our €xample, it ts the number of tn and out movements made by

1€ the dipper 1n one second. One In and out movement of the dipper is
one complete vibration.

241




Velocity of wave(9) = frequency (v) x waelength 3;3‘

9= VA Q

i g the frequency and wavelen@cme velocity of

,&O
"o
Q“

] mechamcal waves vﬁﬁ;’uou@ amedium, mrry energy

weight will be momentarily d]sp]am ”m |
1this process energy is transferred to the welghtsino




The screen which is just a plece of white drawln ‘?‘. a
eor the ripple trank. S g?\ \ r placed

 srting, which does work in producln&j&e oscillation in the
he points P.Q and R_rtprcsenvgaﬂous_ segments of the
which move vertically. The w,a@}hovcs a distance equal to
A, inatimeT. To \'d;lcrmlne power transmitted by
ve, we first calculate the energy contained in one wavelength
a vide the result by the‘u\‘riie T.
¥ @ B

. We Jnow that every point on the string moves vertically up
. Thus every segment of equal mass has the same total

EE of the segment at P Is entirely potential energy
segment is momentarlly stationary. The energy of the

9 is entlrely kinetic energy and scgment at R has hoth

um transverse ve]mlly (ﬂ,) max and mass Am. m
s segment s given by B

RES .




lon a stnng is pmporuonal to d qﬂ N

slocity of the wave (n) the square of the
the square of the amplitude. In fact, all.the
> the following general properties.

-:"-?-__power transmitted by any harmo )

uare of the frequency-and to Lh@‘&uarc of the

be notcd here that energy is. 60 carried by only
(waves In a string, wat;;ﬁyaves. sound waves

»ww

ed by electro-magneti g{ave.s like light waves, micr
aves. thermal radiation, etc. The energy carried by
waw:s also de directly upon their frequencics
; ?'l'mquen ‘waves have more energy than low freq
; energy carried by ultra viclet light
e carried by infra-red light because the
ht are much greater than those of infra-re




. uﬁeawn of a travelling wave at the ﬁ.wd endoj

that the reflected pulse is inverted, but its shape. ren

I . when the stﬂn I ‘?9
EVET, g 1s Ughtly strete

ts and then plucked, the crest exte : dis-

the supports. This distanc 18 clearly half the wave-

of the transverse wave developedin’ the string as shown in

12. At each end, the wave suﬂ'eg;% phase change. The crest

reflection at Q becomes a géugh W; and the trough W, be-

N

8 crest W,, on reflection at P,
o

up in a stretched strings with its two | | .'
the centre as an antinode are shown. ' A
imple vibration of a string consists of a transverse
along the string and being reflected at each
cldent and reflected waves are always equ
u;phaneandsothemdls t

- m N T A .
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=
sl

| & 0 and y, = A, sin (ko + o)
dmplaeement of a wave traw “7-

lﬁcldentwave andY, repmﬁ

: travelling to the left, which s our reflects? _‘ .

i " ave function Y is given by N

b

¥y =A, sin (ke - o) + A, sin ur.xésu

J-"'

¢ =28/Aand © = 2xf. Using onomctﬂe denti-
; f ] 2 - &O
_ L %\,

is expression repres the wave function of a s
gnurely dxl‘é}n from the expression which is u
a travelling ﬁa,rmonic wave, From thlsexprm
g wave has an angularvcloeﬂyﬂ a co
t "givenbyzA sin kx. This means & Y
yrates in SHM with same frequensy How




. 2

ting for k = 27}-‘ . 1n Eq. 8.21 (a) we get

=0 —

kY ni

G A, e ,?12* : 8.21()

Where n--- 1.2.3 These polnt&/é/f/ zero amplitude called
are also separated by % - The distance between a node and
_I - 1

g of length L fixed at both
Wn {n FIg. 8.13 (). Standing waves are set up by a
Superposition of waves Incident and reflected from the
tring has a number of natural patterns of vibrations
malmodes (as shown In Fig. 8.13 a,b,¢, and
13s a characteristic frequency. The frequenc

‘noted that the ends of the string must alwa
they are fixed. If the string 13 disp he
sed, the vibration is as shown in




_..'dtng waves on a stretched string. All s
e termination polnts.

_en 80 obtained is called the fundamental
monic of the standing wave.

fring may be made to give out next
is done as follows:




ﬁ geueral if the string vibrates in n loops, @%rrespondmg

%

8.22

A sonometer Is a pracu;ai’appucauOn of stretched strings for

vibr ﬂng a portlon of the sﬁdng into destred number of loop . It

8 essentlally of a fhln metalic wire stretched across two
A and B, or @c top of a hollow, wooden sounding box
e mel:e . One end rf the wire Is fastened to-a peg at

- The other end passes over a smooth frictionless
¢ other end of the bax. The pulley carries a scale
at it can be loaded to have any desired tcn.s(on ln the
ween the two bridges A and B, there is a n -
ng over a scale to adjust the length of the Vibmung
ing. Here the bridges A,B.C always form nodes at
'sluons. If there is no bridge bctmen the '




dll vibrate in two loops with a frequenﬁ 2(,.
ra

| placed in such a position that the strin tes ﬁ |
ﬂk frequency excited in the sm%(éll be 3f,, and :
\~,

e laws of transverse vibrau@of string can be v

eter. If L is the lengﬂx,o}‘wbcraUng scgment
he tension and p Is _the mass per unit length of

_.-_ﬁ'equcncy produc,z\ the string is given by

Wf_ T
|,l.

i.e. the frequencies are lntegral n




In a dlrectlon parallcl to the dlrecum oom n.

_ are produced in substances
e like gases and wire springs. So s are longitu-
result from the disturbance fhe lnedmm. mw
j_»-_«- esponds to a serles of mg&a low pressure regilor
vel through air or through §} ther material mdmﬂ
velocity. A long:tudlna(ﬁ se can be easily produced ina
_;8 15 represents a ﬁy'mg whose turns are large and | m :

g near its left end, these move Md
lhase just-ahead and these In turn squeez w&

it & thus a pulse. or compresston wave, goes alor

: S
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Sound waves are the most important example of longiti |
vaves. They can travel through any material medium ses. prop
wm and liquids with a speed which depends upon roperties of s
— b 'u&me medium. As sound waves travel through a medium, the par- 1 and
~ ticles of the medium vibrate along the directiofnr of propagation Qi | bulk
‘wave motion. This is in contrast to a tranisverse wave rnotlon m;._ ': by .
The ¢
i l the s
i and rarefactlons Q‘fépecu\rely Graphically the longltu_f__ Dreas
els reprcscnte? @‘Lransverse wave.
“Ther ._are@?ee categories of longitudinal met.:hanical
r different regions of frequency (i) Audible waves (ﬁ)l
es and (iff) Ultrasonic waves. Is aly
versa,
Mech:;

an ear, typically, 20 Hz to 20,000 Hz . TheY @
: .nfwa}'BSUChastm“mcal;‘



;__‘prcéslonal waves depends upon th
tia of the medium. If the compr

us denoted by B and density (ln@
yeed of sound In that medium

S

\¥
/\O

odulus. B. is the ratio of the changeh
ting fractional change in volume, -ﬁvlv




APLACE'S CO ON

ewton's formu@q{'q 8.24) was obtatned on the assump
COMPress & and rare-factions take place at

ol -




Where M is the molecular s of the gas in units of kg/
mole, n Is number of moles R. ’fs universal gas constant and has

value 8.314J/mol-K and T l,gjcﬁmperature expressed on kelvin scale.

- Using Eq 8.27 w te&{ calculate the velocity of sound in air at
ye. We know alr consists of approximately 80% of Nitrogen and

en. Th ﬁsses of Nitrogen and Oxygen molecules are 28
32{a:m.u respectively. Therefore the mean molecular |




= 300m/s

CAL SOUND AND NOISE

m some sound as noise and some sou 1
* the slamming of a door or t.he mbling o
ll a noise, whereas, the sound p by g
. regarded as musical. These two sountl arer
ited in form of graphical patterns as sl\ ‘In m_m ) :
Fig.8.16 (a) represents an lrreggﬁr non symmetrie, r
mons producing dlsagreeable sensation henu
m Fig 8.16(b) shows a@ﬂar symmetric and g
a, which produce a smo6oth pleasant sensationk
m physical dlﬂ'ercn@%etween these two types o!’
mod by stag;nzg their spectra. The spectmu
m of&ikmal sound are sketched in Fig. 1
’1‘” 5 espectively  the spectrum of noise e
s which are not harmonically re
: mnotmtega!mumpleoﬂhe_

- o T

mndmm
mmm

ﬁf




wave pattern of a vlolin (c) Power spectum
1 of musical signal.

acteristics of a musical sound

Musical sounds or tones can be distinguished from
the following characteristics:
sity (loudness)




be polnted out that the intensity of sound Is

al quant md it can be measured accurately. It dm
upK ‘;. auditoty sensation of the ear. On the other h
ﬁ the magnitude of auditory sensation produ

anc pi-‘ m upon the Intensity of sound and as "h ﬁ-‘

ids upon the auditory sensation of the ear. A non@m sar
 very sensitive detector of sound. It can record the'least intense
0'? W/m?) which is one billionth of themaximum sound

 that can be heard without pain. Tt$§b dness of a sound
'wdkecﬂyas the power delivered to the ear increas-

but seems to vary roughly as thc logarithm of the power. It

s th londness L. is proportional to the logarithm of lntensllg

— |
9 ]

¢ - '; S! ﬂes of two sound waves, the difference In loudm
r Ly level is @Qed by the equation

to 10> Wm? corresponding roughlyto he

&tm be heard. This Is regarded as
3 taken ten times of {, (1 = 101), theathe




ne = 40 dB at 1000 H,
\2\@

= =10 when B = 40 dB, therefore K ?{1%
e Q/
(..._, c,{o 8.28(c)

™ € sone scale of loudness has Be nr recognised internation-

: Qﬁ\
sation that sound produces in the ear
__ and is cl a@r related to the frequency of sound. Fre-
‘and pitch th measured in Hertz (Hz). Thus greater
4 ﬁ%\?eater the pitch and lower the frequency lower
e pitch of sound produced by various physical instru-
ly depends upon the natural resonant frequency of the
his Is our common experience that sound of a sparm
use of its high pitch since it has a high frequency.
ind of a lamb s grave due to its low pitch d




uced by two violins which makes great difference in vagoe -
'he Instruments. We recognise the voice of a friend WW
10ne by quality. e
¢ Helmholtz was the first to discover the cause of differencetn
| musical tones which s called quality. sl

The difference in the sound produced by two notes of u@\
Same pitch and intensity is due to the difference in their resu
waveforms. The resultant wave form of any sound is obt by

m<>

the I
the a
apply
direct
and I

funct

! ¢ e



BN B fridameiital and third hermcnte are bmb
jive a resultant wave form. |

N in a medium. The two waves are’ travelllng to the right
ve the same frequency, same wavelcngth and same ampli-

it they differ in phase, we can expi-css their individual wave
n displacements as

Y. = A, sin (kx - ot) and K oa; sintx ot

nce the resultant w%ve. function displacement is given by
y +y,=A <[§ln (kx - wt) + sin (kx - ot - $))
ake use owing trigonometric identity to simplll'y it

'_Q{,\.zm(“ B sin (228)

kx-ot and B= kx-ot-9d, weget

| eos—?- ) sin (kx -~ mt-s-’-) 829







een constructive and dest _‘
> this phenomenon. as interference tn time, '
ning forks of slightly different frequencies are st
pad, one hears a sound of changing intensity, call
ce we can define beats as the periodic variation in n
given point due to superposition of two wave havi
different frequencies. The number of beats that one hears per
r beats) Is equal to the difference in frequenc tween two
irces. The maximum beat frequency that the an ear can de-
is about 7 beats per second. When the bth equency (number
ats produced per second) is greater lﬁan seven, we can not
hear them clearly. One can use this effect'16 tune instrument such
~ as piano, by beating a note against areference tone of known fre-
- quency. The string can then be adjusted to equal the frequency of
the reference by tightening or lossening it until no beats are heard.

Now consider two waves with equal amplitude travelling
through a medium in the same direction having slightly different

encies f, and f, We can represent the displacement that each
wou!d produqzj(m a point as:

. Y, =A\§q mfitandy, = A cos 2rfyt
' y%&g Ya =4, (cos 2 {,t + cos 2 [t)

SN =24 cos 2nt (£, -f,) cos 2nt (f, +1,)

> 4N

.

2 2

nd y, are the instantaneous displacements
wave as shown in Fig.8.19 (a)'and y is the
caused by the two waves together as sha

o e 4'5 '
o




hen f, Isclosed to f;. the amplitude variation Is shown
by the envelope (broken line) of é"resultan( wave

0‘3:)




 clear concept of acoustics let us sup
are  produced In a big hal, These s
scatter and strike the surfaces of the walls
elling of the hall and also the surfaces g
nt in the hall. Some of the sound energy '
 and some Is reflected. The reflec :'Qparts
sound waves) travel bac
frable echoes. These echoes interfs
coming directly from the source’
ct and unintelligible s

G

u&t!cs

ting of -
d recombine to foun R
with the original sound k-
“The result is that we have 3 .
and hence give rise to bad

~ Conditions for good dc¢

| - :!he loudness of u\@separatc syllable should be suff; _
- large. ~~\J

| . Thedccay eriod of each syllable should be

small so that the
ing.syllable can be hearqd clearly.

10€s should be just suflicient to maintain the ¢

P 4 L
3 OUnNA

1€ hall should haye some open windows. Sound absork

us materials like cloth, cork, asbestos etc or heavy
should be placed in the hall at various places o

Dlz
Y e




n the source is movineaﬁd the listener is at rest.

When both the sour@nd the listener are moving.
O

2 wa e with frequency v and wavelcngth :
several wave crests separated by equal

on relative to the listener © + ﬂ
""tks(emr is







consider the case when the source is tion aun |
| a speed, O, toward a stationary llsth?“ as shown in
Ie wave crests detected by the stagéizary listener a:e.
1er because the source is moving: Qﬂﬁe direction of the
ve resulting in a shortening of’ mvtlcngth That is, t!u:
h 2° measured by the llstencr is shorter than the true

A of the source (1™ < 1) {Rﬁc speed of the sourcelsﬂ,

'ency is v, then during each vibration it travels a dis-
velength is shortened. Thus the
g at the listener at rest is




esound arrMngatthe
gfhl(l.e A >1)landthem :
le@cywhich!ssmnby
X




Pnally, the Eq.8.40 and Eq.8.41 are exp

| ‘«
—.” = ( 01 Oo (</(</

OF O, Cf

Eq842 reduces to Eq. BQG\Q-:en Ug = O ( i.e. when the
":hatrcst)andwhent’ aOrgguccstoEqSSQ Thus the va-

the Eq.8.42 1s cl14=¢:lo;e§l<\(‘\\2

tice when both U‘@ﬂhcncr and sourceare at rest (9, =0,
t;hen no chg/éz) in the frequency of sound is observed

hows what happens when the speed of source (d)
_- um s less than the speed of the sound wave (0)

eed of the source O, Is comparable in magnitude
' ';_‘%m-the source keeps pace with the outgolﬂl p

ahead of the source and they ca .' e K
cont!nuea (Le. mmbMW

"-"-'- restorlng m .




quently, a wavefront that is a sheet

Direction of

Propagation

of wave front
ﬁ

When the sou.r@(mlwes with a speed exactly equal to the wave speed,

~ the waves pile up and form a plance that extends perpendicular to the
~ direction tion of the source.

tw ét\}d like to see what happens when 34 exceeds the
ie. 8, > ® Obviously, in this case, the source runs
utgoing waves and in such a case the pile up of the
wavefront which takes the shape of a cone with

t at its apex as shown in Fig 8.23. '

‘and some later time

s a distance ot (t




A

m vaepmducedw
0 Sn with a tpccdo{‘:?mﬁsgrmerthau thcuf@lnm

' The envelope of the wavefronts forms a
en by sin 0 =-0/0,. 2 é‘

m Intermediates wavefronts.k@ such tangent 1
e of a cone. hence a conc-sha wavelront Is fc
Qhetwun the direction of

|.

&0
e-shaped wavefront that is pro
thealrlshlgtﬂyeomprmed.mls
ﬁ‘lsealledashockm Some e
Qmedlnatonthewawwhmth
mJetamnﬂ'-lﬂ
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chnons OF THE DOPPLER EFFECT

The Doppler elfect provides a method for tracking a satellite.
Suppose the satellite is emitting a radio signal (i.e an electro-
magnetic wave) of constant frequency fs. The frequency f, of
the signal received on the earth decreases as the satellite is
ing. The received signal is combined with a constant sig-
nal generated in the receiver to produce beat. The beat fre-
quency produces an audible note whose pitch changes as

the satellite passes overhead.

w

The Doppler effect is used in measuring the speed of auto-
mobile by traffic police. A “radar gun” is fixed on police car.
%M An electromagnetic signal is emitted by the radar gun in the
direction of the automobile whose speed is to be checked.
The wave is reflected from the moving automobile and re-
lines lie o : ceived back. The reflected wave is then mixed with the locally

generated original signal and beats are produced. The fre-

(ti)

ormed. T,
ine Is gven quency shift .is measured using beats and hence the speed of
the automobile is determined.
(i) Radars (Radio detection and ranging) are commonly used for
civil and military purposes at civilian airports and military
3 the Mach air-bases respectively, to detect the presence of any aircraft
(foe or friend) in the airspace by evaluating the range. The
.d by a s Doppler Radar based on the principle of the Doppler Ef-
mgsheﬂd fect, is extensively used in the detection of aircraft speed and
les art the idl'rcctlon.

”::fgl @'."VOR (Very high frequency omni Range) is a guiding system
@\ usually installed at the airports to guide the incoming alr-

) jts ¥ - crafts toward the location of the atrport. Nowadays big and
seed W'; modern airports for example Quaid-e-Azam International Alr-
L“‘W ' port, Islamabad Airport, are equipped with Doppler VOR
p,.dg_ ‘w whose principle is once again based on the Doppler effect

A0 f | and provides air effective and better guiding system to the

e

273




g '_:-thi: heartbeats of fetuses and nms X

O%

'_ onic instrument called Homosonde u \the % |
ct of ultrasonic waves reflected from ?ﬁng nasses
patient. The device is very sensitive r detecting blo |
nd measures faint heartbeats in @} ry noisy m |
2 t where the use of stethoscope rP@;not be reliable. |

. N/

similar manner, we can dct,ecéthe motion of an objects
er-water (for example a marinc) by employing sonar
asor cwavcs)bascdg}ﬁ\ ve use of Doppler effect.

e Doppler effect fo@B’nt is important in astronomy. .
analysis of i mitted by the elements in distant stars
he wavelength compared to light from the
Jon ¢arth. mCSCShlﬁSmbelntmmm _
s due to the motion of the stars. The o

'_m""’@@l theorles. whlch




- (i) The characteristic [requency is

R

K’\O
The period of osillation is T .= \T

Q' o
0 397s

o 252u§d

Example 8.2Q~<</

. . A
- Abody of mass 2kg attached to a spring is displaced thr
- 0.04 m<from its equilibrium position and then releas
3 constant is 200 Nm". (1) ind the period a.nd; E‘eg 1en




it

oute the maximum acceleration 1
?‘ .

a, = -ax

m acceleration occurs at th @% of the !
X, therefore ,&Q

l‘l'!; 0%y = £ (108" (0031\ + 4.0m.s™
of mz: 025 kg attached to-a spring is displ
) the right o@ ilibrium position. If the sp

and l s vel ocity at the end of this displace
total energy (i) the amplitude ef if




3 - L

3 2x4xlo holes tad e - .

b 0.4 Nm™ :

. x,=0.1414m -
‘-_‘ Example 8,4

A simple pendulum cog etes one oscillation in 2 a."
late its length when g = Q@ms the time period of slmple

is given by




rious values, we gﬂ

¢
R onic (\M’..ﬂ =4




strlng for each resonant !‘reqqéﬁ:y
 Asip= '2l/n wheren=1, 2(§?4 5)v vietelts




yigéi.zm
ffjauuxl
T =20x2
= 40 m/s

m obtaln the same result from the equation

‘.,_ &&w
9

m ﬂ 21




gnetic, lncludlng light, radio waves, |
aspeed of 3x10° ms® wmmnsaq:ressd_

d frequency by 9 =V A




340 .ms" 500§§ ,
' = 525 8Hz
340 ms” - 16.7 ms” )
\.

the ambulance is vaIng away, the

./"\ A
) o/

x\g\’
N340 m/s
Om/s + 16.7 m/s

1
b

) 500Hz *‘5'.“ .

A




lpe !s closed at one end? lc) For the case
~ how many harmonics are present in the normal. |
~ ing hearlng range (20 to 20000 Hzl?
(bl 35 Hz, 105 ¢
(c) 285 annonies.' ]
- '-, A standing wave is established in . 0 cm long string fixed
~ atboth ends. The string vibrate \}% Gt segments when driv- _
en at 120 Hz (a) De!.crmine the wavelength (b) What is the
fundamental frequency? _
\M:’ Ans. (a) 0.60m
O) '
AN/ (b) 30Hz

Pat
Calculate the spi \ of sound In air at atmospheric pressure
p = 1.01x10°N/nf, taking y= 1.40 and p = 1 2kg/m‘
3 - \§z~ :
2. A s_o§b wave propagating in air has a frequency of 4000k=.
Calculate the precent change in wave len_gth whenme' vave

._ i i 'I" . .
V'where th qﬁr'temperature decreases to 10° C.
212
l-“'u I'LP

A g,. “




B clh cdown 4 highway at 2 e R
“emits sound at a frequency of "'?5"%
cy heard by a person in a car travelling at
» direction as the car approaches the ar
car moves away from the ambulance.

{&O Ans. 47 :
siren sounding a 62:92 tone. What fr el
2d as stationary rver as the car appr
‘Speed of s€§n = 1200 km/h.
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S Chapter: 9

Nature of Light

9.1 DUAL NATURE OF LIGHT |

L ll‘ el‘ ul‘,ﬁ‘(]l (- o 9\-] bh -

Second]
o yilsound and water waves réquire a medium for their prop-
U m- Ow, therefore, could a wave travel through vacuum as
propa' u:t do to come from the sun and stars? The idea of a wave
£A d ' |

‘wPagaton without medium was unacceptable. One important dif-

‘ference
N\ between the theories was that the corpuscular theory of

ﬂﬂ: l;:‘:d;;a;lted that light would travel faster in a matertalshaihi
mateﬂal-medfreas the wave theory predicts a slower velocity in a
Measured 1 um. The velocity of light could not at that time be

Mmaterial, and the decision between the tw: theories

Was made on different evidence.

—
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ton blindly supported the
ly proposed theory of light. The wave
in 1880. The first measurements of
‘i‘bﬂlum confirmed that the velocity of lig 8
a material medlum than A
ral acceptance of the wave nature of light. v Lo R o
- e L
In secondary classes, the electrostatic-field of a distribution
 at rest and the magnetic fleld Q@Stcady current
have been studied. These ﬁcl@s ay vary from
n space, but do not changé-with time at any indiv

. For this situation these ﬁfg@é@hre regarded independent. =1

o
£

'Tﬁ‘case. the electric ﬂ?li?.

and the magnetic field do vatyg !
en it is not possitf@i o treat the fields independently. Ac-

» Faraday's changing magﬁetic field with resg
as a souree-of electric field, similarly a changing el
spect to' time acts as a source of magnetic flel




Fig. 9.1 At a large distance Jrom the antenna

, the vartation of E and B with distance at q
soldal. Furthermore, the electrom

agnetic wave (s a p wave '. -
at every point and for all value of the time. e

In1873,James Clark Maxwell shpi&e?that these el
netic waves can propagate through v

@\ﬁn He obtalned a ﬁleon&-
~ lcal expression for the propagauans;:eed of the electromagnetic
waves. The theoretical value of the speed of electromagnetic waves

was found to be cqual to the- Speed of light measured expermentally
lc-2998x108ms ). K

Thus Maxwell «oncluded that light waves are electromagnetic
waves. (This can al§o be expressed by stating that light propagates .
as an electron{%kneuc wave). These light waves consist of an oscil- i
hﬂ,ng elect.:(c/ Id E and an oscillating magnetic field B. Both '-

ndicular to each other. The mutually perpendicular
- and electric fields in t.he light wave oscillate in m

ular “to the direction of propagation Of the !:Ight m
tl'xex-a:dsasshownlnl-‘lgs 1. The stremthoﬂh

‘f ii

_bythcspeedofthQMt.

J

~ T My D1



" tric effect should occur for any frequency of the light

DUIUDE COm/Crivib'wAl t“n TFUTURESRS
e A ranges from 7.6 x.10'm (longest visip) .
1.0 x 10 "m (shortest vistble blue) and the corresponding ;e |
rangea from 3.9 x 10"'Hz (longest visible red) to 7.5 y 10 Y
(-Sho_rtest visible blue) e

| Fig 9.2 shows the sketch of electromagnetic Spectrum, 3,
electromagnetic spectrum has no definite upper or lower limj;. Th
ey

- Fig 9.2 also displays the name given to the electromagnetjc Waveg

in various region of the spectrum and it indicates the wavelen@\‘

Frequency cycles/sec
%(21_1?‘ '_I.O’l l?’ § IIO:O IIO"l l|0M| llO"I llO_'_"' I:Oﬁ i
Power Microwaves _ veble | Xeswl |~
Radlo ""  "Infrared  Ultraviolet " Gamma rays

o T AT W T T VA e
10° 10¢ 102 1 102 10* 10% 19> 107" g

wavelength metres

Fig. 9.2 The electromagnetic spectrum. Note that the wavelength and frequency
scales are logarithmic.

and frequencies characterizing each. Taken together they const-
tute electromagnetic radiation.
The wave Theory of light, however, failed to explain the major

features of photoelectric effect in which the-ejection of electrons
fromi a metal surface takes place when its surface is exposed to

light.The experiment showed that.
(1) the Kinetic energy of the ejected photo electrons is inde-

pende& t of the light intensity while the wave theory suggests that
Kinetic energy of the photo electrons depends upon the intensity of

the ught beam.

fre-
(i) For each surface, theré exists a cut off l’retwepcy For
hotoelecﬂ"c

quencies less than the cut off frequency there is no
effect, whereas according to the wave theory of light.

light Intensity is enough. | i
: i —




E=hy

# B
I_I.I.H

" Where h is Planck's constant th= e.é/’é X 10 J-s) and v
frequency of the electromagnetic radiation. He further proposed
that when a photon lntcrggt%vql L matter, it behaves as a praticle L _'
and delivers its entire energy to the indiy idual electron in the ab-
sorbing surface. In1921, he received the 1 Prize in physics for
his theory of phﬁlectnc eflect. (©)

|

e
In 192lhoton~‘,ﬁéturc of light was ?; ed by AH.
Compton, whic ¥,

is ‘called compton effect. He was successful In

e¢valuating the motion of a single electron and -ray photon be- 2
fore and aﬁergﬁhlon between them and concluded that they be- | R

5 |

haved ltke material bodies and possess momentum and kinetic en- X
Q)

*d the Einstein theory of

lght (8 enmpos
Ward photon correlation expe
- ":1"_- [ ) = e }I—I‘.-l'

=

-~
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* the dlscuaslo'n ’
on the nature of light, e b
nomena such as !nt&rference. d'fﬁ‘acuon 'w' ]

wave- :
5 e-like properties. Thus discussion about the naturg;gf ligh
OWs that light possesses dual nature f.e, wave-like ,a’n:‘d‘pamﬂ:

9.2 WAVE FRONTS, HUYGEN'S PRIN CIPLE

In section 9.1, it has been shown that light waves are elec-
tromagnetic waves. These light waves consist of mutually perpen-
dicular oscillating electric and magnaetic fields. Both electric and
magnetic flelds are perpendicular to the direction of propagation
therefore, light waves are transverse waves. Waves can be classi:
fled as, one dimensional, two dimensional and three dimensional
waves depending upon the number of dimensions in which they
propagate energy.

n

’ Light waves which emanate radially from a small source are
three dimensional, Consider a 'single wave', we can draw a surface
through all poeints undergoing a similar disturbance at a given in-
stant. As time passes, this surface moves along indicating how the
wave propagates. For a periodic wave train we draw surfaces, all of
whoie‘;\ﬁ:ints are in the same phase of motion. These surfaces are

‘wavefronts'. In homogeneous and isotropic medium, the di-
rection of propagation is always perpendicular to the wavefront. A
line normal to the wavefronts, indicating the direction of motion of

the waves, is called a ray.

Wavefronts can take different shapes. For éxample, If the dis-

turbances are propagated in a single direction, the waves ar¢ then

= stion
referred as plane waves. Consider a plane normal to the direc
ref P i J—




= II'-. " : .-
i TS

- Fig. 9.3 (a) A plane wave. the Planes represent
 apart, and the represent rays. (b) Spherical:
wavefronts, Spaced a Wwavelength q :

Jrom the source, however, smai; of

are radial lines leaving them Ji= |
w0 FIE 9.30). At a very large dis-
spherical wavefronts have very

n of the spherical wavefr ean 3
s 4 “- l| '_

source in all directions as sho
tance from the pofat source,
smal curvatur&;g/&ch a small portio

ey | be treated a%ﬁlanc. l.e. the spherical wavefront reduces to a
| 'wavefron/{@ er certain conditions,

93“3\ {N»}ERFERENCE OF LIGHT

R In chapter 8, we have studied interference of sound
_\Which 1s the result of Superposition of two waves. The int
Phenomenon of waves, is a general feature of all types of waves
H€A as sound waves, mechanical waves, light waves, etc.

,

¢ two waves are allowed to
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the Intensity of an indivig
known as constructiye inter.

Light waves also undergo Interference.

terference associ
ated with light waves arises
blnlng of the electric

individual wave.

F undamenlany, all ;n‘

as aresult of the cop,.
and magnetic fleld vectors that consttute th,

Interference

Serve because of the short wavelengths involved (about 4 x 107,

-7
07 x107"m). In order to observe stable interference of light waye
the following condition must be obeyed: .

A common method for producing two coherent light sources
IS to use one monochromatic source to {lluminate a screen with
two small slits as shown in Fig 9.4. The light emerging from both
slits Is coherent because a single source produces the original light

Successive
wavefronts

/

Monochromatic
light source
N,

-— i -

SN s

Viewing
screen

Fig. 9.4 Huyger.'; Construction of Interference pattern
A .
beam the two slits serve only to separate the original beam

Into the parts. Consequently, a random change in the light emitted

by the source will occur in the two separate beams at e

time. and interference effects can be observed.
9.4 YOUNG'S DOUBLE-SLIT INTERFERENCE

The phenomena of interference in light waves from tW
1801. A sche

—

292

cffect In the light waves are not easy to oo~ |

s
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nauc diagram of the apparatus used by him gy, :
45 shown In FIg 9.5(). To obtain two coheren “‘;‘8 demonstration
cident on a screen. which has a narrow s)y % 1;-‘80urces light is
ing from this slit are then allowed to Incident :n ae Waves emerg.
which has two narrow, parallel slits S, and s_. _I;ccond screen
serve as a pair of coherent light sources becausl,a €Se two siitg

wa
from these slits originate from the same wavefrontz:o :}‘::negfom
always in phase. On a screen placed at some distance away ;,0:‘:&

found a series of allernately dark and bright parallel bands

sponding to the position of destructive and constructive mr,c::(;;,:}
ence. These altermate dark and’ bright paralle] bands are caﬂed’
fringes. That is, when two light waves add constructively at any lo-
cation on the screen, a bright fringe is produced and when two
l&h( % light waves add destructively at any location on the screen a dark

Scrqn iy fringe 1s produced.
€ from
both Screen

Central bright band

2
= LI\
Lo
)
@ S
¢ ! (a)
Viewind
screen dsin ° path difference
- 4 .
pea” /\,:\ : | () Screen
T IS [ o _ :
o " Fig. 9.5 (a) Young’s two slit interference pattern (b) A diagram of the double
W y 3m¢1p¢n'mgm' : ‘

The quaq,t,lﬁz;-z:dcscnpu':;n of Youhg‘é. experiment can be
obtained with the help of Fig 9.5 {b).Light waves with a deflnite wave
A, are Incident on the pair of narrow, slits S, and Sy

——— 1650

—— 293
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; - This path difference will determine w{g&er or not

\x'

> in phase when they arrive at the point P. If the
s either zero or integral multip@ f wavelength of

1. the two waves are in phase anéi\constructive lnterfer

here A repre the wavelength of the light usx'.clL
r the ord the fringes, thatis

B@“ +2,%3,.

al bright fringe at 8 = 0 (m =0) is called 2
he first maximum on other side, where
1aximum and so forth. . gt




the istance from theslit to the screcms
ce between the two slits(d << L), In praéﬂee

while d s a fraction of a millimetre under these edwa.
all, therefore ese condl

- sind = tano \2&\\?"

I 3, S[b) consider the triangle OPQ we se

.' E % 3 Y %
: ind = 0 = -— -
w S tan 3 (,O

\

plying both sides by d we get\\«
For computing the position of a mth bright fringe we substitute

measured from the point O are given by

-Z
)

. d /gm

‘“jbe the distance of the centre of the mth brlght band
tre of the central band at 8=0




!;'?ut dea! of credlbﬂlty
NCE IN THIN FILMS

; | observe the vivid colours. These visibl ' re the
of an interference effect. The lnt$§€nc,e in this case
m the interference of light w eflected from the oppo-
'-«« of the thin films. We whlte light conslsts of ius

| colours hence different wav hs Therefore the interference

mnstructlve or destrd‘; ve depending on the phase rela-
ip of the two lnterfer@%%cams. hence the appearaneeateﬁ

& B

%’ Incident light  Reflected light
D 3

n i ..--uﬁT

‘fl‘.:::‘ A’A ... : i .uﬂ-‘ﬂ

| _ 'vl I'-'_- A .x J‘ ¥ | "... LY, \;
N ¥ 4 f » iR
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ey \ [ MGt ath Sl




m; lhn Y I e T8
m of nghg (thus relattent T
leperpendlculumm.m

n 0‘8(1). a line ab represents arayin a u-
- .ﬁe upper surface of the film. At the point b on t}
erface, the ray ab s partially reflected as a ne
mnmltted as a ray bd. On the glass-air “.
uother partial reflection occurs and some W
nerges as a ray ef. The raybcandrayef erem“
mduclng constructive or destructive intérference depend-
rtm relationship. For nearly no ancldence the path
af ce between the two interfering rays (be and ef) is twice the
th s of the film. Thus path differ, = 2t. |
S Ay
e uims path difference is arintegral multiple of wavel
F t constructive interference and if the path difference s a
Wal number of wavelcngth destructive Interference will

o) : \:\/
!hformnatcigg&c situation {s not quite simple. First, we
st take care w( actually happens to the phase of rays that are
‘ d and refracted, because these two effects have cirtical
en nature of the interference. Furthermore, we must
- “that we are dealing with two different wavem I.. :
. mnnal wavelength ‘A in air and slightly ¢
3 ;4 -|
g ie medium (of refractive index n) which is labelled
'-'—'-}i--'“-: h in medium is then given by i

! 24

N - n .. 4 ‘.: : 3
#_."L-”i:ﬁ 3' :
i 1I._ 3

Mhnppmt?m

E‘?Jﬂ .e-! A
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€ where the plates are in contacts, there 15 no et L 0™
k: F‘Wm a constructive Interference (a brlghn: :;lgot:ﬁ t:em' oV
;fm‘af?oung‘s double sljt experiment. But In actual Expeﬂmen: lt*:s '
does not happen. What happened? The straight forward conclusion,
to sblve.the problem is that one of the two rays has gone unde,
~ phase change of 180° during its reflection and therefore, the com: af
tions for the production of constructive and destructive Interfe,.
ence on their films are reversed. <
- In secondary classes you have studied that mechanica) | n
waves are reflected whenever they come to a fixed boundary.Obser. Wfdﬂ
vation shows that the reflected pulse is exactly out of phase (18¢° ctly ©
phase shift) with the original pulse. This phenomenon is as valid in ° (nea
the case of light waves as it is for mechanical waves; therefore the ol s d
ray be in Fig. 9.6 (a} which is reflected at the upper surface of the fing®
thin film s exactly out of phase (shifted by 180° or half a cycle) it bs €12
with the incoming ray. Refraction has no-effect on the phase of the different
ray and is equivalent to pulse reflecting at the free end- an opera- flected 3
tion that does not affect the phasé of the ray. Thus the ray ef due to t]
emerges without any change of its phase. It is important to note up.
that a light wave under goes a phase change of 180° upon reflec-
tion from a medium having an index of refraction greater than the 9.6 NI
index of refraction of the meduim in which the wave is travelling, An
We conclude that only the ray be which is reflected from the 3 plang
upper surfaceof the thin film undergoes phase reversal. The rays | ).
be and ef which are out of phase, interfere with each other. By vir-
tue of m‘g:ase shift of 180° (phase reversal) in the ray be, the ing “Thl
condl@n for the production of constructive and destructive inter- ™ ap
ference are reversed. Because the conditions for the production of leng |

constructive and destructive interference in case of Young's double |
slit experiments are based on the fact that th;r';_;s no phase rever: .
sal In any interfering beam. -

) Y0 2v
_ In the light of above discussion the condition for construcﬂwl
aterference can be expressed as 3%

2Q8R
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2t = mAIhimao, 5, i
9.10

| - A
gubstituting. A, o We get
1 )
2nt= (M + )4 m=0, )
2 . 2. 3.-"- (mmmal 9 ‘1
and for destructive interference
2nt = mA; m=0,1,2, 3, (minima) 15
| - @
In practice, the interference fringes are not spaced equa 1\1. In
accordance with these equationis because these conditions a: ly
strictly only to the light that falls on the thin film at'angles ab:ut

g0° [nearly normal incidence). As remarked earlier the position of
fringes depends upon critically on the wavelength of the light used,
it is clear that the position for the bright'and dark circles will be
different for different wavelengths. Hence when white light is re-
flected and refracted from a thin fllm produces coloured fringes
due to the difference in wavelengths of the colour that is make it

up.
9.6 NEWTON'S RINGS

An alr wedge may be formed between the curved surface of
a plano convex.lens and the plane surface of glass shown in Fig.

(9.7).

This arrangement produces an Interference pattern consist-

Ing of @number of rings centered on the point of contact between
% s and the plane surface. These rings are called Newton's
g. The thickness of the air film between the glass surfaces var-
‘les from zero at the point of contact to some value 't at some potnd
E.as shown 1n fig 9.7,

s If the radius of curvature of lens R is very :
_’:'lth the radius r (Le radius of a ring). The point
S eircle due to zero path difference at this

arge as compared
of contact gives 3
point. and 180°




; rings produced by interference at tgg,'&!r wedge formed by
of the lens and a plane glass surface. S

se in the light externally reflected at the lower surfage,
of Newton's rings shows a series of dark and bright
are due to destru/g(:rﬁb and constructive interference

chords are eqt@r\%ve have

T

is neglected, we get . oy Y S

lgeashua B -

nofr G

metrical theorem that the product of intercepts of

:

|8
T
SCTES = 5
. [ i

sl

Su



<o 1ird bright ring (m = 2)

2:=|2+L)1=%§/'

iL: slmllarly for Nth brlght ﬁu (note that N = m-l-,m

2t, = ((N-1) 4 )l_(N--_)'.\




‘IICHELSON INTERFEROMETER

chelson interferometer was invented b
A.A. Michelson (1852-1931). The Miche
>d an interesting role in the history %;nc_
- of the nineteenth century. It has d great scie
ind had an equally important role in-establishing hi
,' '-dards of the unit of lengtlx\ﬁ}: contrast to t’h Yo

movable
mirror
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It consists of two highly polisheq Plane mirrocs -
The mirror M, Is fixed where as the Mitror s M
'ho“m in the diagram. In addition to this. 1t b

which has a thin coating of stlver on its
silvered plate is called beam splitter and is inelineq atl angle of 450
relative to the incident light beam. It has also another i lt; 45

which 18 RRnEeel 10 the plate C except it is not silvered. ::-5 :“?

pose 18 to ensure that the beam 1 and 2 pass through the sarne

|andM2'

2 ls mOVabl’e‘u
As a glass plate ¢
right side. This partially

' e
thickness of glass as shown In Fig 9.8.(a) Therefore, it is kncv:rwn as

compensating plate. This is particularly important when white light
fringes (coloured fringes) are desired. A monochromatic beam of
light from an extended source of light A falls on the half silvered
plate C. Part of the light is reflected from the silver surface of the

beam splitter C (at the point p) to the movable mirror M,. After re-
flection at M, it returns to the observerseye thréughthe plateC. The

remaining part of the light passes through silvered surface of the
plate C, continues its journey, passes through the compensating
plate D and finally falls on the fixed mirror M, . The light is reflect-
ed back from the fixed mirror M,. It passes through the compen-
sating plate D on its return journey and finally it is incident on the
silver surface of the plate C from where it is reflected to the observ-
er's eye as shown In the Fig.9.8(a). Aflter reflection from mirror M
and M, , the(two beams eventually recombine to produce an inter-
ference pattern which can be viewed. '

; The interference pattern for the two beams is determined by

«@'differencc in their path lengths L, and L, as shown In figure.
When the two beams are viewed as shown, the virtual image (say
M)) of mirror M, s formed by reflection at the siivered surface of
Plate C cotncides with the mirror M, provided L, Is exactly cqual!fl :o
L, and the-mirror M, and M, are kept exactly at right angles. 58
and L, are not exactly equal, the Image of th
Placeq slightly from M, (sull parallel to one ano

303

e mirror Ml is diS',
ther); and #f the an-

i




ence fringes result from the Ilght reﬂ ccte
The :effectjve thickness of the air film s vaded
--ijarallel to itself. Under these conditions, the
Is a serles of bright and dark rings.if the extended
chromatic. If a dark ring appears at the centre of ¢
inttem the two beams interfere destructively..

ars at the centre of the interference pattcn}Q&‘e two beamsgn.
riere constructively. <(/

.....

Thus. successlve @}k and bright rings are formed each 3
is moved a dlsg(a/ ce A/4. The wavelength of light used is
-asured by coﬁﬁng the number of fringes shift for a given

ent of g@ nirror M, If the displacement is represented {

- or 1=2£—

m




ween M, ang
- lntedmnm
formed ea
light used is
ft for a given

represented

Beam
splitter Compensator
U

mirror M,

Fig. 9.8 (b) A common type of Michelson interferometer.

9.8 DIFFRACTION

According to the principles of geometrical optics, if we place
an opaque object (an object through which light cannot pass) be-
tween a point source of light and a screen. a shadow of the obsta-
cle is formed on the screen. In addition, we also observe the follow-

ing :
- () No light reaches within the geometrical shadow of the

obstacle at the screen.
(i) Outside the geometrical shadow the screen is uniformal-

ly illuminated.

Fig. 99 shows the shadow of a razor blade placed between a
point source of a mono-chromatic light and a photographic plate.

:19. %9 The shadow produced when a razor blade is illuminated by mon-
Omatic point source. il

305




‘the geometrical shadow). we observe that near :hr:a::“"%

~“shadow a pattern consisting of bright and dark ba,,d," o thy
This leads to conclude that some of the light has g

- geometrical shadow. "The bending of light around

called diffraction.”

bent ln‘ide ““
N obstacte 4

The bending' of light L.e. the diffraction effect depends ——
the size of the obstacle. Diffraction effects are larger only when

™
deal with obstacles or apertures comparable in size to the Wa:ﬁ;?

length. Usually the diffraction effects are small and must be r&ied
carefully.

The phenomenon of diffraction was discoveredby Franceseg
Maria Grimaldi (1618-1663). The diffraction effeet 'was known to
Newton (1642-1727). but he did not see in it any justification for 5
wave theory of light. Huygens although believed in wave theory of
light but did not believe In diffraction phenomenon in light. Fresnel
(1788-1827) correctly applied Huygen's principle to explain the
phenomenon of diffraction which ‘could not be explained on the ba-
sis of ray optics.

Diffraction effects are classified in two types.

FRESNEL DIFFRACTION
When both/the point source and screen at which the diffrac-

tion pattern is Im"rncd are kept at finite distance from the diffract-
ing obstaglg. the wavefronts falling on the obstacle are not plane:

~ the co@?bbndlng rays are not parallel. Similarly the wavefronts

leavln? the aperture or obstacle to {lluminate the screen are not
plane as shown In Fig.9.10(a). This situation Is d@&ﬁﬁ?@d 35‘: Fres:
nel diffraction. : ~—

"
4 - L

-
IALARTT

FRAUNHOFER DIFFRACTION
' If the source and the screen on which the diffraction P““:
_ is formed are removed at a large distance, so that the correspor
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€S. Alens betwcen distant

fays paralle] to each other
ces plane wavefronts, Whereas Second lens col-

d hence produ d focus the
an

)
Fig. 9.10( b and ¢

m at a point on
the

;

ved o @
S and scree unhofer origt
[fraction. (b) Souéfﬁi-acfm fds‘f::m C tn thelr
9. 9.10 (a) F.esnet dtﬂ?m Fraunthofer diffraction. o
e distance, re-g:ltﬂglgl s, leaving sou
onditions produc Y ense

nal position s




RERE tncreasts Tom the ot 0 |
ww In addition, lm
dum pattern as remarked earlier, ‘h.
Mpﬂmubn@tsmummh. |
#mklphue producing maximum intensity X
® interference. Single source (i.e. shgleulﬂ)n%‘
Mﬂm and occurs for all klndsofm?
D

<%
R4

S

n\/

nd ﬁbg edges as shown In Fig.9.12, we divide the
Mark of equldlstant polnts above and below
suchasc-c’,d-d", e-¢’, {-I,.. etc. Sup-
@-ﬂJ between the rays from the two edges

lll.l as shown in ﬁgm&) |

- Lo Il.n‘_ A N %
L ' T =




" 'IU. 9.12 We can obtain the directions of the maxima and
action patlemm by dividing up the slit and consic

s from the corresponding pairs of
m... from the lower and upper hall’

mduces zero Intensity in this particular direction. If the m in-
~ creases so that the p.d. betweeéthe edges of the slit is S T X a
peak in the intensity oceurs, D

‘.,,f ~ This is best unde:swod by dividing the slit into three eqml
“parts as shown In FngQ 12(b).The light from the upper edge and the
ﬂfal parts inte: e‘se destructively. as seen earlier and produces
ht from the lowest third part is transmitted un-
---ed a z& sults in producing a peak In intensity. Fig. 9.12
_ e).show the path difference is 2\ , %.. 31 and the corre-
5 "}93 I to each path difference, we get Zero intensity.
*" zero intenslty respectively.
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—

lﬂtensity

—m = +1

m= +2

Sin @
Fig 9.13 (a) Photograph of the diffraction pattern produced by a single slit
illuminated by monochromatic light. (b) intensity graph for this diffraction
pattern.

The central m=0 maximum-is very bright since all the wave-
lets have nearly the same path length and are in phase. The dif-
fraction pattern produced by single slit and the intensity graph for
this diffraction pattern when illuminated by a monochromatic light

is shown in Fig.9.13.
9.9 DIFFRACTION GRATING

Suppose that instead of a single slit or two slits side by side,
we have a very large number of. parallel slits, all with the same
width and spaced equal distance apart such an arrangement IS
called a diffraction grating. By using large number of slits. the In°
tensity and the sharpness of lines can be increased. enabling the
wave length of the light to be accurately measured:

» t
A diffraction grating is a very useful device for a.nalys‘alﬂsllgh

sources. A diffraction grating consists of a piece of glass With ?
o
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" Pg.9.14 A dfJraction grating.

A schematic diagram of plane di %u

Fig: 9.14 where b is the width of sl a is the seum bg. ;
ctween two consecutive slits. (a_+ b)\: Is called grating element. A

arallel beam of light from the monochromatIc source is falllng 3
thc. grating, which sends out‘waves from each slit. A convex k!m
aean be used to bring the wavcs together at a point along

-' »w  directions, waves of a particular wave length from . |
- slits s are in phase an@:relnforcc each other.

1=
|

rays of light after dlffractmn through the

10,d stng lmm in Fig: (9.14).

uw b =1

W
ol o P ) - =
- L w 3 §




number is larger t.l:nég“\t 1 and 50 sin® does not represm
- O
al angle. {:}

Q

enll’ the 1 3@&1& appaers for this wavelength.




?“
| \?‘.g\
A ns!der a set of parallel lattice pl @‘i;\dng i A .-‘

uch other shown in Fig. 9.15. C er a and b rays

n the two layers separated by a distance d. The path

between the two reflected rayQQs LB + BC (see ﬁggﬂﬁ, idr

It can be proved %\

=LB=d s!ne Q@ere d is distance between the a
of the crystal. Therefore the path difference (LB+B(
ow the waves will interfere constructively if the pat

an -in-_tegr%__‘%umple of the wave length.
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ght make it possible to produce

_delecl polarized light.To clarify this let us, first consider the behay

our of transvers
transverse wave

Perpendicular to the length of

¢ waves. Consider a stretched string along which, ,
Is passing. The particles of the string are vibratyp,

| the string. If a block of wood
a slot in it is Placed over the string, the vibrations are not affectcd

When the slot is parallel to the direction of vibrations as shown i
slot Is at right angle to thyg
the vibrations do not pass.

1g.9.16 (b). However, when the
direction,

Flg: 9.16 [(a)The transverse vibralions on a string are not affected if the slot
is (a) parallel to the direction of vibration.
() The vibrations do not pass through the slot (b) if it is held perpendicular tc
the dtrection of vibration. -

N\

N\, "
A%gam of light from the normal source contamsllz:;g; :;fcr-
ber of waves. The direction of whose vibrations is comple

o be
ent. This is shown in Fig: 9.17(a) The beam of "ghtllﬁg :heet
pol' larized; if un polarized beam passes through a po two linearly
known as polariod. Unpolarized can be represented as in Fig: 9.17
fpela_ Jlarized beams at right angle to each other as shown

pol
- g7 @ :;ulaf
yob ¥

pcﬂzl!'lzauoI
ef

4hich has >
L It reso
fnto ¢
9. ltabs
other
The plane

through a toun
placed paralle]
a5 alsg tran
"l 15 rotate
it elect




a) unpolarized ordinary light. (b) plane polarized light e rotan

yendicular to paper. 5 .. 0 Fola
A

Polariz tion depends on a parallel arra ent of

whi has two effects on the light. & e

1. It resolves the direction of the Qg{ation of the light wm
in to only two directions m%ﬁ&ﬂy at right angles.

2. It absorbs one of these cog'rfponents and transmit the
other as in Fig: 9.18.,

The plane polarized: "Ifgiit can be obtained by passing light
ough a tourmaline crystal When two tourmaline crystals are

ed parallel to ech other the light transmitted by the first crys- -

i{s also tran ed by the second crystal. When the secon

through 90 degrees, no light gets through. The

' is due to sclective absorp® n by tourmaline of aﬁ.

ﬁ v!brating in one particular plane, the second crystal is
ana.!y_scr and the first crystal is known as polarize

"":‘-‘thad of polarizing the llght discussed above Is.
selectlve absorptlon. However. Hsht:




The determination of the concentlégm of optically
tive substance such as sugar. s

In photography it is often déirable to enhance the of.
fect of sky and clouds. S}nce light from the blue sky is
partially polarized by §c‘attcﬂng a suitable orientated po-
larizing disc Infrorg\of the camera lens will serve as a

sky filter. <</\’
\5%
TONS 0& _
| sh. %tween diffraction and interference. ( thm
sn without interference, and Interferenee hout

, and explain the interference effect produced by tht
i e red colour at certaln posmm' .




cus ‘ﬂge statement that a dlﬁracuon gra'
: called an imerference grating?

too l-arge or
- too small to form a diffracted b

at do you mean by plane %ed light? How ':
nomena decide that light wagiés are transverse? |

‘Why Maxwells discovery m\@ light was an electr
wa ,.-,e is so important? :

S o
Py

ch of the f°“°“",§§\}an occur in (a) transverse and
(o) langltudinal{}@veso




o ﬂpm,ﬂ S sl
! th order image possible? o R

Ans. (a)189° (b)lmpogegy..

Li _
grg;:lt of a wavelength 6x107 m falls normally on a diffea
| ng with 400 lines per mm. At what angle to the |

are the 1st, 2nd, and 3rd order spectra produced?.” -
Ans. IS.Q&, 46.1°)

6. If a diffraction grating produced a 1st Q&r spectrum of

light of wavelength 6 x 10”7 m at an angle of 20° from the
normal. What is its spacing and a;@%lculatc the numbér_ of

¥ lines per mm? o Sl

(Ans: 1.75%10*mm, 5.7 x 102 lines / mm)

7 Newton's rings are fo;-vri;iwéci between a lens and a flat glass
surface of wavelength 5.88x107 m. If the right passes |

; through the gap Q\EBOO to the vertical and the fifth dark ring
is of diameter 91 im. What is the radius of the curvature of the

R lens? 0’\
= & : (Ans. 23.8m)

OW | apart are the diffracting planes in a NaCl crystal for |
hich X-rays of wavelength 1.54A° make a glancing w&‘“‘ |

... 54 in the 1st order? e

~ Pg: o,

Allel beam of X-rays is diffracted by rocksalt st €
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Geometrical Optjcg

L

10.1 LENSES

A lens is a piece of transparent material that can focus a
transmitted beam of light. This is usually bounded by two spheri-
cal surfaces, or a spherical and a plane surface. For our conven-
jence, we will deal with thin lenses in this chapter. Basieally lenses
fall into two categories, converging or convex lenses; and diverging
or concave lenses.

Fig: 10.1(a) Double convex lens (b) Plano- convex(c) concavo- convex

(d) Double:concave (e) convexo- concave (f) Plano- concave

A convex lens is thicker in the middle and thiner at the edgt;
es, Ebnverges light rays towards its optical axis, (the line througc y
its centre of curvature), so that a beam of par allel rays Com;:vgex
at a point F (Fig: 10.2 ). For example In bright sun llgh:. a :per. "
lens may produce a spot of light intense enough o 1gnl:t l:he edg-
concave lens which Is thiner in the middle and thicker
€s bends rays outward from its optical axis Flg. iy
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d xw/

/‘\\
“Ihe point F to which the«tays are brought to focus is called

pal focus or the f c@point. and the distance between the




Mr.amnqmneraysh meq{am:ulms ?\.
: "th 10.4 (location of the rays in ca@\g‘ ofa X len
dlagram. Three rays are drawn @l the Up of the o
(i) The ray 1 leaving the ti é@%e object parallel t
£X ,

is refracted by the len that it passes throug
- cipal focus F on thmfher side of the lens.

(i) Theray2 pass@g through the principal fom?*
from the l@s/parallel to the axis.

(ﬂl) The Opassing through the optlcal ccntm:el
B B re; unchanged in the direction. e

Tr 5(1 ation of the image when an object is "

' 1€ case when the object is placed  '
1d the lens as shown in Fig. 10.6. Cor

f.. ._,_. - "Eal
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‘As shown in ﬁl@ﬁgurc the right angled triangles OPX and
' (.lQe fore we can write







g

{BINATION OF THIN LENSES

08! of the optical instruments two or more
ination. The location, size and nature ofthe
:jamnnlned by using the lens formula or ray ¢
case, we locate first the image formed by th .’ '
at image as the object for the second lens, the f image
by the second lens can be located. If th r?‘aremorethan
p lenses, this process is continued: the object for each lens is the
sage for the preceding lens Fig 10.10 .

acts as a real object for the Lens L, whlch mnr '
Natloe that I, is inverted with respect to I, and erect

=




| t 0 be placed at a distance p rp@« &
ls formed by it at a distanc ?

| ~2\
f, is the focal length of le&@?

nage now serves as ual object for the second lens
| j; . If we negl e small separation betwet
distance of this virtual object from lens L_will




th IS gven by the above rel?bUQ'}L
':'Iu- > Eq. 10.13 shows t for a pair of lenses in contact th

£

of the reclprocals { their individual focal lengths is equ:
ciproca ol'the-é@l length of the combination. =

&
} POWER OF LENSES

I,_%nses with focal lengths fn and _f2 3 pm L oBE

r of the combinatior.

fires mMmaln eTee .
WO 11l L
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' Spherica)

o

K . 1 abel'rat.lol'] is due to the fact ¢ t.he y

through the lens).

_“.'__._

_.-._
—P— ' N
.

——
—
h—-_—’_

Fig: 10.13 (Spherical aberration)

The fact that different wavelengths of light refracted by lens
focus at different points give rise to chromatic aberration.

<= ]

From the lower diagram we see that the focal length of violet
light is less than that of red light. Other wave lengths (not shown
in figure) would have different focal points. This defect is called
chromatic aberration. This aberration can be reduced to a greater

< ey
n.,‘%.‘-— agehlnvcr
| :’\j ncslgns-th tedq
\«%‘* 0 the
Ke Q
P
- B

Fig 10.14 chromatic aberration

m‘“‘t by the combination of convex and concave lenses made fro™
the different type of glass. -

o T ia28






~of the object from
:-; :_t_:msequenﬁy It will appea,
Is of a small object, we bﬂng it ag gl
e, thus increasing the visual angle ang .
on the retina of the eye. But we kngy, yy. "¢
t see clearly an object if it is closer lhan

o] . Na

e of distinct vision, d i.€.'25 cm. A convex lens helps us
tails of an object by bringing it closer than 25em.  § % L o
wex lens is knom<§s.‘magnlfy1ng glass, or simply a mag trough the |

 calculate the magnifying power or angular magnification
L ng gla ich is defined as the ratio of visual angle § {3 "

he image seen through a magnifying glass to the vis- |

d by the object when placed at the least distance § & a3 o

 when see through naked eye. '

" a small object OP which s placed at a distanceP g

gth of a magnifying glass ‘L' such that its erectt |

ed tmage IQ 1s produced ut the least distanced | =
wn In Fig. 10.17(b). The magnifying PO



) 2 9=

Where o is the visual angle su ded by the obje:
east distance of distinct vis n. when seen thr
and B is the visual anglésubtended by the lma@

the magnifying glaS%

/\
il

- <_since o is small




€ 4cm high is locategy cm, from the conve;
ength is 20 cm. @Et is the nature size and I

<>_

"% _.
\SQ" e

tween the focal point and the lens. The in




ACAAA

he mm::ationlsglvcnby
' 20
gase = 15 ° 2
- .q
.-.M'% P
ey =y = 3x4=8cm

The magnification is 2 In this case, with final size o
value of image siz R
cm. THE gepas o £ NG that the Image is ereet.

How far from a convex lens whose focal length'1s + 20 em

aust 2 specimen of a Red Admiral butterfly be placed if its image
105 s to be a real one, three times as large as the object?

Solution:- ‘

. Although we neither know the distance of object nor
“AVerging that of the image.we can relate p and q from the magnification
adlo | formula.Since the real image Is inverted,

ie y =3y, the magnification is given

-..-...y_‘ = ﬂ:-a
e L = g
B 2\
Henceld&\%- arq = +3p

Q
T!‘é‘w sign is necessary since the image is to be real and

“‘3@3 inverted. Now using the lens equation
Ve i ;
"'!" + : = ..!'...
P 3 20

he imagt

L
p

or




_.cmr g
. 10 cm from the lens.

%
&
QO

ed at a distance of 60 ¢m from a concave




ar _jltamP Where s the image of this stam?;
he magnification of the lens? Qﬁ(
| >4

~ Solution:-
Given f = -16cm

o
D
q = ? QQ“
Using lens equaU@




Juth m Im
ol' the objecl Just placed beyond its fo-
-d as a magnifying glass to see the
iae The final image seen by the eye |
virtual and very much magnified. Fig; 10,1
f rays through the microscope. @‘?"

to -ﬂé‘ﬁ\re'an expression for the m ng power of
der a small object OP place /at the distance p




e Q g’
| .,---jm oF *Tg

d— The magnifying power of objective L is given by
' 19 _ g

Rt

M= 55 Y (" AOPX, andAIQx.ers ar)
‘The magnifying power of eye-plece is glw@ﬁby
| | M|.= -!—9: (. AIQX2 and AI'Q Xg‘are similar)

The Eq. IO.20canaJsobewrl-tténas
M= M X M 10.21

| .As the eye-piece acts\here as a magnifying glass, hence its
ni \be written as




an ,.abje-cu\re‘ of 10.0mm focal lengih and N
-al length. What Is the distance betweeq the
magnification if the object Is in S@Tocus

jes 1.e. plant
tive. L' of |
length f;. Fi
cal telescopt

In ord
the astrong
verted ang

"'Ji Ir‘ ‘J' ‘|NJ:LA.I"L :-.l"

I
2 »...

£ ::‘._.1. “';.-" 1, |F.|_ - 1



tani object formed by a telescope is smaller than th

use it is much nearer to the eye and has o
e, the object looks larger when viewed thr (2) _ lhe teleScope

Astronomical Telescope (;9((/((/

An astronomical telescope d:ﬁccded to see the heavenly bod- E
les i.e. planets and stars. It conststs of two convex lenses an ebjo;em *
- tive. L, of long focal lengﬂfq\;ﬁ ‘and an eye plece L, of short focal
length j; Fig 10.19 show{s\ﬁ\c path of rays through an astronomi-
~ cal telescope. y -y -
O

- In order «Qgérlve an expression for the magnifying p l;'
astrow telescope consider a distant object whose real. in-.

infshed image 1Q is formed by the objective L, at at its




_ ‘between objcctlve and eye plecc is
scope, which is given as




escope is ad_lusted for minimum e rain. C
u \\;b
- Solution:- | &O
ﬂur first step is to detern&i@ the focal lengths of both ) 2 :

ng s magnification of the telescope.

or the objective we are g@ a power in dioptres

A
O
<>
J i w metres]
— powcr (in dioptres)




‘
ft
the o@
at
Lz is formed
‘ the 5

3\ / qi’\
é“‘“{\é\‘\




19
n ‘.Q’ﬁ = e
=X

. =19
QI'“ T

1 »‘

in in right an@@blgxz we have




ﬁ» um:mmlw purp ? T
like mooN and stars, their (..
estrial objects are to be vieweq, it io
final image. The erection can be
ng a third lens between the objective ang .
The arrangement is shown schcmatlcany in

%3

": “““\ . pv"'“"“"’.:

S~ R 5

e ine end e

- Q'ﬁ;h Eye piece o ot L
e l\, £ \l‘~ S X)) ) It Is & clrct
Eyering uk Ihd: :gh”: iy
ge the magnifying power which -k
Bnomical telescope. ‘ - Therearea
m table, A ven
aent which 1s used to study the spectrum of Palavurgey |
ual‘pansol'tl'us instrument are {a) col- e, *

2nd order :
1st order



llll!ll mm, nd.
wammbeoquﬁumw.

end ' ) that the collimator produces a Ma beam o
e collimator 15 fixed t0 the base of the instriment while tugy 1.
ble and telescope can rotate aboutacomona:ds .l

‘(b) Telescope
b -

The telescope is simple astronomical telescope whict
- for making measurements, or for examining the spet '
 Justment for focussing the telescope is made with t}

- S,. The telescope can be rotated about an a.:g

w - Turn Table

It Is a circular metallic plate which can rotated about an

axis. Its height is also adjustable and this can be levelled by means
. of three screws LM and N. -

3

There are arrangements for fine motion of the telescope and
tumn table. A vernier scale is provided to measure the angle with
- great accuracy, Le mdcgrccs and minutes.

)

£ {3 fbcussed for parallel rays or for mnnny Forthtsll
n a distant object.
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' oty
~e emits only a few definite wave lengths, the tmages 6‘,,0:‘ “ﬂ’m p

separated from one another and appear as a Serleg Of th ’ o yst‘
dall . of byy t p

Such a spectrum is called a line spectrum. A thirq type .

g a fcﬂ
 emission spectrum 1s called bandspectrum which shows by, P fel.lf; chlﬂ “
~ itead of lines. These bands are found to emit of closely Spaceg 0 ‘gm’ﬂﬂ
i, nms arranged in an orderly manner. The line spectrum of Mercyry ,cll“’ A]tho uf
- ht is shown in Fig.10.23. |
g 4 3 | gre »
i e R { .
3 g o = e abnorm
< 3 - S Q crﬂvl Conl
g e of
I 40 Im36
0 14
| | the ab° g
£.000 A® 5,000 A° 6,000 A° 7,000 A° farslghlcd‘ﬂ
wn in
Fig: 10.23 Spectrum of mercury light Szgscd in [r
C
wn as
10.14 THE EYE i
corrected W
The eye is very important optical system which has much
common with the camera. Like the camera the eye gathers light
and produces a sharp image.
Fig.10.25 shows the'essential parts of the eye. The front of
the eye is covered by a transparent membrane called the cornea.
This is followed by a clear liquid region, a variable aperture (iris
and pupil) and ﬂ;e crystalline lens. Most of the refraction occurs in
the cornea, §~m\ée the liquid medium surrounding the lens has an
average in@;ﬁ of refraction close that of the lens. The iris is a mus-
cular ragm that controls the size of the pupil. It regulates the Ry
' 10,25
Lens Caliary muscle :&M (s
Oty ang o
._ Vitreous Th:qfch.
. cavity a cﬁ\du
\ M‘,&g‘
\§ Blind J
Nz optnee e
Retina l 0




cont; ! 18 | . :"'»-'n. : - m ‘_‘.. ,'*'.:; ¥ I. ‘_::
ructures called rods and cones. Optical tmage recetyan 1.
- e \l ‘l

i}

1 -
e

1P ir

- Although the eye Is one of the most remarkable creatign 1
nature, it often does not function perfectly. The eye may haye

eral abnormalities, which can some (mes be corrected b m
glasses, contact lenses, or surgery. When the relaxed eye produces
.' ‘an image of a distant objected behind the retina, F1g10.25(a)
' ﬁc abnormality is known as myopia and the
- farsighted. This condition Is corrected with
~ shown In Fig. 10.25 (b). When an lmagcdg;ﬁ distant object is fo-
.26 (

' a) the abnormality s

1
-
k4

cussed In front of the retina, as in Fig. 14
known as hyperopia or short sightedniess. This condition can be
corrected with a diverging lens as ln‘*l}‘lg} 10.26(a), (b).

.ffa)\ |

\Q"’\/

4

(b)

: 10.26 ). (o) Amyopic eye near ‘
us Jorms tn frond of the retina. & ‘E;‘! P
"idition can be corrected with  conulition can be corrected wi ﬂ' |
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vex ﬁi’eﬁs of small focal length‘j'-?', Wi
ass? P

. worklng and magnlfylngpbwu&.
-'l—'n“l'croScope

he magnifying power of a (i) telescope m
ected by Increasing the focal lengl.?(g eir objec-

&

is the difference between astro miical and terrestrial

: stn c&oﬁ)and calculate the magnlfymg power

seofa mc-lmmeleﬂExplaln its construction and




lcnldfocdlmgﬂl§0aub
!emofl‘omllmm-lcm.m!im;
lemulfpamne!rmenteﬂnglhe
md!mupamuelms?

A parallel light beam s diverged by a co
length- 12.5 cm and then made parallel on
vex lens of focal length 50 em. How far themlemu

e ot ?12\ (Ans. 37.5¢em)
8. Two lenses are In contlact,a convcrgQ(g one of focal length 30 em

and a diverging one of focal lengl}i/ -10 cm. What is the focal
length and power of the combination?

(Ans. 15 cm, -6.7 diopters)

Moon light passes through a converging lens of focal length
19 cm, which is 20.5 cm from a second converging lens of fo-
cal length 2 cm, Where {8 the Image of the moon produced by

the lens w@mauon?

(An?< 5cmfrom the 1st lens, 6cmfromthcsewxdm.

the distance at which an object should be placed in
?(mm of a convex lens of focal length 10 c¢m to obtain an §
)~ Bge of double its size?

' 3 . 15 em for producing a real tmage, 5 cm for producing virtus
ULy |

1 Tl




mm focal length. If the image seen by Q

om the eye plece, what is angular magnig. \z‘?‘

(Af%\&?e)

e .pc has an objective with sz%al length

. i3 produced
e eye plece when the object'ls 12 mm from
What s the angular magni{ication?

£

ol (Ans. 31)
: ®
ens of 4 dioptres is combined with a diverging
es. :Findéa power and focal length of the

¢

lhe lens 60 cm towards the ob-
ed on I..the.- screen. What is the fo-

. _ _—.' s [Ansg Ilam -

s v







