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Preface

This book is intended to cover the NEAB, London, and AEB A-level syllabuses in
Physics, It will also be found o cover the bulk of all the other syllabuses for A-level
Physics, including those used overseas., Students following BTEC MNational
courses involving Physics should alse find the book wseful, as should those
university students who are studying Physics as a subsidiary subject. 51 units are
used throughout.

The aim has been to produce a book which 1s not so long that students are unlikely
to read it. On the other hand, the book is not a set of "revision notes’ and it has been
my intention o explain every topic thoroughly. 1t is hoped that the explanations
are such that all students wall understand them; at the same time, the content 18
intended to be such that the book will provide a proper basis tor those students who
are going on to study Physics at degree level.

The book has been arranged in seven main sections (& to G). Though there is no
need o read the sections in the order in which thev are presented, on the whole itis
advisable to keep to the chapter sequence within any one section,

Pracrcal derails are given of those experiments which students are required o
describe at length in examinations. The book contains many worked examples.

Chapters 9, 11 and 55 were extended for the second edition of the book; a chapter
on thermodynamics was added at the same tme, Secoons on pressure, density,
Archimedes’ principle, reflection at plane surfaces, defects of vision, magnetc
domains, U-values and impulse were added for the third edition. The treatments
of various other topics were also revised and the number of expenmental
investiganons was increased.

Since the advent of the GCSE examinabon and double science, students starting
A-level courses tend to have less knowledge of Physics than they did previously. In
the light of this, | have needed to make further additions to the book.

The number of worked examples has been greatly increased. Many of these are
easier than was previously considered necessary, Questions have been added atc
relevant points in the text so that students can obtain an immediate test of their
understanding of a topic. *Consolidation’ sectons have been added at the ends of
selected Chapters. These are designed to stress key points and, in some cases, 1o
present an overview of a opic in a manner which would not be possible in the main
rext. Definitions and fundamental points are now highlighted - either by the use of
screcning or bold oype.

At the end of each of the seven sections of the book there are questions, most of

which are taken from past A-level papers, Over two hundred of these have been
added for the fourth edition of the book.

A new edition gives me the opportunity to thank all those people who have
suggested ways in which the book might be improved. [ am particularly grateful to
Jeni Dravies for undertaking the laborious task of assisting with proof-reading, and
for the mmvaluable suggestions she has made throughout the preparaton of this
edition.



Finally, I express my gratitude to the following examinations boards for
Permission to use questions from thelr past examination papers:

Associated Examining Board [AEB]

University of Cambridge Local Examinations Syndicate [C], reproduced by
permission of University of Cambndge Local Examinations Syndicate

Cambridge Local Examinations Syndicate, Overseas Examinatons [C{0]]

Morthern Ireland Examinations Board [1]

Morthern Examinations and Assessment Board (formerly the Joint Matriculation
Board) []]

Oxford and Cambrdge Schools Examinatons Board [O & C]

University of Oxford Delegacy of Local Examinations [0

Southem Universities’ Joint Board [S]

University of London Examinadons and Assessment Council (formerly the
Umniversity of London School Examinations Board) [L]

Welsh Joint Education Committee [W].

Where only part of the original question has been used, this is indicated by an
asterisk in the acknowledgement to the board concerned thus [L*].

R MUMCASTER
Helmshore



SECTION A
MECHANICS



1
VECTORS

1.1 VECTORS AND SCALARS

Yector quantities have both magnitude and direction; scalar quantities
have magnitude only.

Examples of each rype of quanticy are given in Table 1.1.

Table 1.1
Examples of vectors and
scalars

Scalars Veclors
Dristance Drsplacement
Speed | Vebocity
Mass | Force (weight)
Energy (work) Acceleration
Yolume Momentum
Charge Torgue

Vectors can be represented by a line drawn in a particular direction. The length of
the line represents the magnitude of the vector; the direction of the line represents
the direction of the vector. In print, vector quantities are indicated by using bold
type (e.g. F) or by using an arrow (e.g. ). The same symbol without the use of
either bold ype or an arrow (e.g. F) represents the magnitude of the vecror,

Two vector quantities are equal only if they have the same magnitude and
dirccoon.

1.2 DISPLACEMENT

The displacement of a body may be defined as being the length and
direction of the imaginary line joining it to some reference point,

Displacement is therefore a vector; the magnitude of the displacement is equal to
the distance from the reference point.

Suppose a body moves from O 1o Y along the path OXY (Fig. 1.1). When the body
15 at Y its displacement from O 15 the vector, OY. The magnitude of the
displacement 15 simply the length of OY, Thig is quite clearly less than the path
length OXY, illustrating that the magnitude of the displacement of a body 15 not
necessarily equal o the distance the body has actually moved.

Z



VECTORS

Fig. 1.1

To illustrate the
difference between
digplacement and
distance

1.3 SOME DEFINITIONS

Velocity is the rate of change of displacement, i.e. the rate of change of
distance in a given direction.

Speed is the rate of change of distance.
Momentum i the product of mass and velocity.
Acceleration is the rate of change of velociny.

Velocity, momentum and acceleration are vectors

MNote A body moving along a circular path may have constant speed burt, because its

direction is changing, it cannot have a constant velocity. It follows that if a body is
moving around a circle, even if it has constant speed, it 15 being accelerated
because its velocity is changing.

1.4 RELATIONSHIP BETWEEN SPEED AND VELOCITY

If a body moves along a straight line (without ever reversing its direction of
maotion), the distance it moves is equal to the magnitude of its displacement from

the starting point. It follows, therefore, that since

Distance moved

Speed = Time taken

and

Magnitude of displacement

Magni of velocity =
bl Time taken

then
Speed = Magmitude of velocity

It should be noted that this relatonship is not necessanly true if the motion 1s not
along a straight line, for then the magnitude of the displacement is less than the
distance moved. The relatnonship does hold, though, if the time interval under
consideration 15 infinitesimally short, for then the path length will also be
infinitesimally short and therefore can be considered linear. Thus, for all types of
mon

'mm = Magnitude of instantaneous velocity
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Fig. 1.5
The parallelogram rule

Thus, in Fig. 1.5,

OA + OB = OC

Subtraction

This can be achieved by adding a vector of the same magnitude as that being
subtracted but which acts in the opposite direction. For example

0A -0OB = OA = BO
0A - OB
ie. OA-O0B

BC + BO
BA

EXAMPLE 1.1

A force of 3 N acts ar 90 to a force of 4 W, Find the magnitude and direction of
their resultant, R.

Solution

Fig. 1.6
Chagram for Example 1.1

Eefer o Fig. 1.6. By Pythagoras
R = 344 = 25 C R

A

Al

tan # = 3 S = tant (3] = 37

The resultant is therefore a force of 5N acting at 37" to the 4 W force and at 537 o
the 3 M force.



& SECTION A: MECHANICS
EXAMPLE 1.2 S5GE GO NEREREE TSR T Ty i T NS ey

A force of 3M acts at 607 to a force of 5 M. Find the magnitude and direction of
their resultant, R,
Solution

Fig. 1.7
Diagram for Example 1.2

5N B

Refer o Fig. 1.7. Applving the cosine rule (Appendix 3.7 to A ABC gives

B =5 +3 -253cos 120°

Applving the sine rule (Appendix 3.7) o A ABC gives

R 3
Your calculator will give sin 120°  sn#
you sin~ ' 0.3712 as 21.8°
but in general . . 3sin 120° 3 sin 120°
sin o = sin (180° — a) S sinfl = & = - = 0.3712
and therefore 1582 is
also a possibility, # = sin~' 0.3712 = 21.8% or 180° = 21.8° = 158.2°

Itis obvious from the dingram that 0 must be acure and therefore the required value

i5 21.8°, The resultant is therefore a force of 7 W acting at 21,87 to the 5 N force and
at 38.27 to the 3N force.

EXAMPLE 1.3 T2 RN T 5 R 2R -

A particle which is moving due east at 4 m <" changes direction and starts o
move due south at 3 m s ', Find the change in velocity.

Solution

The change in velocity is the ‘new” velocity minus the ‘old" velocity, just as a change
in remperature, for example, would be the “new’ temperature minus the ‘old’
temperature. Therefore

Change in velocity = 3ms ' (S)—4ms ' (E)
=3ms ' (5)+4ms ' (W)
The change in velocity is therefore the vector R of Fig. 1.8,



VECTORS

Fig. 1.8
Diagram for Example 1.3

R =3+& =

= 3
mnt = g

.2, Change in velocity = 3m s at 377 5 of W,

Alternatively, we can say that the velocity has increased by Sms ! in the direction

37 S of W

Mote The parallelogram rule can also be used to obtain the resultant of more than two
vectors. For example, suppose that the resultant of three vectors is required. The
procedure is to use the rule to find the resultant of any rwo of them, and then to use
it again to add this to the remaining vector.

QUESTIONS 1A

1.

Find the magnitude and direction of the
resultant of each of the following pairs of forces.,
(a) TN at 90" to 24 N,

(b) 20N at 607 to 30N,

{c) 40N at 1107 to 50N,

{d) 60N at 150" to 20N,

Find the resultant of a displacement of 30 m due
cast followed by a displacement of 70m due
sovath.

3. Find: (a) the increase in speed, (b) the increase

in velocity when a body moving south
20m s changes direction and moves north at
ms ',

Find the magnitude and direction of the
increase im velooity when a body which has
been moving due 5 at 6.0ms ' changes
direction and moves NW ar 8.0ms™',

1.6 COMPONENTS OF VECTORS

Fig. 1.9
Components of a vector

It follows from the parallelogram rule that any vector can be treated as if it is the
sum of a paie of vectors. There is an infinite pumber of these pairs and three are
shown in Fig. 1.9, A perpendicular pair such as P and 0 15 the most useful.

- F+e0
"= F+Q
=8 +0
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Consider a vector, F, resolved into two perpendicular vectors of magnitudes AB
and AD (Fig. 1.10). From simple tigonometry, AB = F cos f and AD = Fsin @,
and therefore F can be resolved into two perpendicular vectors (called the
perpendicular components of F) of magnitudes Fsin (fand Feos @ (Fig. 1.11].

Fig. 1.10

Resolving a vector into
two perpandcular
COMmpanents

Fig. 1.11 Fain® F
The perpendicular
components of a vector

h Foas &
EXAMPLE 1.4 A SRR PP N
Calculare the horizontal and vertical components of a force of 50 N which is actng
at 40° to the horzontal.
Solution
Fig. 1.12
Diagrarm for Example 1.4
Refer to Fig. 1.12.

Horizontal component = 30 cos 40° = 38N
Vertical component = 50 sin 40° = 32N

EXAMPLE 1.5

A body of weight 100 M rests on a plane which is inclined at 307 to the horzontal.
Calculate the components of the weight parallel and perpendicular to the plane.
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Solution

Fig. 1.13
Diagram for Example 1.5

Befer vo Fig. 1.13.

Component parallel o plane = 100 sin 307 = 530.0 N
Component perpendicular to plane = 100 cos 30" = B6.6N

EXAMPLE 1.6

Find the resultant of the system of forces shown in Fig. 1,14,

Fig. 1.14 M 400N
Diagram for Example 1.6
B0.0N
T
—————— = >
W BO.OM
00N
Solution
Total upward force = 40,0+ 60.0 cos T0" — 30,0 5in 30" = 35.532 N
Total force to right = 80.0 — 60.0 5in 70" — 50.0 cos 30" = — 1968 N

The minus sign implies that the hornzontal force is to the left. The resultant, K, 15 as
shown in Fig. 1.15.

Fg.t2% K==
Diagram for Example 1.6

M8 I N

19.68N



Il

R* = 3552° +19.68°

and 35.52
T 19.68

SECTION A MECHANICS

R = 406N

# = 61.0°

The resultant is therefore a force of 40.6 N acting at 61.0° to the horzontal.

QUESTIONS 1B

1. Find the horizontal and vertical components of;
(a) a force of 30.0N acting at 307 to the
horizontal, (b) a velocity of 50.0ms™" at 60"
to the horizontal,

2. A parucle at weight 200N rests on a plane
inclined at 30° o the horizontal, What are the
components of the weight: (a) parallel,
(b} perpendicular to the plane?

CONSOLIDATION

Find the resultant of the system of forces shown
below.

G0.0M

+

0 30.0N

2.0M

Yectors have both magnitude and direction; sealars have magnitude only,

Displacement and velocity are vectors; distance and speed are scalars.

Distance from reference point = magnitude of displacement.

Instantaneons speed = magnitude of instantaneous velocity
YVecrors can be added and subtracted by using the parallelogram rale,

Components of Vectors

r 3

Faim &

>

Feos d LifE componant
adjacent bo @
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MOTION

2.1 NEWTON’'S LAWS OF MOTION

In 1687 Sir Isaac Mewton published his Phiosophiae Natwralis Principia
Marhemarica (The Mathemarical Principles of Narural Seienee), in which he stared

the three laws on which the science of mechanics 1s based.

MNewton’s First Law

Every body continues in its state of rest or of uniform {unaccelerated)
motion in a straight line unless acred on by some external force.

This law expresses the concept ofinertia, The inertia of a body can be described as
being its reluctance to start moving, or to stop moving once it has started.

Events often scem to contradict the first law, for it is our natural expericnce that
there are many familiar examples of moton in which moving objects come to rest
when (apparently) left 1w their own devices. Closer examination of the
circumstances, however, reveals that in every case there is some sort of retarding
force acting. Such forces are often due to friction between solid surfaces or to air
resistance,

A body of large mass requires a large force to change its speed or its direction by a
noticeable amount, 1.¢. the body has a large inertia. Thus, the mass of abodyisa
measure of its inertia,

MNewton’'s Second Law

The rate of change of momentum of a body 1s directly proportional to the
external force acting on the body and takes place in the direction of the force.

In mathematical terms the second law may be written as
Fx i[r:n.l-u:-

where F = the applied force. and

% [my)] = the rate of change of momenoum

Introducing a constant of proportionality, k&, this becomes

F = k%[ml‘]
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The 51 unit of force (the newton) is defined in such away that & = 1 provided that
the rate of change of momentum is also expressed in the relevant Sl unit (kgms ),
in which case
d
F== [2.1]
a ")

If the mass 18 constant, equation [2.1] becomes

du
F=m—
"
ie. Fo=ma [2.2]

where a = the acceleration that results from the application of the force.

Equatons [2.1] and [2.2] are the forms in which Mewton's second law 1s normally
used, but it should be remembered thar they are valid only if a consistent set of
units is used, and that equation [2.2] applies only in the case of a constant mass,

Equation [2.2] is used to define the newton. Thus:

The newton (W) is that force which produces an acceleration of 1ms ?
when it acts on a mass of 1 kg

The expenmental investigation of F = ma is dealt with in section 2.15.

Newton’'s Third Law

If a body A exerts a force on a body B, then B exerts an equal and oppositely
directed force on A.

Thas law 15 often misinterpreted as meaning that the two forces cancel each other
out because they are of equal strength and act in opposite directions. There is, in
fact, no possibility of this, because the two forces each act on different bodies.

Thus, if a man pushes on a large stationary crate, the crate pushes back on the man
with a force of exactly the same size. Whether or not the crate starts to move, has
nothing to do with the force thar it exerts on the man. In accordance with Newton's
second law, the crate will start to move if the force exerted by the man is greater
than any forces which are acting on the crate in such a way as 1o resist its motion
(e.g. friction between the crate and the ground).

The third law implies that forces always occur in pairs - some examples are given
below.,

{1)  The Earth exerts a gravitational force of antraction on the Moon; the Moon
exerts a force of the same size on the Earth.

{ii) A rocket moves forward as a result of the push exerted on it by the exhaust
gases which the rocket has pushed out.

(iii) 'When a man jumps off the ground it is because he has pushed down on the
Earth and the Earth, in accordance with Mewton's third law, has pushed up
on him. It should not be overlooked that the other result of this is thar the
Earth moves down.
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(i) Ifacaris accelerating forward, itis because its ryres are pushing backward on
the road and the road is pushing forward on the tvres, Note thar if the car is
moving forward and slowing down, the tyres push forward and the road
pushes backward.

2.2 MASS AND WEIGHT

The weight of a body is the force acting on its mass doe to the gravitanonal
arrraction of the Earth.*

In accordance with Mewton's second law, a body acquires an acceleration
whenever there is a net force acting on it. The acceleration that results from the
effect of gravity (1.e. that results from its weight) is known as the acceleration due to
gravity, . By equation [2.2], the weight of a body of mass m 15 given by

Weight = mg (2.3]

The force exerted by gravity is such that, at any given point in a gravitational field
(and therefore at any given point on the Earth’s surface), the acceleration due to
gravity is the same for all bodies, no matter what their masses (see Chapter 8).

It follows that two bodies dropped from the same point above the surface of the
Earth reach the ground at the same time even if their masses are different. (Mote
that this statement ignores the effect of air resistance; when the viscous drag of the
air is significant, for example if one of the bodies is a feather or is falling by
parachute, it is not even approximately true.) The acceleration due to gravity vanes
slightly from place to place on the Earth’s surface, burt it is normally sufficiently
accurate to use a value of 9.8 ms? everywhere. Thus, from equation [2.3] the
weight (in newrons) of a body which has a mass m (in kg) 15 given by

Weight = m x 9.8

Another unir, the kilogram force (kgi), is often used as a measure of weight. Itis
defined such that a mass of 1 kg has a weight of 1 kgf. This is not an 51 unit and
must not be used in any equation where it is not possible to use it on both sides of

the equation. Ifin doubt, it is best to convert kilograms force 1o newtons by making
use of

lkgf = 98N

Summary of Differences between Mass and Weight

(i)  The massof a bodyis a measure of its resistance to acceleration (i.e. itis

& measure of the inertda of the body). The weight of a body is the force
exerted on its mass by gravity.

(i) In SI units mass is measured in kilograms, weight is measured in
newlons.

(it} The mass ofabodyis the same everywhere. The weight of a body on the
surface of the Earth has a slight dependence on where it is, and would
have considerably different values at other places in the Universe.

*The weight of a body an the Moon is the force exemed om its mass by the grasitanonal anraction of the
Moo,
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EXAMPLE 2.1

A body of mass 7.0 kg rests on the floor of a lift. Calculate the force, R, exerted on
the body by the floor when the lift: (a) has an upward acceleration of 2.0ms?,
{b) has a downward acceleration of 3.0 m =%, (c) is moving down with a constant
velocity. (Assume g = 10ms *.)

Solution

Fig. 2.1 A A A7

Diagram for Example 2.1

® 1”’“" 4D 11umr-? (@) Aeierin

v ¥ A 4
0K TOM TON
ia) 11} [1]]

fa) Refer o Fig. 2.1(a) (When using F = ma the direction of F must be the
same as that of @, The body has an upward acceleranon and therefore we
require the resultant upward force.)

By Newton's second law (equation [2.2])

~70 = T.0% 20
£ 70 o

rpraid Torce upward acceloration
R—_70 = 14 e, B = B4M

{b)  Refer o Fig. 2.1(b) (The acceleration is downward and therefore we
require the resultant downward force.)

By equation [2.2].
T-R = T7.0=x30
'\-_U_-f

darwmiwinrd forie Airiemiwand arcelenanog
T0— R = 21 e, R =49NM

{c)] Refer to Fig. 2.1{c). There 15 no acceleration and therefore, by equation
[2.2]; no resultant force, in which case

R = T0N

Motes (1) By Newton's third law, K is equal and opposite to the force exerted by the
body on the floor of the lift. It follows thart if the body were resting on a
bathroom scale rather than directly on the floor of the lift, the scale would
remster its weight as 84N, 40N and TON in situations (a), (b) and (<)
respectively. Thus the body appears heavier than it acrually is when it has an
upward acceleration and lighter when it has a downward acceleration, In case
(¢}, where it has no acceleration, it appears neither heavy nor light.

{ii) These results do not depend on the direction in which the lift is moving. For
example in (a) the lift has an upward directed acceleration and therefore may
be moving up with increasing speed or moving down with decreasing speed,
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EXAMPLE 2.2

Fig. 2.2
Diagram for Example 2.2

A body of mass 5.0 kg is pulled up a smooth plane inclined at 30 to the horizontal
by a force of 40N acting parallel to the plane. Calculate the acceleration of the
body and the force exerted on it by the plane, (Assume g = 10m s )

Solution

The diagram shows the
nccalaratnn of 1he body and
all the farces Aclang an il

G0k = G0N

Refer to Fig. 2.2. The plane is smooth and therefore the only force it exerts on the
body is the normal resction R. Let the acceleration of the body be a.

Consider the motion parallel to the plane. The weight has a component of
50 gin 30 acting parallel to the plane (downwards) and therefore by Newton's
second law (equation [2.2])

40 - 50 sin 30 50« a

e —— ;
rosuliant fimoe g aveelerutioan
the plidic up il plamse

40 - 25 = 5.0a e a F0ms*

More that the resultant force and the acceleration are in the same direction —up the
plane.

Consider the motion perpendicular to the plane. "1 he weight has a component of
50 cos 307 perpendicular to the plane and in the opposite direction 1w K, There is
no acceleration perpendicular to the plane and therefore no resultant force, in
which case

R = 50 cos 30 e B = 43N

EXAMPLE 2.3

A train is moving along a straight horizontal rack. A pendulum suspended from
the roof of one of the carriages of the wwain i inclined a4 o the vertcal, Calculare
the acceleration of the train, (Assume g = 10ms “.)

Solution

Suppose that the mass of the pendulum bob is s The forces acting on the bob are
its weight, mg, which acts vertically downwards and the tension, 7, in the string,
(Fig, 2.3.)
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Fig. 2.3
Diagram for Example 2.3

SECTION A MECHANICS

Pendulem bob of
mass /e Basng
4 soceleraind o the
right
a
-
mg

Consider the horizontal motion. The pendulum bob is at rest with respect to the
train and therefore it too has a horizontal acceleration, a (to the right). The
horizontal component of the tension 15 Tsin4” and therefore by equation [2.2]

Tsn4d = ma [2.4]

Consider the vertical motion. There is no vertical component of acceleration and
therefore

Tcoosd™ = mg [2.5]
Dividing equation [2.4] by equation [2.5] gives

und” = a'g

a = gtan 4 ie, a = 070ms*

EXAMPLE 2.4

Fig. 2.4

The horizontal forcelsk
ia) on the whole system
(bbb o A, (c) on B

Two blocks, A of mass m and B of mass 3m, are side by side and in contact with
each other. They are pushed along a smooth floor under the action of a constant
force Fapplied to A. Find: (a) the acceleration of the blocks, (b) the force exerted
on B by A.

Solution
- —
—
L.- A o _F..p A ‘—F— L’ 8
() L] =)

{a) Let the acceleration of the blocks be a. Consider the motion of the whole
svstem (Fig. 2.4(a)). By Newton's second law (equabdon [2.2])
F

4m

(b} Let the force on B due 1o A be P, By Kewton™s third law there will be an
equal and opposite force on A (Fig. 2.4(b) and (c)). Applying Newton's
second law to the motion of B gives

F = (m+ 3m)a e a =
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P =3m=xa
F
P melim

The reader should confirm that considering the motion of A gives the same result,

though a little less casily.

QUESTIONS 2ZA

1. The resultant force on a body of mass 4.0 kg is
20 M, What is the acceleration of the body?

2. A body of mass 6.0kg moves under the
influence of two oppositely directed foroes
whose magnitades are 60N and 18N, Find
the magnitude and direction of the acceleration
of the body.

3. Two forces, of magnitudes 30N and 40N and
which are perpendicular to each other, acton a
body of mass 25 kg, Find the magnitude and
direction of the acceleration of the body.

4. Isthe motion of the train in Example 2.3: (A) to
the right, (B) 1o the left, or {C) is it impossible
1o ell?

5. Abodyofmass 3.0 kg slides down a plane which
is inclined at 30° w the horizontal, Find the
acceleration of the body: (a) if the plane is
smooth, (b) if there is a frictional resistance of
9.0N.

(g=10ms2.)

6. A railway truck of mass 6.0 tonnes moves with
an acceleration of 0.050ms? down a track
which is inclined to the horizontal at an angle
where sina = 1/120. Find the resistance to
motion, assuming that it is constant,

(g =10ms? | tonne = 1.0 = 107 kg.)

7. A body hangs from a spring-balance which is
suspended from the ceilling of a lift. What 1s the
mass of the body if the balance registers a

10.

1.

reading of 70N when the lift has an upward
acceleration of 4.0 m s *?
(F=10ms )

What is the apparent weight during rake-off of
an astronaut whose actual weight 15 750 M of
the resultant upward acceleration is 5g?

A body of mass 5.0 kg is pulled along smooth
horizontal ground by means of a force of 40 M
acting at &0° above the horzontal, Find:
(a) the acceleration of the body, {b) the force
the body exerts on the ground.
{r=10ms2.)

A ratlway engine of mass 100 tonnes is
attached to a line of trucks of total mass 80
onnes. Assuming there is no resistance to
motion, find the rension in the coupling
between the engine and the leading truck
when the tain: (a) has an acceleration of
0.020ms"*, (b) is moving at constant velo-
ciry.

(1 tonne = 1.0 % 10* kg.)

A car of mass 1000 kg rows a caravan of mass
600 kg up a road which rises | m vertically for
every 20m of its length. There are constant
frictional resistances of 200N and 100N to
the modon of the car and to the moton of the
caravan respectively, The combinaton has an
acceleration of 1.2ms™? with the engine
exerting a constant droving force. Find:
{a) the driving force, (b) the rension in the
tow-bar.

(g=10ms%)

Examples 2.1 to 2.4 are concerned with Mewton's second law in the form *F = ma’

(equation [2.2]). The examples that follow use the law in the form, “Force = Rate
of change of momentum”' (equation [2.1]).
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EXAMPLE 2.5

Warter emerges at 2ms " from a hose pipe and hits a wall at right angles. The pipe
has a cross-sectional area of 0,03 m®. Calculate the force on the wall assuming that
the water does not rebound. (Density of water = 1000kgm *.)

In solving problems of this type we determine the mass of substance thar has its
momentum changed in one second. We then find the change in momentum of this
mass and so obtain the change in momentam per second, i.e. the rate of change of
MOTEn IuIT.

Solution

In one second the volume of water that hits the wall 15 that which has left the pipe in
one second, 1.e. that which was contained in a cvlinder of length 2 m and cross-
sectional area 0.03 m”, namely 2 = 0.03 = 0.06 m". The mass of water hitting the
wall in one second is therefore 0,06 = 1000 = 60 kg, When the water hits the wall
its speed changes from 2ms ' to zero, and therefore the rate of change of

momentum is 60 = 2 = 120N,

By Newton's second law, foroe = rate of change of momentum, and therefore the
force exerted by the wall = 120 M, Therefore, by Newron’s third law, the force
exerted by the water = 12004,

EXAMPLE 2.6

A helicopter of mass 1.0 x 10" kg hovers by imparting a downward velocity v to the
air displaced by s rotating blades. The area swept out by the blades is 50 m*.
Calculate the value of v, (Density of gir = 1.3kgm *, g = 10ms )

Solution

The volume of air displaced in one second = B0 v, and therefore the mass of air
displaced in one second = 1.3 = 80w = 104k 2. It follows that in one second the
momentum of the air increases by 104 ¢°, By Mewton's second law, rate of change
of momentum = force, and therefore the force exerted on the air by the
blades = 104 »*. By Newton’s third law, the upward force on the helicoprer is
also 104 . Since the helicopter is hovering, the upward force is equal to the
weight of the helicopter, and therefore

1Me? = 1.0x 10%;

i.e. v = 98ms !

EXAMPLE 2.7

Sand falls onto a conveyor belt at a constant rate of 2kgs ', The belt is moving
horizontally at 3ms . Calculate: (a) the extra force required 1o maintain the
speed of the belr, (b) the rate ar which this force is doing work, (c) the rate ar which
the kinetic energy of the sand increases,

Account for the fact that the answers to (b) and (¢} are different.
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Solution

{a) Every second 2kg of sand acquire & horzontal velocity of 3ms™, and

therefore the rate of mcrease of honzontal momentum = 2 = 3 = 6N, By
Mewton's second law, force = rate of change of momentum, and therefore
the extra force required to maintain the speed of the belt = 6N,

(b} In one second the force moves 3m, and therefore (by equaoon [3.1] or
[5.7]) the rate at which the force s working = 6 = 3 = 18W.

()  Kinemnc energy :mz'! (see section 5.3), and therefore the rate at which
the kinetic energy of the sand is increasing = § = 2 x 3* = 0W,

A Bnite time elapses before the sand acquires the speed of the belt. During this
period the belt is slipping past the sand and therefore work has to be done to
overcome friction between the sand and the bele. The rate at which work s done by
the force is equal to the rate at which it is doing work against friction plus the rate at
which it is doing work o increase the kinetc energy of the sand — hence the
difference berween (b) and (). (Note. The rate at which work s donc against
friction is equal to the rate ar which work 18 done to increase the kinetic energy of
the sand no marter what the speed of the belr and no manier what the rare ar which
sand is falling onto the belt.)

QUESTIONS 2B

1. Water is squirting horizontally at .0 m s ' from placed. Find the mass of the helicoprer.
a burst pipe at a rate of 3.0kgs™'. The water (g = 10ms *, density of air = 1.3kgm .}
strikes a vertical wall at nght angles and runs
down 1 without rebounding. Calculate the 5. TFind the force exerted on each sgquare metre of a
force the water exerts on the wall. wall which is ar right angles to a wind blowing at
2 A b F 100 bull . 2ms ' Assume thart the air does not rebound.
. maciunc gun hres UliETs pel minute (Density of air — 1.3kgm *.)
horizontally with a velocity of 300 m s". Find the : o
force '?Wd':d to prevent the gun Moving h?':k_ 6. Hailstones with an average mass of 4.0g fall
wards if the mass of each bullet 15 8.0 = 107" kg, vertically and serike a flat roof at 12ms-". In a
3. Coal is falling onto a conveyor belt at a rate of period of 5.0 minutes s1x thousand hailstones
540 tonnes every hour. The belt is moving fall on each square metre of roof :m_u.l rebound
honzontally at 2.0ms™', Find the extra force l.'Eﬂll?a:!]j":l[ 3.0ms™. 'ﬂh:u]_flm the force on the
required to maintain the speed of the belt. roof if it has an area of 30 m”.
(1 tonne = 1000 kg.) ) ,
k8 7. The speed of rotaton of the blades of the
4. The rotating blades of a hovering helicopter helicopter in question 4 1s increased so that

sweep out an arca of radius 4.0 m imparting a
downward velocity of 12ms™" o the air dis-

the air now has a downward velocioyof 13ms !,
Find the {upward} acceleration of the helicopter,

2.3 THE EQUATIONS OF MOTION FOR UNIFORM

ACCELERATION

Equanons [2.6]-[2.9] describe the mouon of bodies which are moving with

constant {uniform) acceleration.
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v = u+at [2.6]
o = 4 2as [2.9]
s = ut+laf [2.8]
s = 4lutop [2.9]

where u = the velocity when ¢t = 0,
¢ = the velocity at time f,
a = the constant acceleration,

¢ = the distance from the starting point at dme r, (this 15 not necessanly
the distance moved).

When vsing these equations it 15 necessary to bear in mind that w, v, a and s are
vectors, IE say, the positve direction is taken 1o be up, then:

(1) the velocity of a body which is moving down is negative,

(1) points below the starting point have negative values of 5,

(i)  downward directed accelerations are negative,

(i}  An acceleration produces retardatnon whenever it acts in the opposite
direction to the velocity, irrespective of whether the acceleration itself 1s

being taken to be positive or negative.

(ii) Theequations of motion can be deduced from the definitions of velocity and
acceleration and therefore do not introduce any new ideas; equation [2.8],
however, highlights the important result that when a body moves from rest
s o .

(ili) Fora body moving at constant velocity 2 = 0 and equations [2.6] and [2.7]
reduce to v = i Substituting for & in equation [2.8] (with a = 0) or in
equation [2.9] gives

= at constant velocity

Derivation of the Equations of Motion for Uniform
Acceleration

Suppose that a body is moving with constant acceleration 2 and that in a ume
interval 7 its velocity increases from w to v and its displacement increases from 0 to
5. Then, since
Acceleration = Rate of change of velocity
v—u
i

a =

e U= u+a [2.6]
The average velocity is 1 (¥ + v} and therefore, since

Diisplacement = Awerage velocity = time

¢ = Hu+op [2.9]
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Eliminating r between equations [2.6] and [2.9] leads to equation [2.7], and
eliminating v between any two of the three equations that have now been denived
leads to equation [2.8].

EXAMPLE 2.8

A ball is thrown vertically upwards with a velocity of 20m s, Caleulate:

(a)
(b}

the maximum height reached,
the total time for which the ball is in the air,

(Assume g = 10ms2,)

Solution

(a)

(b)

We shall take the upward direction to be posituve, In the notation of this
section:

u = 20ms"! (the velocity with which the ball leaves the
thrower's hand)

v = 0 (ar the maximum height)

a = —10ms™? (the minus sign is necessary because "up’ has
been taken to be positve)

5 = h (where & is the maximum height)

From equation [2.7]
0f = 208 +2(—100k
LE. k= 20m

w = 20ms"!

a = —~10ms™?

P o=t (where 15 the time the ball s in the air)
i =0 (since the ball is back on the ground)

From equation [2.8]
0 = 20¢+4(-10)¢
i.e. t = 0 or r=4s

The required solution is ¢ = 45 The other solutton, ¢ = 0, refers to the
fact that the height of the ball was also zero when it was first projected.

QUESTIONS 2C |

Take g = 10 ms~? where necessary.

1. A particle is moving in a straight line with a 2. A partcle which is moving in a straight line with
constant acceleration of 6.0 m s, Asit passes a a velocity of 13 ms™" accelerates uniformly for
point, A, its speed is 20 m s, Whar is its speed 3.0 5, increasing 15 velocity to 45ms™'. What
105 after passing A? distance does it ravel whilst acceleraring?
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3. A car starts to accelerate at a constant rate of B. A stone is fired vertically upwards from a
0.80ms*. It covers 400 m whilst accelerating catapult and lands 5.05 later. What was the
in the next 20 5. What was the speed of the car imitial velocity of the stone? For how long was
when it started 1o accelerate? the spone at a beight of 20 m or more?

4. A body of mass 3.0 kg, initually at rest, moves , . .
along a smooth horizontal surface under the 9 ‘.“‘hr.“;mrh_a]]“;'?i” ::'nat;mr:nhcgmﬂgd ““_d
effect of a horizontal force of 12N, (a) Find the t; nh":ig f:t i rrII_Ix» ]w l:nd | SAH khlgrhlﬂ
geceleration of the body. (b) Find the speed of ropped from it. How long does it take the
the body after 5.0 sandbag to reach the ground?

5. Acarmovingat '_’I-F:lrn 5 tis brnugiht torestwitha 10. A stone is thrown vertically upwards at
constant re'_Lurdner_-l of 3.6ms . How far does 10ms"! from a bridge which is 15m above a
it travel whilst coming to rest? river. (@) What is the speed of the stone as it

. e hits the river? (b) With whar speed would it hit

B. ."Litum:. is dropped from the t.-u]:r af a cliff which is the river if it were thrown downwards at
B0 m high. How long does it take to reach the 10ms-13
bottom of the cliff ? i

1. A particle 15 projected wvertically upwards at 11. A bullet of mass 8,00 = 10 *kg moving at

30 ms'. Calculare: (a) how long it takes to reach
its maximum height, (b) the two times at which
it 15 40 m above the point of projection, () the
two times at which it is moving ar 1Sms ',

2.4 MOTION UNDER GRAVITY

320ms' penetrates a target 1o a depth of
16.0mm before coming to rest. Find the
resistance offered by the targer, assuming it
to be uniform.

Fig. 2.5
To show the motion of

twve bodes projected
horizontally under gravity

A bodwy that is projecred aran angle to the vertical moves along a curved (parabolic)
path. In order to solve problems involving motion of this type, we consider the
horizontal and vertical components of the motion scparatclv. This 15 justified
because the horzontal motion has no effect on the vertical modon and vice versa.
To appreciate this, consider two bodies, A and B, projected horizonally off the
cdge of a table, and suppose that the velocity with which A is projecred is greater
than that of B (Fig. 2.5). Both A and B reach the ground at the same time even

though their velocities of projecuon were different. This i1s because, mitally,
neither body had any vertical component of veleocity {they were projecred
horizontally). The dewnward motons of both A and B are due to the effect of
gravity, and this accelerates each at the same rate (9.8 m s~%). Since they both start
from rest (in terms of the vertical motion) and travel the same vertical distance,
they reach the ground at the same tme. In the absence of air resistance, each body
retains it orginal horzonl component of velocity for the whole of its motion.
The horzontal distance travelled by A s therefore greater than that travelled by B.
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EXAMPLE 2.9
A body is projected with a velocity of 200ms ' atr an angle of 30° above the
horizontal, Calculate:
(a) the time taken to reach the maximum height,

(b} s velocity after 165,

(Assume g =~ 10ms ° and ignore air resistance.,)

Fig. 2.6 {al
Diagrams for Example 2.9

M) cos 30

i 173.2ms§

B0 me !

Solution

(a) Consider the vertical motion. In the notation of the last section:

woo=  200smn 30 Ims !

v = 0 (at the maximum height)

a = —l0ms? (muinus sign because ‘up” has been taken to be
POSITIVE )

o=t (where ! is the ime taken to reach the

maximum height)
From equation [2.6]
0 = 100+ (- 100

1.c. i = lis

(k) Considering the vertical component of the motion:

w = 100ms’
v = u,

a = —10ms *
r Ias

From equation [2.6]
v, = 100+ (-10}16
ie. v, = —60ms™!
( The minus sign indicates that the body is moving downwards.)

The horizontal component of the velocity will sull be 200 cos 30
(=173.2ms ') since, in the absence of air resistance, there is no horzontal
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component of acceleration. The actual velocity, v, , is therefore as shown
in Fig. 2.6(b), from which

v’ =60°+173.2"  ie ©v,=183ms’
Also,

tan 0 = 60/173.2 Le. 0 =19.1

2.5 PARABOLIC MOTION

A body projected with a velocity © at an angle 2 above the honzontal has a vertical
component of velocity of v sin &, Its vertical displacement, v, after time 7 15 given
by equation [2.8] as

3 = [vsin :x‘.nr—%g:'l [2.10]

At the same time, its honzontal displacement, x, due to its constant horzontal
component of velocity of v cos a, 15 given by 5 = ot as

¥ = (vcoga)r [2.11]
Eliminating r between equations [2.10] and [2.11] leads to
sec? o
¥
2pd

This is the equation of a parabola and it follows, therefore, that a body moving

under the influence of gravity travels along a parabolic path. The path of a charged
particle in a uniform electric field is also a parabola (see section 30.1).

Yy = Xxtanx - §

Points to Bear in Mind when Attempting
Questions 2D

To Find Time of Flight

Use s = mr +:E.:r’ for the vertical motion with = = 0.

Te Find Time to Maximum Height
Use v = w+ ar for the vertical motion with ©» = 0.

To Find Maximum Height

Use ©@ = w4+ 2as for the vertical motion with v = 0.

Ta Find Range
Find the ume of flight, £, then substuute forrin ¢+ = 1 for the horizontal motion,

To Find Direction of Motion

Use tan ! = w, /v, where 7 is the angle the direction of motion makes with the
horizontal, and ©, and v, are the vertical and horizonml components of velocity
respectively.
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QUESTIONS 2D

1.

A particle is projected with aspeed of 23 m s~ at
30° above the honzontal, Find: {a) the tme
taken to reach the highest point of the trajectony,
(b) the magninde and direction of the velocity
after 2.0s.

A particle is projected with a velocity of 30 m s
at an angle of 407 above a hormontal plane.
Find: {a) the ume for which the particle is in the
air, (b)Y the honzontal distance it travels,

A pebble is thrown from the top of a cliff at a
speed of 10ms' and at 307 above the
horizontal. It hits the sea below the cliff 6.0s
later. Find: (a) the height of the cliff, (b) the
distance from the base of the cliff at which the
pebble falls into the sea.

A pencil is accidentally knocked off the edge of a
thorzontal) desk top. The height of the desk is

£5

4.8 cm and the pencil hits the floor a hortzoneal
distance of 32.4 cm from the edie of the desk.
What was the speed of the pencil as it left the
desk?

A particle is projected from level ground in such
a way that its horizontal and vertical compaos-
nents of veloaty are 20ms ' and 10ms*
respectively, Find: (a) the maximum height of
the particle, (b) its horizontal distance from the
point of projection when it retums o the
ground, () the magnimude and direction of s
velocity on landing.

An aeroplane moving horzontally at 150 ms
releases a bomb ar a height of 500 m, The bomb
hits the intended target, What was the horizontal
distance of the aeroplane from the target when
the bomb was released?

2.6 GRAPHICAL REPRESENTATION OF MOTION IN A
STRAIGHT LINE

Fig. 2.7
A displacement-timea
graph

Graphs can be used to represent the motion of a body which 1s moving in a straight
line. (The motion must be in a straight line because there is no means of
representing more than two directions, e.g. forwards and backwards, on a graph.)
The method is particulary useful when the body under consideration has a non-
uniform acceleraton, for the equations of motion (section 2.3) do not apply in
such cases and even calculus methods are of no use if the acceleration varies with
time in such a way that it cannot be expressed mathematically.

Displacement—-Time Graphs

By definition, velocity i rate of change of displacement and therefore the slope of

a graph of displacement against time represents velocity. Suppose that the
displacement-time graph shown in Fig. 2.7 refers to the motion of a shunting

engine. Bearing in mind that the slope of the graph represents velocity, we can
make the following analysis of the motion of the engine:

Displacemant

4 Valooity = 0
pr———
o E

isplacement = -5 — o
Slope = 0
. Welocity = 0
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Fig. 2.8

To show that the area
undef 8 velocity-tims
graph represants
distance
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At A Statonary

A-B  Accelerating (zlope increasing)

B-C Moving with constant velocity (slope constant)

C=D Decelerating (slope decreasing)

D-E Statonary

E-F  Acceleraring and moving back towards the starting point

F-z Moving with constant velocity

At G Momentarily ar the starting point

-H Moving away from the starting point with constant velocity in the opposite
direction to the onginal direction

H-I Decelerating

Atl  Momentarily stationary

I-J Acceleraung and moving back towards the starting point

K Deceleratng

At K Swtonary at the starting point.

At the end of the period under consideration the engine is back at its starting point
and therefore has zero displacement; the distance it has ravelled, however, is
2«5| 3 25?

Velocity-Time Graphs

By definition, acceleration ig rate of change of velocity and therefore the slope of a
graph of velocity against time represents acceleration. The area under
such a graph represents distance. We shall illustrate this by referring to the
velocity-time graph in Fig. 2.8,

Iy Tomg

-
)

For a body which 1s moving with constant velocity, distance moved = velocity =
ame. It follows that if the velocity had the constant value of v during the ume
interval dr, the distance moved would be © ét. This is the area of the shaded strip,
and therefore if the velocity varied with time according to the stepped line, the votal
distance moved in the interval from 1, to 1; would be the sum of the areas of the
strips. By considering narrower and narrower strips we can make the stepped line
follow the actual curve more and more closely, In the limit of infiniresimally
narrow strips the sum of the areas of the strips is exactly equal to the area under the
curve between f; and £, Le, the area under the curve between ¢, and ¢,
represents the distance moved in the interval from ¢ 00 £;.

Suppose that a body moves in the manner represented by the velocity—time graph
in 2.%, Bearnng in mind that the slope of the graph represents acceleration, we can
make the following analysis of the motion of the body:
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Fig. 2.9
A velocity-time graph

Note

a7

elacity
[ 3

il

furen A, Time

A-B  Moves from rest with a constant acceleration

B-C Welocity sull increasing, acceleration decreasing

C-ID  Moving with constant velocity

D-E Decelerating at a constant rate. Comes to rest

E-F Stationary

F-G  Moving in the opposite direction to the orginal direction, Acceleration
constant

-H Constant velocity

H-1 Decelerating at a constant rate, Comes 1o rest,

Total distance moved = A; + A;. Met distance moved (e, magnitude of
displacement = A4, — As.

2.7 THE CONSERVATION OF LINEAR MOMENTUM

Fig. 2.10
Collision of o bodies

Suppose that two bodies, A and B, are involved in a collision (Fig. 2.10) and that
there are no external forces acting. The force on A due to B, F, , 15, by Mewton's
third law, equal (in magnitude) 1o the force on B due 1o A, Fy. Therefore, by
Mewton's second law, each body experiences the same rate of change of
momentum. Each foree obviously acts for the same length of tme as the other
(i.e, for the duration of the collision), and therefore since the only forces thar are
acting are the internal forces F, and Fy, the magnitudes of the changes of

F.F.

momentum of the two bodies will be the same. The changes in momentum,
however, are oppositely directed and therefore the 1otal change in momentum is
zero. The result can be extended to any number of bodies in any situatnon where
the bodies interact only with themaselves, i.e. where there are no external forces, It
i5 known as the principle of conservation of linear momentum and can be
stated as:

The total lingéar momentum of a system of interacting (e.g. colliding) bodies,
on which no external forces afe acting, remains. constant.

The experimental investigation of the conservation of linear momentum is dealt
with in section 2.14.
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EXAMPLE 2.10 ity s s i 1 TR e B e

A body, A, of mass 4 kg moves with avelocity of 2m s ! and collides head-on with
another body, B, of mass 3 kg moving in the opposite directionat 5 m s, After the
collision the bodies move off together with velocity v. Calculate v,

Fig. 2.11 Zms’’ 5ma "
Diagram for Example

210 P *_
' = O

Bags = dkg Mass = kg

¥

—

Adtar
oollision

Mags = |4+ 3 = Ty

Solution

Referring to Fig. 2.11 and taking momenmm directed to the right to be positive,
we fimd that

Momentum of A before the collision = 4x2 = S8 kgm s
Momenmm of B before the collision = 3% (-5) = —15kgms'
The total momentum before the collision = —7 kgm s~
Momentum of (A + B) after the collision = Te

By the principle of conservation of momentum
=T = Te

Le. v = -1lms™’

The minus sign indicates that the bodies move to the left (i.e. in the onginal
direction of B) after the collision.

EXAMPLE 2.11 S e e e N i S it aain e

A bullet of mass 6.0 = 107 kg is fired from a gun of mass 0.50 kg. If the muzzle
velocity of the bullet is 300 m s ', calculate the recoil velocity of the gun.

Solution

Initially, both the bullet and the gun are at rest and their total momentum is zero.
After firing, the momentum of the bullet = 6.0 » 1077 » 300 = 1. 8kgms~'. By
the principle of conservation of linear momentum, the total momentum after firing
is equal to that before firing, and therefore the gun must have a momentum of
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1.8kgms~' in the opposite direction to that of the bullet. If the recoil velocity of

the gun is v, then
0.50v = 1.8

B ] 3oms !

QUESTIONS 2E

1.

A body of mass 6 kg moving at Bms ™' collides
with a stationary body of mass 10 kg and sticks
to it. Find the speed of the composite body
immediately after the impact.

A bullet of mass m is fired horizontally from a
gun of mass M. Find the recoil velocity of the
gun if the velocity of the buller is o,

A flar rruck of mass 400 kg is moving freely
along a honzontal track at 3.0ms'. A man
moving at right angles to the track jumps on to
the truck causing its speed o decrease by
.50 m s ', What 15 the mass of the man?

2.8 ELASTIC COLLISIONS

A kinen of mass 0.60kg leaps at 307 o the
horizontal out of a toy truck of mass 1.2kg
causing it to move over honzontal ground at

4.0ms ", At whart speed did the kinten leap?

A particle of mass 5w moving with speed o
explodes and splits into two pleces with masses
of 2m and 3m, The lighter piece continues o
move i the ornginal direction with speed 5o
relative to the heavier piece. What is the actual
specd of the lighter prece?

Whenever owo bodies collide, their total momentum is conserved unless there are
external forces acting on them., The total kineoc energy (see section 3.3), however,
usually decreases, since the impact converts some of it to heat andfor sound andfor
permancntly distorts the bodies leaving them with an increased amount of
potential energy.

A collision in which some kinetic energy 15 lost 1s known as an inelastic collision.
A completely inelastic collision is one in which the bodies suck wogether on
impact. A collision 1s elastie if there 1s no loss of kinetic energy.

2.9 NEWTON'S EXPERIMENTAL LAW OF IMPACT

The relative velocity with which two bodies separate from each other, after a
collision, is related to their relative velocity of approach and a constant known as
the coefficient of restitution, &, of the two bodies. The relationship is known as
Newton's experimental law of impact and can be expressed as

Speed of separation = ¢ = Speed of approach [2.12]

The coefficient of restitution of the two bodies is defined by equation [2.12] and
depends on their elastic properties and the natures of their surfaces. These same
propertics determine whether a collision is elastic, inelastic or completely inelastic
and therefore it is possible to classifv a collision according to the value of ¢ that s
associated with it (Table 2.1).
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Table 2.1 ohsion
Classification of callisions Tyoe of !
Elastic 1
Inelastic <]
Completely inelastic
EXANPLE 2.12 NN RS S e i s R e
Abody, A, of mass 6 kg and moving at 9 m s ! collides head-on with another body,
B, of mass 3 kg and moving in the same direction as A at 4 m s . If the velocites of
A and B after the collision are respectivelv v, and v, and the coeflicient of
restitution of the bodies is 0.8, calculate v, and vy. Assume that no external forces
act on the syspem.
Fig. 2.12

Diagram for Example
212

® e

nulllalm

wﬂlllnrn . .

Solution

Refer to Fig. 2,12, There are no external forces acting on the system, in which case
momentum is conserved and we may put

(6x=9)+ (3 xd] = Oy + Ivy
i.e. 22 = Ju, + 1ty [2.13]
Lsing MNewton's experimental law of impact (equaton [2.12]) we have

ty — oy, = 0.B{O-4)
Le. -y = 4 [2.14]

Solving equations [2.13] and [2.14] simultaneously gives

= 6ms! and vy = 10ms™’

QUESTIONS 2F " e

1. Asphere, A, of mass 3.0 kg moving at 8.0ms ™'

mass 2m moving along the same line with

collides directly with another sphere, B, of mass
5.0 kg moving in the opposite direction 1o A at
4.0ms'. Find the velocities of the spheres
immediately after the impactif ¢ = 0.30.

» A sphere of mass m moving with velocity w is

involved in an elastic collision with a sphere of

velocity —u. Find the velocities of the spheres
immediately after the impacr.

A ball is dropped onto horizontal ground from a
height of 9.0m. Find the height to which the
ball rises: (@) on the first bounce, (b) on the
second bounce. (e = 0.70.)
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2.10 IMPULSE

The impulse of a constant force, F, acting for a time, Ar, is defined by

Impulse = F Ar [2.15)

Impulse is a vector guantity; its direction 15 the same as that of the force. It
follows from equation [2.15] that the unit of impulse 15 the aewton second (2N ).
Mote that INs = 1 kgms !,

Suppose that a force, F, causes the momentum of a body to change by A(me)ina
time Arn By Newton’s second law, force = rate of change of momentum, and
therefore

D)
&

i.e. F Ar = Afm)

Therefore by equation [2.15]

Impulse = Change in momentam [2.16]

It can be shown that equartion [2.16] applics to variable forces oo,

The defimtion of impulse imposes no limit on the length of time for which the force
may act. Mevertheless, the concept of impulse 15 normally used only in situations
where a large variable force is acting for only a short time, for example a golf-club
striking a ball or the blow of a hammer on a nail. Forces such as these are known as
impulsive forces.

When a batsman strikes a cricket ball he *follows through® in order to keep the bat
in contact with the ball for as long a time as possible, It follows from equation
[2.15] that this increases the impulse and therefore, by equation [2. 16], produces a
larger change in momentum and so mcreases the speed at which the ball leaves the
bat.

Suppose now that the ball is caught by a fielder. In carching it the fielder has o
reduce the momentum of the ball to zero. It follows from equation [2.16] that the
impulse on his hand will be the same no matter how he carches the ball. However,
by equation [2.15], he can reduce the force he feels by drawing his hands
backwards to increase the time taken to effect the carch. Not only is this less
painful, but it also reduces the likelihood of the ball bouncing out of his hands.

The impulse of a varable force, F, acting for a ame, 1, 1s defined by

Impulse — IP‘ dr [2.17)

{1

Measuring the change in momentum that a varable force produces 15 usually
much easier than measuring the way in which it varies with time. In pracrtice,
therefore, an impulse is more likely to be evaluated on the basis of equation [2.16]
than equation [2.17].
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2.11 FORCE-TIME GRAPHS

It follows from equation [2.17] that the area under a graph of force against
time represents impulse (Fig. 2.13). It follows from equation [2.16] that it also
represents change in momenium,

FH. 2.13 Forco
Fﬂrﬁ_ﬂme gmphs ‘I—//-\
i .I ___-.ﬂ.rl.l = fmpulse belwsen I and 1
I T = Change in mamamum
1 1 betwesn r and §;
| 1
| 1
a - i Tima
Fy /]
Farea
&
- #raa = (Totsll smpulse of tha force
= {Tonall changs in momanium
produced by the IGnes
o g Time

EXAMPLE 2.13 RSSOy S e e r e N B R i ]

A body of mass 4 kg is moving at 5ms ! when it is given an impulse of 8 M s in the
direction of its motion. (a) What is the velocity of the body immediately after the
impulse? {b) If the impulse acts for 0,02 5, what is the average value of the force

exerted on the body?

Solution
Fig. 2.14 Ems ' > HM s I W )
Diagram for Example dkg kg
213 Bofore impulse Impulss Afear impaulse

fa} Referto Fig. 2.14. Let v = velocity of body immediately after the impulse.
Impulse = Change in momentum
B=4uv-—-4x5
B=4v-20 ie v = Tms’
b} Let F = average [orce
Impulse = F A
B=Fx002 ie F=4xI10"N
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QUESTIONS 2G & . = "ty

1. A particle of mass 6.0 kg moving at 8.0ms™!

(b) The ball is estimated 1o be in conract with

due M is subjected to an impulse of 30 N s, Find
the magnitude and direction of the velocity
of the particle immediately afterwards if the
direction of the impulse is: (a) due N,
(b} due 5.

A ball of mass 6.0 = 1077 kg moving at 13ms™'
hits a wall at right angles and bounces off along
the same line at 10m s, (@) Whar is the magni-
mde of the impulse of the wall on the ball?

the wall for 3.0 = 1075, whart is the average
force on the ball?

A body of mass 2.0kg and which is ar rest is
subjected to a force of 200N for 0.20 5 followed
by a force of 400 M for 0,30 3 acting in the same
direcuon. Find: {a) the towal impulse on the
body, (b} the final speed of the body.

Find the final speed of the body in question 3 by

using F =ma and v = u + ar.

2.12 FRICTION

Fig. 2.15
investigation of frictional
farces

Static Friction

When the surface of a body moves or tends to move over that of another, each body
expenences a mctonal force. The frictonal forces act along the common surface,
and each is in such a direction as to opposc the relative motion of the surfaces,

Fig. 2.15 illusrrates an arrangement which can be used 1o investigate frictional
forces. Small masses are added, one at a time, to the scale-pan in order to increase
At first P is small and the block does not move, but as more masses are added,
eventually a point is reached at which the block starts to slide. This is interpreted by
supposing that for small values of P the frictional force F is equal o P burt thar
there 1s a maximum fricdonal force which can be brought ino play, This is called
the limiting frictional force and its value is equal to the value of P at which the
block starts to move, The way in which the frictional force depends on the normal
reaction B can be investigated by placing weights on the block. The effect of the
arca of contact can be studied by repeating the experiment with different faces of
the block in contact with the table.

Wooden block
NaEg e

harizontal Rithe marradl rescion)
iahls \

Fallgry

|-

Sliding Friction

The frictional force which exists berween two adjacent surfaces which are in
relative motion is usually slightly less than the minng frictional force berween the
surfaces and is called the sliding (or dynamic or kinetic) frictional force. This
can be demonstrated by using the apparatus of Fig. 2.15 and giving the block a
slight push each time a mass is added o the scale-pan. The value of Pat which the



Fig. 2.18
Determination of the
coefficient of limiting
friction
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block continues to move with constant velocity after being pushed is the value of
the sliding frictional force and is less than the force required to produce motion
when the block is not pushed.

The Laws of Friction

The results of experiments of the type described in Static Friction and Sliding
Friction above are summanzed in the laws of friction.,

(1} The fmictonal force between two surfaces opposes their relative motion
or anempted motion,

{ii) Fricuonal forces are independent of the area of contact of the surfaces.

(iii) For mwo surfaces which have no relatve motion the limiting frictional
force 15 directly proportional to the normal reaction.,

For twao surfaces which have relative motion the sliding frictional force
15 directly proportional to the normal reaction and is approximarely
independent of the relative velocity of the surfaces.

The Coefficients of Friction

The coefficient of limiting friction u and the coefficient of sliding friction u’ are
defined by

F F
= — and p = -—
R F =R

where Fand F' are the imitng and shding fmcoonal forces respectively and R is the
normal reaction. Both p and u° depend on the nature and the condition of the
surfaces which are in contact but are independent of the area of contact. For steel
on steel p e 08, for Teflon on Teflon p= 0.04. (The wvalues given are
approgimate because even a mono-molecular laver of some surface impurity
affects the experimental results.) If two surfaces are assumed to be perfectly
smooth, there 15 no fnctional force and g = ¢ = 0.

Bigck o thie paint
of sliding dewn
tha plank

9

* mg cos @

mg

The coefficient of limiting fricion can be determined by carrying out an
expenment of the type descnbed in Static Frctnon above and measuring R and
the minimum value of P that produces moton. The arrangement shown in Fig.
2.16 provides an alternative method. One end of the plank is raised gradually and
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Fig. 2.17

Magnified cross-saction
through two surfaces in
comtact

I3

the value of  (the angle of friction) at which the block is on the point of slipping is
measured. When the block is about to slip g = F/ R, and therefore since

mgsinf! = F and mgcosfl = R

mig &in 0
| = —
! mig cos
Le. po= tan

An Explanation of the Laws of Friction

O a microscopic level, even a highly polished surface has bumps and hollows. Tt
follows that when two surfaces are put together the acrual area of contact is less
than the apparent area of contact (Fig. 2.17).

b =S b e

For example, it has been estimated that for steel on steel; the actual contact arca
can be as hittle as one ten-thousandth of the apparent area. The pressures at the
contact poinis are very high, and it iz thought that the molecules are pushed into
such close proximity that the attractive forces between them weld the surfaces
together at these points. These welds have to be broken before one surface can
move over the other. Clearly, therefore, no matter in which direction the motion
occurs there 1s a force which opposes it. This explains law (1),

If the apparent area of contact of a body is decreased by turming the body so that it
rests on one of its smaller faces, the number of contact points is reduced. Since the
weight of the body has not altered, there is increased pressure at the contact points
and this flamens the bumps so that the toral contact area and the pressure return o
their original values. Thus, although the apparent area of contact has been
changed, the actual area of contact has not. This explains law (ii).

The extent to which the bumps are flattened depends on the weight of the body.
Therefore the greater the weight, the greater the actual area of contact. This
cxplains law (11}, because the weight 15 equal to the normal reaction.

2.13 DETERMINATION OF THE ACCELERATION DUE
TO GRAVITY (g) BY FREE FALL

The apparatus is shown in Fig. 2.18. The poinciple of the method is to measure the
time, , for a ball-bearing to fall from rest through a measured distance, &,

The circuitry is such that switching on the electronic timer automatically cuts off
the current 1o the electromagnet and releases the ball-bearning. The beanng falls
freely until it strikes the hinged metal plare. The impact causes the plate 1o swing
downwards, breaking the electrical connecton at X and stopping the timer. The
rmer therefore automartically registers the tme of fall,

Chnce & has been measured (with an extending rule, sav) the acceleration due 1o
gravity, g, can be calculated. It follows from s = wr + ; at” {equation [2.8]) with
s=h, u=10, a=yg and =, that g = 2h/r’, hence p.
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Fig. 2.18

Apparatus lo determine g

by frae fall

Notes

(i)

(i)
(iii)

()
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Searting he timer
automatically cuts
ol the cusrant bo

the electromagnat
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ball-bearing
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The timer stops

automatically
I -""'-:3. when the
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framin plate magnet holds tha
plats aganst the
oontact at X

The omer should be capable of registering 1 with an uncertainoy of +0.01 5
of less,

k15 measured from the bottom of the ball-bearing.

There may be a delay in releasing the ball-bearing due to residual magnetism
in the electromagnet. The likelihood of this can be reduced by arranging that
the bearing is held only weakly by the electromagnet to start with. This can
be done by reducing the magnetizing current to the minimum that will hald
the bearing, or by placing a piece of paper or thin card between the bearing
and the clectromagnet.

‘The experiment should be repeated a number of times and the average value
of g found. Alternatively, the times of fall may be measured for a number
of different values of k. Since g = 2h/r%, vk = (/g/2)r and therefore the
gradient of a graph of +h against r is /g/2, allowing g to be found
graphically. This has the advantage that the effect of any constant errorin ¢
{e.g. that due o the bearing not being released immediately the timer is
started) is eliminated. (If there is an error of this type, the graph will not pass
through the ongin but the gradient will be unaffected.)

2.14 EXPERIMENTAL INVESTIGATION OF THE
PRINCIPLE OF CONSERVATION OF LINEAR
MOMENTUM

The principle of conservation of linear momentum can be investigated by means of
two plastic vehicles riding on the cushion of air above a linear air-track (Fig. 2.19).
The track is a hollow tube of triangular cross-section through which air is blown;
the air emerges through holes in each side of the track. It has adjustable feet
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Fig. 2.19
{a} Vehicle on an air-

track, (bl timing arrange-

ment

Fig. 2.20

Initial arrangement for
inelastic collision
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allowing it to be made accurately horizontal so that the vehicles have no tendency
tor drift along it in either direction. A number of small (e.g. 50 g) masses may be
attached to the vehicles. Each vehicle can carry an opaque card of known length
(e.g. 10 cm) which is arranged o interrupt a beam of light falling on a photodiode,
The circuitry is such that cach of the millisecond timers 1s inoperanve whilst lighe 1s
falling on the photodiode to which it is connecred. When a light beam is broken by
the leading edge of a card the associated timer switches on and remains operative
for as long as the card is in the beam. The omer therefore records the ttme for the
vehicle to travel a distance equal to the length of the card and so allows the speed 1o
be found.

Completely Inelastic Collision

Refer to Fig, 2.20. A 15 pushed towards B, which 1s stattonary and has no card
attached. A interrupts beam X and therefore i1z speed (u,) before impact can be
found. A pin on the frone of A stcks in a small piece of plasticine on the back of B,
and the vehicles then move together. The card on A interrupts beam Y allowing the
{common) speed (v} of A and B to be found.

= Light baams ——
X ki
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Fig. 2.21
Initial arrangement far
alastic collision
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Leght bams

Suppose the masses of A and B are sy and my respectively, Momentum 15
conserved if my uy = (my + mty) vay. The experiment should be repeated for a
number of different values of miy, mig and o,

Elastic Collision

Befervo Fig. 2.21. A and B {each carrving a card) are pushed towards each other so
thar they collide in the region berween the beams., Since A will have passed through
beam X and B will have passed through beam Y, their speeds before the collision
can be found. Each vehicle has a stretched rubber band attached to its front end,
and these act as buffers so that the collision is almost (perfectly) elastic (see section
2.8). It can be arranged that each wehicle reverses its direction of motion on
impact. Since A then passes back through beam X and B passes through beam Y,
their speeds after the collision can be found. The experiment requires two people -
one to observe each timer.,

Suppose the masses of A and B are m, and my respectively, and their speeds are u,
and ey before collision, and v, and vy after collision. Taking left to right as positve,
the mital momentum 15w, M, = gty and the momentum after impact s
Mg Uy — My Us. Momentum i conserved if, within expenmental error,
My My — Mg g = MUy — M, U,. The experiment should be repeated for a
number of different values of my, mg, us and wy.

2.15 EXPERIMENTAL INVESTIGATION OF F= ma

Fig. 2.22
Apparatus for
investigating F = ma

Mewron’s second law in the form F = sra can be investigated using the apparatus
shown in Fig. 2.22. T'o compensate for friction, the slope of the runway is adjusted
50 that the trolley, when given a slight push, runs down it at constant speed {dots
equally spaced on ticker-tape), The accelerating force is provided by means of an
elastic thread attached to the rear of the trolley. The experimenter pulls on the

Elastic thread
gtrapched by 8
Paper laps fo consiant armaun

licker-limaer

Runway - tikted
— 9 compensata
far frictspn

thread and walks along keeping the length of the thread constant (equal to the
length of the trolley, say). The effects of friction have been compensated for by
tilting the track and therefore the net force on the trolley 1s that provided by the
stretched thread., Since the thread is stretched by a constant amount, the trolley is
being accelerated by a constant force. The acceleration of the trolley 15 found by
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analysing the spacings of the dots on the ticker-tape. (The dots are produced at
intervals of 5—lu5, from which the velocity, and hence the acceleration, can be
calculared.)

The effect of doubling (or tripling) the accelerating force is investigated by using
two (or three) identical threads in parallel with each other and stretched by the
same amount as in the first experiment. The effect of doubling (or wipling) the
mass 15 investigated by stacking owo {or three) identical trolleys on top of each
other.

The acceleratng force is proportional 1o the number of threads and the mass 15
proportional to the number of trolleys. A graph of acceleration against {number of
threads/number of trolleys) can therefore be expected to be a straight line through
the origin (il.e. a o F/m).

Mote “Thewheels of the trolleys are made from a low-density material so that very little of
the accelerating force is “wasted” in providing the angular acceleration of the
wheels,

CONSOLIDATION

MNewton's first law Every body continues in a state of rest or of uniform
¥
(unaccelerated) motion in a straight line unless acred on by some external force,

Newton's second law  The rate of change of momentum of a body is directly
proportional to the external force acting on the bodv and rakes place in the
direction of the force.,

d
F — | mre)
dr
becomes
F = ma for constant mass

The newton (N) is defined as that force which produces an acceleration of | ms™*
when it acts on 4 mass of 1 kg,

MNewton's third law If A exerts a force on B, then B exerts an equal and
oppositely directed force on A

P o= o for constant velocity
o= utal
v = W+ 2a5
. for constant aceeleration
§ ut + 4 ar*
1 ,
o= Z{u+wr)

Displacemeant-Time Graphs

Gradient = velocity
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Velocity-Time Graphs
Gradient = acceleration

Area under graph = distance

The principle of conservation of linear momentum The total linear
momentam of a system of interacting (e.g. colliding) bodies, on which no
external forces are acting, remains constant.

An elastic collision 15 one in which there 15 no loss of kinetic energy.

Law of Impact
Speed of separation = ¢ = Speed of approach

Impulse
Impulse of constant force = F Ar

Impulse of vanable force = J F dr
0

Impulse = Change in momentum (for both constant and vanable forces)
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TORQUE

3.1 DEFINITION OF TORQUE

Consider a force acting on a rigid body (Fig. 3.1) so as to cause it to turn about an
axis which iz perpendicular 1o the paper and passes through O, The effect of the
force is determined by its turning moment, a quantity which depends not only on
the size and direction of the force burt also on where it acts. The turning moment
{or torgue) is defined by

T =Fd [3.1]

T = torgque (or turning moment) (&N m)
F = the magnitude of the force (N)

d = the perpendicular distance of the line of action of the force from
the axis (m).

Fig. 3.1

Figed hody
Definition of torgue

EXAMPLE 3.1

Find the moment of the 10N force about the axis through O and perpendicular 1o
the paper in each of the three siwations shown in Fig. 3.2,

Fig. 3.2 (s ikl icl
Diagram for Example 3.1

a
40m  40m B0m L ‘V 40m  40m

10N 0N
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Solution
(a) MomentaboutO=10x40=4Nm (anu-clockwise)
b Momentabout O = 1080 =80Nm (clockwise)

fc)  Refer to Fig. 3.3(a). Perpendicular distance of line of action of 10N force
from O = 0B = DA sin 30" = 2.0m

Momentabout O = 10« 2.0 = 20 N m  (ant-clockwise)

Fig. 3.3 fa bk
Diagram for solution of
Example 3.1(c) .:g
N 10 cos 30° A o
S S «——— ,
an” & 40m O 40m m® | 40m 4.0m
"
7]
10N 10 &im 30

Alternative Mathod

The 10N force has components of 10sin 30" and 10cos 307 perpendicular and
parallel to AQ respectvely (Fig. 3.3(b)).

Moment about O of perpendicular component = 10 sin 307 = 4.0
=20 m

(anti-clockwise)
Moment about O of parallel component = 0

Toral moment about O = 20 N m  (ant=-clockwise)

QUESTIONS 3A

1. Find the moment of the 20N force abourt axes 2. By resolving the 40N force into two suitable

perpendicular to the paper and through: (a) A,
(by B, (e) C, () D, (e) O where O is the
centre of the rectangle

components, or otherwise, find its moment
about an axiz perpendicular o the paper and
through: {a) A, (b) B, () C.

A 6.0m B A B.0m 8
2.0m
WM *' *G- &.0m L
e C
o e d0M

3.2 COUPLES

Two forces which are equal in magnitude and which are anti-parallel
constitute a couple (Fig. 3.4).

There 15 no direction in which a couple can give rise vo a resultant force, and
therefore a couple can produce a turning effect only — it cannot produce
translational motion.

Notes (i)
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TORQUE
{if) Since asingle force is bound to produce translation, it follows that a couple
cannot be represented by a single force.
Fig. 3.4 £

Definition of a couple

Rigid body

3.3 TORQUE DUE TO A COUPLE

In Fig. 3.4,
Total torque about O = F = 0A+ F =« OB
= F{OA 4+ OB)
= Fd
Thus, the torgue about O does not depend on the position of O and therefore it
follows that:

The torque due to a couple is the same about any axis and is given by

Torque due to a couple = Omne force x Separation of forces  [3.2]
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EQUILIBRIUM, CENTRE OF
MASS, CENTRE OF GRAVITY

4.1 THE CONDITIONS FOR EQUILIBRIUM

A bodw is in equilibriam if:
(a) the sceelernnon of its centre of mass is zero in all directions, and

(b)) s angular acceleration is zero.,

WNeither of these conditions requires that the body is at rest = a body may move with
constant velocity and rotate with constant angular velocity and sull be in
equilibrium!

It follows from (a) and (b)) thar

A body 15 1 equbibrium if;
(it} the resultant force on its centre of mass is zero, and

()} the ol torgue about all axes 1s zero,

Statements (1) and (i) are often referred 10 as the conditions for equilibrium
and are more useful in problem solving than (&) or (b). It can be shown that for a
body subject to coplanar forces only, condition (i) will have been fulfilled if the
resultant force in an ¥ W o directions in the plane of the forces is zero. Condition (i)
will have been fulfilled if the total torque about any one axis which is perpendicular
to the plane of the forces is zero. Therefore =

T'o prove that a system of coplanar forces is in equilibriam it is sufficient to
show that:

1 the resultant force in any two directions in the plane of the forces is zero,
and

2 the ol torque about any one axis which is perpendicular to the plane of
the forces is zero.

Meither one of these conditions is sufficient on its own o show that a body 1s in
equilibrium. On the other hand, if a body is known to be in equilibrium, then we

may make wse of | or 2orboth 1 and 2. It also follows that

44
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MNotes

If a body is in equilibrium:

1
1l

(i)

i)

(i)

(iv)

)

the regultant force i3 zero in all directions, and

the toral torgue 15 2ero about any axis.

Conditions 1 and 2 are known as sutficient condittons because together they
form the minimum set of conditons which 15 sufficient o ensure
equilibrium under the action of coplanar forces™. Conditons I and IT are
known as necessary conditions, in the sense that each is necessanly true,
rather than thart it is necessary 1o show them 1o be true.

Statement I is sometimes called the principle of moments, and can also
be expressed as

If a body is in'equilibrum;, the total clockwise moment about any axisis
equal to the toral ant-clockwise moment abour the same axis.

Statement | and statement II {in both its forms) also apply when the
equilibrium is due o non-coplanar forces,

To prove that a body acted on by nop-coplanar forces is in equilibrium it is
sufficient to show that:

the resultant force in any three mutually perpendicular directions 15 zero,
ame

the towal torque about each of any three murually perpendicular axes is zero,

When solving problems in which a system of coplanar forces is known to be
in equilibrium we may choose two directions and apply condition 1 in each
direction, and we may choose one axis and apply condition 2. Thus we
resolve twice and take moments once, This gives three independent
equations and allows us to find the values of three unknowns. There are
two alternatives — we may resolve once and take moments twice, or we may
take moments about three axes which are not in line with each other. 1tis not
possible to obrain more than three independent equations and therefore
there 15 no point in, for example, resolving twice and taking moments twice.

Concurrent Forces

Concurrent forces are forces whose lines of action intersect at a single point. A little
thought should convince the reader that it 1s impossible for such a system of forces
o produce a torque about any axis if their resultant is zero, It follows that

Concurrent forces are in equilibrium if their resultant s zero.

To prove that concurrent coplanar forces are in equilibrium it is sufficient to show
that 1 is true. If we know that a system of concurrent coplanar forces i1s in
equilibrium, we use 1 alone when solving problems — there is no point using 2.

(i)

If a body is in equilibrium under the action of three non-parallel coplanar
forces, the forces must be concurrent. (See section 4.2.)

*This is not the only set of minimum conditens, but it is the one most commonly wed,
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EXAMPLE 4.1

Fig. 4.1
Diagram for Example 4.1

Mote

SECTHON A MECHANICS

(ii} A particle is an object which has mass but which is small enough to be
regarded as a point, It follows that a set of forces acting on a particle must be
concurrent forces.

The svatem of forces in Fig, 4.1 18 in equilibrium. Find Pand .

o

20N
Solution
We make use of condition 1 in the horizontal and vertical directions. Refer vo Fig, 4.1
Resolving horizontally:
P cos 607 = ) cos 40 [4.1]
Resolving vertically:
Psin 60° 4 Q &in 40° = 20.0 [4.2]
By equation [4.1]
> o Qeosd0 L P~ 15320 [4.3]
cos 60

Substituting for P in equation [4.2] gives
1.532 @ sin 60° 4 Q0 sin 40° = 20.0
1.970Q = 200 e, = 102N

Substituting for {0 in equation [4.3] gives
P 15.6 N

We have resolved hortzontally and vertically. It would have been quite reasonable
to resolve perpendicular to Pand perpendicular to Q. The advantage of this is thar
it gives an equation for O which does not involve *and an equarnon for * which
does not involve J. The main disadvantage 1s that it 15 necessary to work out the
angles that the forces make with these directions and although this is trivial, it leads
to a rather messy diagram. [tis by far the best method, though, when the unknown
forces are at @0° to each other,

EXAMPLE 4.2

A uniform plank AB which is 6 m long and has a weight of 300N is supporned
hornzontally by two vertical ropes at A and B, A weight of 1530 N rests on the plank
ar C where AC = 2m. Find the tension in each rope.
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Fig. 4.2
Disgram for Example 4.2

MNotes

Solution

The plank is uniform and therefore its weight acts at its mid-point, G, say. Let the
tensions in the ropes at A and B be T, and T respectively. Refer 1o Fig, 4.2,

Ta Ta
C G
A Im l 1m im B
150 M
J00 M

The plank is in equilibrium and therefore the clockwise moment about any point is
equal to the anti-clockwise moment about the same point. (Conditon 2,)

Taking moments about A gives

Tex6 = 150 = 2+ 300 = 3

6Ig = 1200 e, Ty = 200N
Resolving vertically gives

To+ Ty = 150 + 300

Ta + 200 = 450 ie. T, = 250N

(1) Asanaltermative to resolving vertically, we could have taken moments about
B to find T,.

(i) Iris wsually good policy wo take moments about points where unknown forces
are acting because this reduces the number of unknowns in cach of the
resulting equations.

EXAMPLE 4.3

A uniform ladder which is 5 m long and has a mass of 20 kg leans with itz upper end
against a smooth vertical wall and its lower end on rough ground. The bottom of
the ladder is 3 m from the wall. Calculare the frictional force berween the ladder
and the ground. (g = 10ms <)

Solution

Referwe Fig, 4.3, The ladderis uniform and therefore its weight, 20 = 10 = 200 N,
acts at its mid-point (3, a distance of 1.5 m from the wall. The wall 15 smooth and
therefore the only force acting at the top of the ladder is the normal reaction R, By
Pvthagoras the point A atwhich the ladder makes contact with the wall 1s 4 m above
the ground. The forces acting at the bortom of the ladder are the normal reaction 5
and the frictional force F. If the ladder were to slip, its bottom end would move o
the right; it follows that F acts to the left as shown,
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Fig. 4.3
Diagram for Example 4.3

MNote

SECTION A; MECHANICE

AR ARAE AL LR LR RN

Im

The ladder is in r:qu:i]:ihrium and therefore there can be no resultant force in any

direction. In particular there is no resultant vertical force, in which case

5 = 200N [4.4]

Because the ladder 15 in eguilibrium the total torgue abowt any point 15 zero. In
particular, the total (net) torgue about A 15 zero and therefore

(Faed)+(200=15) = =3
LE. 4F 4+ 300 = 3585

Therefore by equation [4.4]

4F + 300 = 600
Le. F=75N

The reason that we have chosen to consider the torque about A, rather than some
other point, is that this automatically excludes R - a force m which we have no
interest, The reader is advised 1o convince himself thar considering the torgue
about G and/or B and making use of the fact that F = R also gives F = T5 M.

Points to Bear in Mind when Attempting QGuestions 4A
(a}) Draw a clear diagram showing all the forces acting on the partcle (or
body) whose equilibrium 15 being considered.

(b} Draw diagrams in which the angles look something like the angles they
represent. There is no need to use a protractor, but an angle of 307, say,

should look more like 307 than 457 or 607,

(c) A smooth surface can exert a force onlv at right angles to iselfl - the
normal reaction.

{d) The tension is the same in each section of a light string which passes over a
smooth pulley or a smooth peg, or which passes through a smooth hole or
a smooth ring.

() There is no point in rezolving in more than two directions,
() Itis often an advantage to resolve perpendicular to an unknown force,

(g} It is often an advantage to take moments about points where unknown
forces are acting.
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QUESTIONS 4A

1.

Solve the problem in Example 4.1 by resolving
perpendicular to Pand/or Q.

Two forces, P and O, act NW and NE
respectively. They are in equilibrium with a
force of 50.0N acting due 5 and a force of
20.0N acting due E. Find Pand Q.

A particle whose weight is 50.0 N is suspended
by a light string which is at 35" to the vertical
under the action of a horizontal force F. Find;
(a) the tension in the string, {b) F.

A particle of weight W rests on a smooth plane
which 15 inclined ar 407 to the horizontal. The
particle is prevented from slipping by a force of
50.0 M acting parallel to the plane and up a line
of greatest slope. Calculare: (a) W, (b) the
reaction due to the plane.

Two light srings are p:rp-r_ndimlar o each
other and support a particle of weight 100N,
The tension in one of the strings is 40.0N.
Calculate the angle this string makes with the
vertical and the rension in the other string.

A uniform pole AB of weight 5W and length 8a
15 suspended horizontally by two vertical strings
attached o ivat C and D where AC = DB = a,

A body of weight 9 W hangs from the pole at E
where ED = 2a. Caleulate the tension in each
SIFNE.

AB 15 a uniform rod of length 1.4 m. Itis pivoted
at C, where AC = 0.5 m, and rests in horizontal
equilibrium when weights of 16 N and 8N are
applicd at A and B respectively. Calculate:
(a) the weight of the rod, (b) the magnitude
of the reaction at the pivot.

. A uniform rod AB of length 4a and weight Wis

smoothly hinged at its upper end, A. The rod is
held at 307 to the horzontal by a string which is
ar 207 1o the rod and atached o it at C where
AC = 3ag. Find: {a) the tension in the string,
(b) the vertical component of the reaction an
A, (c) the horizontal component of the reaction
at A,

A sphere of weight 40 M and radius 30 cm rests
against a smooth vertical wall. The sphere is
supported in this position by a string of length
20 cm artached to a point on the sphereand o a
point on the wall. Find: (a) the tension in the
string, {b) the reaction due to the wall. (If you
require a hine, arn wo the answer.)

4.2 THE TRIANGLE OF FORCES

and R must be concurrent.
Fig. 4.4 Fligiel body
Body acted on by threa
forces
H

Suppose that a body is in equilibrium under the action of three non-parallel
coplanar forces, P, (0, and R (Fig. 4.4). In order to satsfy conditon (1) (p. 447,
each force must be equal and opposite vo the resultant of the other two. The system
therefore reduces to one in which there are only two equal and opposite forces, (R
and R’, sav, where R’ is the resultant of Pand Q). Furthermore, these two forces
(R and R'} must be in line with each other, otherwise there would be a couple
acting on the system and condition (1) would not be satisfied. It follows that P,

- *ﬂ“

= >
A

Bearing in mind that R’ is the resultant of P and Q and that R = —R’, leads o
Figs. 4.5(a), (b} and (). It follows from Fig. 4.5 that:
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Fig. 4.5
The triangle of forces

il

If a body is in equilibrium under the action of three coplanar forces, then the
forces can be represented in magnitude and direction by the sides of a
triangle taken in order. This is known as the triangle of forces.

QUESTIONS 4B

1. Solve the problem in example 4.1 by using
a triangle of forces.

4.3 THE POLYGON OF FORCES
The triangle of forces can easily be extended to any number of forces, in which case:

If a body 15 in equiliboum under the action of any number of forces, then the
forces cam be represented in magnitude and direction by the sides of a
polygon taken in order

4.4 TYPES OF EQUILIBRIUM

There are three types of equilibrium and these are illustrated by the cone shown in

Fig. 4.6.

(1) Stable equilibrium A body 15 in stable equilibrium if it returns to its
equilibrium position after it has been displaced slightdy (Fig. 4.6{a)).

(ii) Unstable equilibrium A body i3 in unstable equilibrium if it does not
return to its equilibrium position and does not remain in the displaced
position after it has been displaced slightly (Fig. 4.6(b)).

(i} Neutral equilibrium A body 15 in neutral equilibrium if it stays in the
displaced position after it has been displaced slightly (Fig. 4.6(c)).

Fig. 4.6
Types of equilibrium

(&} Stabbs bl Unstabla icl Nautral
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Fig. 4.7
Effects of forces at centre
of mass of a hammaer

Fig. 4.8
Effect of forces at cemtre
of mass of a hammar

The entire mass of 4 body can be considered o act at a single point, known as the
centre of mass of the body. If a body is ssmmetrical and of uniform composition,
the centre of mass is at the geometric centre of the body.

If a single force acts on a body and the line of action of the force passes through the
centre of mass, the body will have a linear acceleration but no angular acceleration.
Thus, a body which is accelerared from rest by such a force will move in a straight
line without any rotation. As an example of this, imagine a stationary hammer
resting on a foctonless surface. If forces such as P and @ are applied 10 the
hammer (Figs 4.7(a) and (b)), it will move without rotation as shown,

Cantee of mass

lal

However, if a force such as R is applied wo the hammer, 115 subseguent motion
involves rotation because B does not act through the centre of mass (Fig. 4.8).
MNote that even when the body is rotating, the centre of mass moves along a straight
line, i.e. the rotation takes place about the centre of mass. Thus, in the absence of
an actual pivot {e.g. an axle) a body behaves as ifit is pivoted atits centre of
mass and only at its centre of mass.,

of mass \
&G
RS

—

The motion of the centre of mass of a body cannot be affected by internal
forces. Suppose that a space-ship, which is initially moving with uniform speed
along a straight line, breaks into 3 number of pieces as a result of an explosion on
board. Mo external force has acted on the mass of the space-ship and therefore the
mass as a whole cannot (by Newton's second law) acquire an acceleration, Singe
the mass can be taken to be at the centre of mass, there can be no acceleration of the
centre of mass. The pieces therefore move apart in such a way that the centre of
mass continues to move with the onginal speed in the onginal direction,
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4.6 CENTRE OF GRAVITY

Fig. 49
Determination of centre
of gravity

The centre of gravity of a body is the single point at which the entire weight
of the body can be considered to act. In uniform gravitational fields (such as
that of the Earth on a small body) the centre of gravity coincides with the centre of
mass.

Since the weight of a body acts at its centre of gravity, a freely suspended body
hangs in such a way that its centre of gravity is vertically below the pivot.
This is the basis of the usual experimental determination of the position of the

centre of gravity of a body (Fig. 4.9).

Centres of gravity (and therefore centres of mass) can also be located by
calculation (Examples 4.4 to0 4.7).

First vertical
J

First
pivot

Centre of gravity

Second
i 8t imersection

pvol

EXAMPLE 4.4 00 00 cn

Fig. 4.10
Diagram for Example 4.4

Calculate the position of the centre of gravity of a body which comprises two small
spheres whose centres are connected by a straight rod of length L. The masses of
the spheres are m, and m,. The mass of the rod is very small and may be ignored.

Solution

By symmetry, the centre of gravity of the system is at a point on the line joining the
centres of gravity of two spheres. Since the centre of gravity of each sphere is atits
centre, the centre of gravity of the whole system is at a point such as G (Fig. 4.10).

[T N i L~ X >

1 1 1

' | |

1 ] |

- l -

G

Sphere of Sphere of
mass m, mass m;

The centre of gravity of a body is the point at which its weight acts, and therefore if
the body were to be pivoted at its centre of gravity, there would be no gravitational
torque about that point. Therefore,



Sl SECTION & MECHAMNCE

Fig. 4.12 il dom M M M
Diagram for Example 4.6
Zem
dem P P
0 ] 0
B
B rom A== — = - ¥
A Gy O . 3,.
o a
T 5 T 5
Lak bl

which are at their centres G, and Gy respectively. The centre of gravity of the whole
lamina must lie berween Cr; and (32, Let it be at G, a distance x from MT. Let
w = the weight per unit area of the lamina,

Section I Waight Digtance of cenira of
gravity from MT
MMET | p 2 E 1 2 o
PR i 5
MNPORST 2840 1
Moment of whole about MT = Sum of moments of parts abour MT
28ox = Mwx2+4w=x5
2Buwx = 68w
) 68 )
S x T g X 24 cm

The centre of gravity is therefore 3 cm from M~ and 2.4 cm from MT.

EXAMPLE 4.7

MMNOPQRST is a uniform lamina whose dimensions are as shown in Fig. 4.13(a).
Find the distance of its centre of gravity from MN and from MT.

Fig. 4.13 i 12em L M N

Diagram for Exampla 4.7 . W i

CIm

¢ o | i o

|

dom r
-
e
12om A -":f R
4] . ‘L%,r-"" i
Bom

T 5 T 5

Lal L4
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Solution

We regard the lamina as a square MNST from which a smaller square OPQR has
been removed. The centres of graviry at these squares are at their centres Gy and
G (Fig. 4.13(b)). Let the centre of gravity of the lamina be at (G, a distance x from
MT and a distance y from MM, Let @ = the weight per unit area of the lamina.

Saetion Weigphr Digtance of cantra of Digtanee of centra of
grawity from MT gravity from MN
MNST B Fiil ] i
OPOR 1taes 10 4
MMOPORST |28 X v
Moment of whole about MT = Sum of moments of parts abour M

ldder = 6 = lbap = 10+ | 28ex
Bhder = 160w+ 1280x
Tl = 128wx

Tdes
X = LE. X =

128e
Moment of whole about MN = Sum of moments of parts about MM
ld4en = 6 = 16w = 4 4+ 128y

55em

Bodawr = 64w 4 12Bury

B0 128y
B{Hker .
¥ o= 128m e, ¥ = 6.25cm

The centre of gravity is therefore 5.5 cm from MT and 6.25 cm from MK,

QUESTIONS 4C

1. A light square frame ABCD of side 10w has

3. MNOPQRE is a uniform lamina. Find the

particles of mass m, 2m, 3w and 4w ot A, B, C
and ID respectively. Find the distance of the
centre of gravity: {a) from AB, (b) from AD.

A non-uniform rod AB of weight 40N and
length 20 cm 18 supported by a prvot at L where
AC = ld4cm. The rod rests in horizonual
equilibrium when a weight of 30 N 15 attached
to it at B. Find the distance of the centre of
gravity of the rod from A.

distance of its centre of gravity: {a) from MR,
{b) from MN,

H 1hiem i
Jomi
& g i M
Bem
dom
Ln] acm P

A circular plate of uniform thickness and radius
12 cm has a circular hole of radius 4 cm cut out
of it. The centre of the hole 15 2em from the
centre, (), of the plate. Find the distance of the
centre of gravity from O,
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CONSOLIDATION

If three coplanar forces are in equilibrium, the forces are bound to be concurrent.

If a particle is in equilibrium, the resultant force on it is zero in which case it must
be ar rest or moving in a straight line at constant speed,

If a body is in equilibrium, the resultant force on it 15 zero and the resultant torque
15 zero in which case it must be at rest or moving ina straight hme at constant speed
and if it is rotung, i must be doing so with a constant angular velocty,

To solve problems in which concurrent coplanar forces are known to be in
equilibrium resolve in (up ) wo directions and make use of the fact that the
resultant force in each direction is zero,

To solve problems in which non-concurrent coplanar forces are known to
be in equilibrium resolve twice and take moments once, or resolve once and rake
MOMmEents twice, or take moments three tmes.

The centre of gravity of a body is the point at which its weighit can be taken to act.
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WORK, ENERGY, POWER

5.1 WORK

Fig. 5.1

Force at angle to motion

If a body moves as a result of a force being apphied o i, the force is said w be doing
work on the body. The work done 1s given by

i.t:ll

Fs [5.1]

where
W = the work done (joules, [}

F = the constant applied force (N)
# = the distance moved in the direction of the force (m).

It follows from eguation [5.1] that a force is doing no work if it is merely
preventing a body moving, because in such a circumstance 5 = (. Thus, if a man
lifis some object, he is deing work whilst acrually lifting it but he does no work in
holding it above his head, say, once he has lifted it into that position. The man
would, of course, become tired if he were to hold a heavy object for a long time but
this is because he is having to keep his muscles under tension; it is not because he is
doing work on the object.

Suppose that a constant force, F, acts on a body so as to move it in a direction other
than its own (Fig. 5.1). The component of F in the direction of motion is F cosf,
in which case the work done, W, is given by

W = Frcosf
. --_'\-F.- r\-:.p-.-a. F |

Direction
- af miciknn

This situation can occur only if there is some other force preventing motion taking
place in the direction of F, For example, consider a man pulling a garden roller in
the manner shown in Fig. 5.2. For convenience, the man is holding the handle art
an angle & vo the horizontal and exerts a force F in the direction shown. The other
force that acts on the roller is its weight, mg, and this of course, acts vertically
downwards. The upward directed component of F will be less than the weight.
Therefore there is no vertical motion and no work is done by the upward direcred
component of F,
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Fig. 5.2
Force diagram for a man
pulling o roller

5.2 ENERGY

SECTION A: MECHANICS

A body which is capable of doing work is said to possess energy. The amount of
energy that a body has is equal to the amount of work that it can do (or what
amounts to the same thing, the amount of work that must have been done on it to
give it that energy).

Although it is often convenient to classify energy as being chemical energy or
nuclear energy or heat energy, etc., there are basically only two types of energy -
kinetic energy (KE) and potential energy (PE).

5.3 KINETIC ENERGY

The encrgy which a body possesses solely because it 1s moving 15 called
kinetic energy.

The kinetic encrgy of a body can be defined as the amount ofwork it can do
in coming 1o rest, or what amounts 1o the same thing, the amount of work that
must have been done on it to increase its velocity from zero to the velocity ithas. On
this basis, if a body of mass m is moving with velocity o, then

Kinetic energy = L me

Kinetic energy is a positive, scalar quanticy

To Show that Kinetic Energy — 1 mv? (Variable
Force)

Suppose thar a body of mass m moves a small distance ds under the action of a force
F. Supposc also thar, though the force may be varying, ds is 5o small that the force
can be considered constant over the distance ds. The work done §Wis given by
equation [5.1] as

AW = F s
If the force increases the velocity of the body from zero to «, the total work done W
15 gven by

W = J' F de
ETE ]
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MNote

54
Using Newton’s second law {(equation [2.2]) we can write F as
F = H‘l;
where do'dr 1s the acceleration of the body. Therefore
G d
W = ] mi cs
PR

Beanng in mind that v = ds/dr, we can write

W = fmv dw
1]
and therefore
W = Lmd]
Le. W = Lt

By definition, the work done is the kinetic energy of the body, and therefore

» 1 3
Kinetic energy = ;l,rrrr:'

The kinetic energy of a body depends only on its mass and s velocity and as such,
the kinetic energy is independent of the way in which the body acquired this
velocity. In view of this, the result that has just been derived could have been
obtained more simply by specifying that the body was accelerated by a constant
force. This will now be done.

To Show that Kinetic Energy = } mv? (Constant
Force)

If a body of mass m moves a distance s under the action of a constant force F, the
work done W by the force is given by equation [5.1] as

W = F

If the {constant ) acceleraton is a, then from Newton's second law F = ma and
therefore

W = mas [5.2)

If the body has been accelerated from rest to some velocity v, then from equation
2.7]

¥ = 0P+ 2as
ie as = 1_,_:
-2

Therefore from equation [5.2]
W = Llmv?
and therefore by definition

Kinetic energy = %mnz
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N

through a distance A the increase in potential energy 1s mgh. It follows that if the
potential energy of the body is taken o be zero when it is on the ground, then its
potential energy at a height i is mgh, i.e.

Gravitational potential energy = mygh

5.6 CONSERVATION OF MECHANICAL ENERGY

Fig. 5.3
Conversion of potential
anergy to kinetic energy

The principle of conservation of mechanical energy can be stared as:

In a &vstem in which the only forceés acting are associated with potential
energy (e.g. gravitational and’ elastic forces) the sum of the kinetic and
potential cnergics 15 constant

Le. EE + PE = a constant [5.3]

WNote that, in partcular, equation [5.3] does not apply when there are fricrional
forces present.

As an example of the application of equation [5.3], we shall wse it to obtain an
expression for the velocity acquired by a body of mass m in falling freely from rest at
a height i in a vacuum (Fig. 5.3). As the body falls it loses gravitational potential
energy and gains kinetic energy. It follows from equation [5.3] that

KE gained = PE lost

O oo
e
EE = DO

h
P FE = D
iy g TKE - Fimv
FFFTIRTIIIT
and therefore if the velocity of the body after it has fallen a distance # is v, then

%MITJJ = mgh
e, v v 2gh

The body comes to rest (at least momentarly) very soon after making contact with
the ground. It does 50 because the Earth has exerted a force on it The force is due
to the solidity of the Earth, rather than to its gravitational properties. At the same
time, the body exerts a force on the Earth, and both the body and the Earth become
deformed. It is the kinetic energy which the body had immediately before the
impact that has been used to produce these deformations. If they are permanent,
the energy which created them is dissipated as heat and sound, and the body
remains at rest on the ground. On the other hand, if the body and the Earth regain
their original shapes, then they lose the elastic porental energy which they
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EXAMPLE 5.1

SECTION A MECHANICS

acguired at the impact and the body bounces. Some energy is bound to be
dissipated as heat, and therefore the body has less than its original amount of
kinetic energy and therefore does not reach its original height.

When fricton 15 involved, and when work 15 done by external forces (Le. forces
other than those associated with potential energy) we make use of the work=
energy principle:

'Work done by \ [ Increase in N Work done 5.4(a)
external force a EE + PE * | against friction 5. ]
If work is done against external forces, equation [5.4(a)] becomes

(Dccrt:asr: i.n) B ( Work done ) N ( Work done

AgRins ; -
KE + PE against Fcton
external forces

In problems where there are sudden changes in velocity, e.g. where two bodies
collide or where there is a sudden increase in the tension in a string (i.e. a jerk)
some mechanical energy s converted to heat andfor sound®. In such
circumsiances, using the principle of conservation of mechanical energy or the
work-=energy principle {(equations 5.4(a) and (b)) allows us to do no more than find
ot just how much energy has been converted in this way. For example if we know
the height to which a bouncing ball rebounds, we can calculare the amount of
mechanical energy converted to heat, etc., as a result of the impact, but energy
considerations alone do not allow us o calculate the height to which the ball
rebounds in the first place.

) [5.4(b)]

A car of mass 800 kg and moving at 30m s ! along a horizontal road is brought o
rest by a constant retarding force of 3000 M. Calculate the distance the car moves
whilst comuing to rest.

Solution

Ifthe car travels a distance s in coming 1o rest, then by equation [5.1] the work done
by the car against the retarding force

= 5000

The kinetic energy (+me®) lost by the car in coming to rest
= 1 x 800 x 30°
— 360000 ]

The work done against the retarding force is equal to the kinetic energy lost by the
car, and therefore

5000s = 300000

1.e, P = T2m

Alternanvely. the solutton could have been obtained by using Mewton's second
law {equaton [2.2]) to calculare the value of the retardation which could then be
used in equanon [2.7] o find 5,

*Thie is mot true in the special case of an elastc collision - see secrion 2.8,
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EXAMPLE 5.2

A small block (Fig. 5.4) is released from restat A and slides down a smooth curved
track, Calculate the velocity of the block when it reaches B, a vertical distance #
below A,

Fig. 5.4
Diagram for Example 5.2

Solution

Suppose that the mass of the block is m. The gravitational potential energy lost by
the block in moving from A to B is mgh. If the velocity of the block on reaching Bis
v, then the kinetic energy gained by the block s é mu-.

The track 15 smooth and therefore no work 1s done against fmction, i which case

KE pained = PE lost
Lme® = migh

1.C. T = '._J'-EEH

The problem has been solved by making use of the principle of conservation of
mechanical energy. Unlike Example 5.1, it could not have been salved by using
F = ma and v* = u* + 2as because the acceleration is not constant and therefore
p* = u* 4+ 2as does not apply. A solution based on F = ma is possible
provided the equation of the curve is known, but it involves using calculus and is
much more difficult than the solution given here.

Mote that the speed at B does not depend on the particular shape of the curve,
However the tume to reach B does, and cannot be found by using energy
considerations.

EXAMPLE 5.3

A car of mass 1.0 =« 10" kg increases its speed from 10ms ! to 20ms | whilst

moving 500 m up a road inclined at an angle = to the horizontal where sin x = o,

There is a constant resistance to motion of 300 N, Find the driving force exerted by
the engine, assuming that it is constant. (Assume g = [0ms <.}

Solution

The work done by the engine 15 used to increase both the KE and PE of the car and
to overcome the resistive force.
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In moving 500 m along the road the car gains a vertical height of 500 sin 2 = 25m.

Therefore
PE gained =

10x 10" x 10=x25 = 25 % 10°]

KE gained = %}: 1.0 = ID":{ZDJ—J:-H 1.0« 107 = 104
= 1.5=10"]

Work done against resistance =
By the work—cnergy principle,
Wiork done by engine

Work done by engine

00 = 300 = 1.5 = 107 ]

Increase in PE + Increase in KE
+ Work against resistance

25 % 10° +1.5 = 10" + 1.5 = 107
5.5 % 107 ]

If the driving force of the engine is F, then (by W = Fi)

5.5« 10° = F = 500

ie. F=1L1=I10"N

Alternatvely, as with Example 5.1, the soluoon could have been obtained by using

F = ma and v?

QUESTIONS 5A

Questions 1 to 9 should be solved by using
energy considerations (Assume g = 10ms?
where necessary.)

A car of mass 1.2 =« 10" kg moves 300m up a
road which is inclined o the horizontal ar an
angle = where sin & l',i. By how much does the
gravitational PE of the car increase?

A particle is projected with speed © atan angle &
1o the horizontal. Find the speed of the particle
when it 15 at a height F.

A car of mass B0 kg moving at 20ms™' is
brought to rest by the applicatton of the brakes
in a distance of 100 m. Calculate the work done
by the brakes and the force they exert assuming
that 1t 15 constant and that there 15 no other
resistance o moton.

The speed of a dog-sleigh of mass B0 kg and
moving along horizontal ground is increased
from 3.0ms ' to 9.0ms ™" over a distance of
20 m. Find; (a) the increase in the KE of the
sleigh, (b) the force exerted on the sleigh by the
dogs, assuming that it is constant and thar there
15 0O resistance to motion,

A simple pendulum consisting of a small heavy
bob artached ro a light sering of length 40 cm is

= u? + 2as

relensed from rest with the strng ar 60° w the
downward vertical. Find the speed of the
pendulum bob as it passes through its lowest
pPOIng.

A car of mass 900 kg accelerates from rest o a
speed of 20ms ! whilst moving B0m along a
horizontal road. Find the tractive force (i.e. the
droving force) exerted by the engine, assuming
that it is comstant and that there is a constant
resistance o moton of 250 N,

A child of mass 20 kg starts from rest at the top
of a playground slide and reaches the bottom
withaspeed of 5.0ms . The slide is 5.0m long
and there is a difference in height of 1.6m
berween the top and the bottom. Find: (a) the
work done against friction, (b) the average
frictional force,

Two particles of masses 6.0kg amd 2.0kg are
connected by a light inextensible string passing
over a smooth pulley. The system 15 released
from rest with the stning taut. Find the speed of
the particles when the heavier one has des-
cended 2.0 m.

A ball of mass 50 grams falls from a height of
2.0m and rebounds to a height of 1.2 m. How
much kinetic energy is lost on impact?
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5.7 POWER

1]

The power of a machine is the rate at which it does work (alternanvely, it is
the rate at which it supplies* energy). The unit of power is the watt (W),

Thus
d i
o= ? [5.5]
where

P = the instantaneous power (W)

aw

e the rate of working (Js~'). Thus 1W = 1]Js°!

If a machine is working at a steady rate,

Work done
R S taken [5-6]

When the rate of working is not steady, equation [3.6] gives the average power.

Another useful expression for power can be obtained by combining equations
[5.1] and [5.5]. Thus from equation [5.5]

d i
P

Therefore, from equanon [5.1]

d
= E{ﬁ]
If the force 15 constant
ds
P = FE

he WSROy

where P 15 the power output of a machine which is doing work by exerting a
force F and moving the point of application of the force with velocity v. Equation
[53.7] is useful in, say, calculating the force exerted by a car engine when the car
is moving at a known velocity and the power being produced by the engine is also
known.

*The machine has mot, of ourse, actually produced the energy, it has merely converted it rom
anether form,



B SECTION A: MECHANICS

EXAMPLE 5.4 " e

A pump raises water through a height of 3.0 m ara rate of 300 kilograms per minute
and delivers it with a velocity of 8.0 m s~ ', Calculate the power output of the pump.
{Assume g = 10ms™2.)

Solution
The work done by the pump is used o increase both the PE and the KE of the

water. In one second the pump delivers 300,60 = 5.0 kg of water, Therefore

Increase in PE each second = 5.0 = 10= 3.0 = 150]
Increase in KE each second = i—xﬁ.ﬂ » B.0F = 160]

Therefore

Work done each second = 150+ 160 = 310]
Since work done per second is power, the power ourpurt of the pump is 310 W,

QUESTIONS 5B "

Assume g = 10m s—* where necessary.

4, What is the maximum speed ar which a car can

travel along a level road when its engine is

1. A man of mass T5kg climbs 300m in 30 developing 24 EW and there 15 a resistance to
minures, At what rate is he working? motion of 800 N
2. A pump with a power output of 600W raises « A crane lifts an iron girder of mass 400 kg at a
warer from a lake through a height of 3.0m and steady speed of 2.0ms ', Ar what rate is the
delivers it with a velocity of 6.0ms'. What crane working?
mass of water is removed from the lake in one
minute? . A man of mass T0kg rides a bicycle of mass
15 kg at a steady speed of 4.0ms " up a road
3. Whatis the power ourput of a cyclist moving ata which rises 1.0m for every 20m of itz length.

steady speed of 5.0ms™' along a level road
against a resistance of 20N,

Whart power is the cyclist developing if there isa
constant resistance to moton of 20 N7
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CIRCULAR MOTION AND
ROTATION

6.1 ANGULAR VELOCITY

Suppose that a particle (Fig. 6.1) moves from A to P along the arc AXP at a

constant speed* in a ume interval ©. The angular velocity, o, of the particle is
given by

{

t [6.1]
where # = theangle turned through in radians. (The radian (rad) 1s the STunit

of angle and is the angle subtended at the centre of a circle by an arc
of the circumference equal in length to the radius of the circle.)

w = the angular velocity of the particle about O (rads ')
t = the ume taken (s).

The period, T, of the rotational motion is the time taken for the particle o
complete one revolution (i.c. to turn through 2x radians) and is given by equation

[6.1] as
2%
0 = =
2r
ie. T = — [6.2]
w
Fig. 6.1
Definition of angular P

el <\
‘ A

*Note the use of the word ‘speed’ and not ‘velocity’. The particle cannot have a constant velocty
because its direction of monion is changing

67
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MNote If the angular velocity is not constant, equation [6.1] is replaced by

dé
dr

L =

where ¢ is the instantaneous angular velocicy,

Eeferning agmin to Fig. 6.1, we can see that in dme [ the distance moved by the
particle is the arc length AP and therefore its linear speed © 18 given by

_ Arc length AP
¥ = !
Fi

i.e. v = —
t

Therefore, from equation [6.1]

v = wr [6.3]

6.2 CENTRIPETAL FORCE

If a body 15 moving along a circular path, there must be a force acting on i, for if
there were not, it would move in a straight line in accordance with Newton's first
law. Furthermore, if the body is moving at a constant speed, this force cannot (at
any stage) have a component which is in the direction of motion of the body, for if
it did it would be bound to either increase or decrease the speed of the body, The
force that acts on the body must, therefore, be perpendicular to the direction of
motion of the body and must therefore be directed towards the centre of the
circular path. The force is known as a centripetal force,

If a brick is being whirled in a circle on one end of a piece of string, the centripetal
force is provided by the tension in the string. If the string were 1o break, there
would be no centripetal force and the brick would fly off at a tangenn.

The centripetal force on an orbiting planet is gravitational; that on an electron
moving round a nucleus is electrostatic.

6.3 CENTRIPETAL ACCELERATION

Because there 15 a resultant force on a body which is describing a circular path, the
body must (by Mewton's second law) have an acceleration. This acceleration must
be in the same direction as the force, i.e. toward the centre of the circle. Itis known
as a centripetal acceleration. For a body which is moving with constant angular
velocity, w, along a circular path of radius, r, the magnitude of the centripetal
acceleration can be shown to be given by

a = w'r [6.4]

where

a = the centripetal acceleratdon (ms ).
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Fig. 6.2

To calculabe the
centripetal acceleration of
a particle mowing in a
circle

If the linear speed of the particle is v, then by equation [6.3]

[6.5]

| %

To Show that the Centripetal Acceleration — FT

wiEin & W

Consider a particle moving with constant speed v along an arc NOP (Fig. 6.2).
The x-component of velocity of the particle has the same value at P as at N and
therefore its x-component of acceleration, a,, is Zero, i.c.

a, = O
As the particle moves from N to P its y-=component of velocity changes by 2o sin (1,
If this takes place in a time interval, r, its y-component of acceleration, a,, is given

by

- 2v .*:Im i [6.6]

The speed of the particle along the arc is v, and therefore

| _ Arc length NOP
r_l

2t
u
Therefore from equation [6.6]

1. [ =

. = 2w sin 0
¥ 20rfv
. t* sin @
L8, ﬂ_.l_ = ——

¥ i
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EXAMPLE 6.1

Fig. 6.3
Diagram for Example 6.1

SECTION 4 MECHAMES

If N and P are now taken to be coincident at O, then # = 0 and sin @/ has its
limiting value of 1%, in which case
- Y
-
Thus at O, a, =0 and a,=¢*/r and therefore the acceleration is directed
(entirely) along OF, ie, towards the centre of the circle. This result does not
depend on the positon of O and therefore in general:

The acceleration of & particle moving with constant speed v along a circular
path of radius ris v /r and is directed rowards the centre of the circle.

This result is not approximate, it does not depend on the approximate relationship
sin 2 == x, bur on the limiting value of sin o /x as x tends to zero, and this is exactly

equal to unity.

A particle of mass 3.0 kg is attached to a point O on a smooth horizontal table by
micans of a light inextensible stoing of length 0.50m. The string is fully extended
and the particle moves on the table in a circular path about O with a constant
angular velocity of 8.0 radians per second. Calculate the tension in the string.

Solution

TE.D rads °

-
'ﬁ-__*JH.-_..-#

Befer to Fig. 6.3, By Mewton’s second law

Force = mass = acceletation

The ‘acceleration’ is the centriperal acceleration, °r. The *force’ is the centripetal
force and is provided by the tension, T, in the string. Therefore

T = 3.0 % 8.0° x 0.50

i.e. ' =%9N

*It s & penernl result that for a small angle =
gln ¢ %= 2  measured in radians
sin 2
x

Le. =l

In the limit as = vends to 2eTo (5in a)lfa = 1

e gl o=l IO
e z— 0 a i
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EXAMPLE 6.2

A small bead of mass m s threaded on a smooth circular wire of radius rand centre
O, and which is fixed in a verucal plane. The bead is projected with speed w from
the highest point, A, of the wire, Find the reaction on the bead due 1o the wire when

Fig. 6.4
Diagram for example 6.2

the bead is at 2, in termns of m, g, F, wand 0 where AOP.
Solution
-1 I
A

Refer o Fig, 6.4, Ler the speed of the bead at P

v; let the reactuon = K.

Consider the motion from A to P. Since the wire is smooth, no work is done against

friction and therefore
Increase in KE

3
! Lt !

] ] R

v o= w4 2er(l

Decrease in PE
meg [r o= rcos )

cos )

Applving Newton's second law 1o the motion along PO gives

a
s

mgcosll - B = m—

pig cos il — R =

B = my(3cosd-2) -

QUESTIONS 6A

1. A partcle mowves along a circular path of radius
3.0m with an angular velocity of 20rads".
Calculare: {a) the linear speed of the parucle,
(b} the angular velocity In revolutions per
second, {(¢) the ume for one revolution,
{(d} the centripetal acceleration,

2. Aparticle of mass 0,2 kg moves in a circular path
with an angular velocity of Srads ' under the
action of a centripetal force of 4 M, What is the
radius of the path?

r

Mmoo :
— ™+ 2gr (] — cos U}

.
i

r

3. What force s required to cause a body of mass
g romove ina ciecle of radivs 2 m at a consoant
rate of 4 revolutions per second?

4. An astronaut, as part of her training, 1s spunina
horizontal circle of radius 5m. If she can
withstand a maximum acceleration of Be, what
is the maximum angular velocity at which she
can remain consciogs?
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5.

A particle of mass B0 g rests at 16 cm from the
centre of a turntable, If the maximum frictional
force between the particle and the murntable is
0,72, what is the maximum angular velocty
at which the wrntable could rotate withour the
particle slipping?

The gravitational force on a sarellite of mass s at
a distance r from the centre of the Earth is
4.0 = 10" m/r*, Assuming that the Earth is a
sphere of radius 6.4 = 10° km, find the period of
revolution (in hours) of a satellite moving in a
circular orbit ar a height of 3.6 = 10 km above
the Earth's surface.

A small bead s threaded on a smooth ciecular
wire of radius rwhich is fixed in a vertical plane.

SECTION 4 MECHANYCS

the bead 15 projected from the lowest point of
the wire with speed +/6 gr. Find the speed of the
bead when it has wurned through: (a) 60°,
(b) 907, {c) 1807, (d) 300°.

An aeroplane loops the loop in avertical circle of
radius 200 m, with a speed of #0m s~ at the top
of the loop. The pilot has a mass of 80 kg. What
15 the tension in the strap holding him into his
seat when he is at the top of the loop?

A bucker of warer 15 swung in a vertical circle of
radius rin such a way that the bucket 15 upside
down when it is at the vop of the circle, What is
the minimum speed that the bucker may have at
this point if the water 1 to remain in it?

6.4 VEHICLES GOING ROUND BENDS

Fig. 6.5
Car going round a bend
on a banked commer

The centripetal force required to cause a car vo go round a bend on a level surface
has to be provided by the frictional force exerted on the tyres by the road. The need
to rely on friiction is removed if the road 15 suitably ‘banked’ (Fig. 6.5). The normal
reaction, K, of the road on the car acquires a horzontal component (R sin (1) as a
result of the banking. If the mass of the car is m and itis moving with constant speed
v around a bend of radius r, the centripetal force needs to provide an acceleration
of ©7/r, and therefore by Newton’s second law (equation [2.2])

Rsinfl = —— [6.7]

Apar view
ol gad

Reoogs 8

Y
I
|
[

Also, since there is no verocal acceleration,
Roosll = myg |6.8]
Dividing equation [6.7] by equation [6.8] leads 1o
"2

tan § = 3 [6.9]

If a railway train rounds a bend on a level wrack, the centripetal force is provided by
the push of the ourer rail on the fanges of the wheels. This causes a certain amount
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Flg. 6.6
Airgraft banking

of wear which could be avoided by banking the wack. Equation [6.9] obviously
applies to this situation two.

Equation [6.9] also gives the angle at which an aircraft should be banked in order to
turn (Fig. 6.6).

i Lift
mg mg = Wedght

6.5 THE CONICAL PENDULUM

Fig. 6.7
Action of & coneal
pendulum

If a pendulum bob is displaced sideways and then given the appropriate velocity in
adirection at right angles w its displacement, it will move ina horizontal circle and
the string will sweep out a cone. Such an arrangement is shown in Fig, 6.7, There
are two forces acting on the pendulum bob. These are:

(1) s welght (el and

(i) the tension in the siring (F).

-y,
-

-
fe— r
n

Fainw
1

-
/;‘--._.....--"'

Path of mation

mg

The honzontal component of the tension (F sin ) provides the neccessary

centripetal force. If the radius of the circular path is rand the speed of the bab is o,
then from Newton's second law

N R
Fsinll = — [6.10]
There is no vertical acceleration, and therefore

Feoosll = mg [G6.11]
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Dividing equation [6.10] by equation [6.11] leads to
2
tan ! = ﬂ—
gr
Mote that this is the same expression (equation [6.9]) that governs the angle at
which a turning vehicle must lean. This is not surprising - the forces acting in Fig.
6.7 have the same relatonship with each other as those in Fig. 6.5,
Bearing in mind that ¢ = wr (equation [6.3]), we obtain
2
tan ) = — v
!‘l‘
i.e. tan {1 = ﬂ
&
Referring vo Fig. 6.7, r = L sin #, and therefore
wt L sin
manfl = ——
x
, sinl L sin 0
i.c. =
cos I £
. ]
ie. = i
Therefore, from equarion [6.2], the period, T, is given by
T = 2n /2050 6.12]
g
EXAMPLE 6.3 .- (Fc ~8rsRigler f50 5 Rl - o Lt s i DGR

A pendulum bob of mass 2.0kg is anached to one end of a string of length 1.2 m.
The bob moves in a horizontal circle in such a way that the string is inclined at 30°
to thie vertical. Calculate:

{a) the ension in the strning,
(b1  the penod of the motion.
{Assume g = 10ms =)

Solution

The forces acting on the bob are shown in Fig. 6.8; m is the mass of the bob and Fis
the tension in the string. Since there is no vertical acceleration,

Foeos 30" = myg

. _ mg
e, F= cos M)

: S 20x10

i, F = AREED 33

i, Tension = 23 M
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Fig. 6.8
Diagram for Example 6.3

Applying Newton’s second law 1o the horizontal motion gives

Fsin 30" = mtr

where ¢ is the angular velocity of the bob and ris the radius of the circular path.
Moting that » = 1.2 sin 30" leads to

Fsin 30° = mee® = 1.2 sin 30

ie, F = 1.2 mo?®

Therefore, since m = 2.0kg and F =231 N,

[_23.1
Vizsx2

[dF]

i.e. @ o= 3103 rad 5!

From equation [6.2], period = 2n/w, and therefore

Period = 27/3.103 = 2.03

i.e, Period = 2.0%

The same result could have been obmined (though less sanshangly) by
substituting the relevant values into equation [6.12].

QUESTIONS 6B

1.

A particle of mass 0.20 kg is atached 1o one end
of a light inextensible string of length 50 cm.
The particle moves in a horizontal circle with an
angular velocity of 3.0rads™' with the string
inclined at & to the vertical. Find the value of i,

A particle is amached by means of a light,
inextensible string to a point 0,40 m above a
smooth, hornzontal table, The particle moves on
the table in a circle of radius 0. 30 m with angular
velocity . Find the reaction on the particle in
terms of . Hence find the maximum angular
velocity for which the particle can remain on the
table,

3. Aparticle of mass 0.25 kg 15 artached to one end

of a light inextensible string of length 3.0m.
The particle moves in a horizontal circle and the
string sweeps out the surface of a cone. The
maximum tension that the string can sustain is
12 M. Find the maximum angular velocity of
the particle.

A particle of mass 0.30kg moves with an
angular velocity of 10rads ' in a horizongal
circle of radius 20 cm inside a smooth hemu-
spherical bowl, Find the reaction of the bowl on
the particle and the radius of the bowl.



g

Fig. 6.11
Momenis of ineria of

cylindrical bodies

SECTION A: MECHANICS

(o )
ol .
Thick-walled i
cylinder af F= gmird + rfd
mass m
) Motn that the
Awiz af '”f oxpressions for
roiatian Tdao not involaa
tha lengths af
thés cylimders
Solid = yme
cylinder
of mass m

6.8 ANGULAR MOMENTUM

Consider a rigid body rotating with angular velocity «m about an axis which is
perpendicular to the paper and which passes through O (Fig. 6.9). Consider a
particle of the body which is at P and which has mass my and is at a perpendicular
distance r; from the axis, The body is rigid and therefore all of its particles have the
same angular velocity, w. Therefore, by equation [6.3) the linear velocity of Pis wry
and its linear momentum is migor.

The angular momentum of a particle about an axis 15 the product of its
linear momentum and the perpendicular distance of the particle from the axis.
Therefore the angular momentum about O of the particle at P is
R LEKF) .

If the rest of the body is made up of particles of masses ., #y, . . . , Whose distances
from the axis are ry, ra, . . ., respectively, the total angular momentum of the body
about O 15 given by

Angular momentum = My + M + ..
= wimr® +mar® + )

Therefore (from equation [6.13])

Angular momentum = Jw [6.15]

The Principle of Conservation of Angular
Momentum

The linear momenmum of a body moving along a straight line stays constant as long
as no resultant external force acts on it (section 2.7). On the other hand, if a body is
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rotating, it is its angular momentum that 15 conserved. This is known as the
principle of conservation of angular momentum and it can be stated as:

The total angular momentum of a system is constant unless an external
torque acts on It.

The principle is readily demonstrated by a spinning skater. If she brings her arms in
close to her body, her moment of inertia decreases (because some of her mass is
now closer to her axis of rotation than it was previously) and her angular velocty
increases wo such an extent that her angular momenmam (fie) is unchanged. Itis lefit
as an exercise for the reader to show that this results in the skarer’s rotational
kinetic energy increasing in the same ratio as her angular velocity, The reader
might also like to give some thought o what has provided this increase in energy.

6.9 THE ROTATIONAL FORM OF NEWTON'S SECOND
LAW

If a rorque is applied to a rigid body which is at rest, the body will start to rotate and
will rotate with an ever increasing angular velocity, 1.e. the application of the torque
causes the body to have an angular acceleration. Angular acceleration, =z, is
defined as rate of change of angular velocity, 1.e.

e
T
where
x = angular acceleration (rad s 7).

Thus, whereas in linear motion a force produces an acceleration which is relaved o
the force through Newton's second law, in rotational motion a torgue gives rise 1o
an angular acceleration. The reader will not be surprised to learn therefore, that
there is a rotational form of Mewton's second law which relares torque and angular
acceleration. It may be written as

=11 [6.16]

where
T
I = the moment of inertia of the body that is rotating (kgm™)

the applied torgue (N m)

x = the angular acceleration of the body (rads *).

In a more general situation in which the moment of inertia 1s not constant this

becomes

d
T == (lw) [6.17]

where % {fes) is the rate of change of angular momenmum.

Equations [6.16] and [6.17] are the rotational forms of equations [2.2] and [2.1]
respectively, Mote that when there is no exernal torque {(1.¢. when T = 0) equation
[6.17] reduces to Jor = a constant. Thus the principle of conservation of

angular momentum is merely a special case of the rotational form of
Newton's second law.
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6.10 THE EQUATIONS OF ROTATIONAL MOTION

Equations [6.18]-[6.21) describe the motion of bodies which are moving with
constant (uniform) angular acceleration.,

W = iy + [6.18]

w = gyt + 2af [6.19]

B = wet+tar [6.20]

§ = %[r.rru.a-r.u].t [6.21]
where

i = the angular velocity when ¢ = 0

i = the angular velocity at ime ¢

3 = the constant angular acceleration

i = the angle turmed throwgh in time ¢, (Note that if the direction of
motion reverses,  is the net angle turned through.)

These equations are analogous to those which govern uniformly accelerated linear
motion (equations [2.6]-[2.9]); with &, v, @ and 5 replaced by g, o0, = and 0
respectively.

EXAMPLE 6.4

Flg. .12
Diagram for Exampla 6.4

A fywheel is mounted on a horizontal axle which has a radius of (0,06 m. A constant
force of 50N is applied tangentally to the axle. If the moment of inertia of the
systemn (flywheel + axle) is 4 kg m”, calculare:

fa} the angular acceleration of the lywheel,

(b} the number of revolutions that the flywheel makes in 165 assuming that it
srarts from rest,

Solution

The arrangement is shown in Fig. 6.12.

= f kg




CIRCULAR MOTION AND ROTATION gt

ia) ‘The torque, T, 15 given by
T = 50 = 0.06 (equation [3.1])
ie. T =3Nm

If I{= 4kgm=} 15 the moment of inertia of the system and 2 is the angular
acceleration, then

T = [a (equaton [6.16])
3 = da
ie. @ = 0.75rads™

(b) If A is the angle turned through in tme (= 163) and wy(= 0} is the initial
angular velocity, then

g = m.;t+% xr? (equation [6.20])
f = 0+4x075x 16
ie. # = Q6rad
1 revolution = 2Znrad
MNumber of revolutions = 96/2xr = 15

QUESTIONS &6C

1. A wheel of moment of inertia 0.30kgm® 2. A flywheel with a moment of inertia of 5.0 kg m*
mounted on a fiixed axle accelerates uniformly moves from rest under the action of a torque of
from rest to an angular velocity of 60rads ' in 3.0Nm. Find: (a) the angular acceleration,
12 & Find: {a) the angular acceleration, (b) the (b} the angular velocty after 10 revolutions.

torque causing the wheel to accelerate, (c) the
number of revolutions in this 12 s period.

6.11 WORK DONE BY A TORQUE

Consider a rigid body turning through an angle & as a result of a force F being
applied vo it (Fig. 6.13). Suppose that the axis of rotation passes through O and is

Fig. 6.13
Calculation of work dona
by a torque
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perpendicular 1o the paper. Suppose also, that the perpendicular distance of the
line of action of the force from the axis is constant and is equal to r. The force
therefore gives rise to a constant torque, T, given by equation [3.1] as

T = Fr

As the body urns, the point of application of the force moves from P o PTalong the
arc PXF, and so moves a distance rif, The work done, W, is given by equation

[3.1] as

W = Fril
ic. W=T8 [6.22]
where

W = thework done (1)

T = the constant torque (N m)

{1 = the angle turned through (rad).

Motes (1) Thework done can have increased the rotational kinetic energy of the body,
andfor have been used to overcome any resistive forces (e.g. friction} that are
present.

{it) If the torque is not constant, equation [6.22] is replaced by

W:ITdﬂ

QUESTIONS 6D

1. A constant force of 30N is applied angencally 2. A disc and a hoop roll down a slope. They have

to the rim of a wheel mounted on a fixed axle

and which is imitially at rest. The wheel has a

moment of inerta of 0,20 Ir.grr.ﬂE and a radius of

15cm,

(a) What is the torque acting on the wheel?

(b) Find the work done on the wheel in 10
revalutions.

(c) Aszuming that no work is done against
friction, use energy considerations o find
the angular velocity of the wheel after 10
revolutions,

the same mass and the same radius.

(a) Which has the greater moment of inertia?
(b) Dwoes one loose more PE than the other?
{c) Which acquires the greater speed?

6.12 COMPARISON OF ROTATIONAL AND
TRANSLATIONAL MOTION

Each of the quantrtes that is used in the treatment of rotational motion is
analogous 1o one that features in the description of rranslatdonal moton, The
various “pairs’ are listed in Table 6.1
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w = the angular velocity of the flywheel when the mass reaches the

tloor,

m = the number of revolutions of the flywheel whilst the mass is falling,
and

= the work done against friction during each revolution, then

mpgh = Lmv? + LI 4oy f [6.23]

If the fiywheel makes a further #; revolutions before coming to rest, the work done
against friction is nz £ This is done at the expense of the kinetic energy of the
Aywheel, and therefore

Lier = mof
Substituting for f in equation [6.23] gives
mgh = Lme? + Ll + 2 (L le?) 6.24]
"2

The velocity with which the mass hits the floor 15 taice 1ts average velocity, and
therefore
Zh

o o= 511:L||:IL|.1=E
I i

where 1 is the time the mass takes to reach the ground and ris the radius of the axle.
Substtuting for v and w in equation [6.24] and rearranging gives

r-e (5) (55)

The mass m is found by using a balance; rand & are measured with vernier calipers
and a metre rule respectively; £ 15 measured with a stopwatch; g is known; and my
and #; are counted - hence I,
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SIMPLE HARMONIC MOTION

7.1 DEFINITION, EQUATIONS, EXPLANATIONS

There are many types of vibration but perhaps the most common is that which is
known as simple harmonic moton (SHM). It is important not only because there
are many examples of it but also because all other vibrations can be treated as if
they are composed of simple harmonic vibragons. It 15 the way in which the
acceleration of a body depends on its position that determines the partcular type
of vibration a body 15 undergoing.

If a body moves in such a way thar its acceleraton is directed towards a fixed
point inits path and is directly proportional to its distance from that pomnt, the
body is moving with simple harmonic motion.

It follows that the “fixed point” 15 the equilibrium position, 1.¢. the position at which
the body would come 1o rest if it were 1o lose all of its energy.

If a body is vibrating with simple harmonic motion, its moton can be described by
an equation of the form

':I X =
F = —m"X i? 1 ]
where

d’x : 2

3 the acceleration of the body (m s °)

x = the displacement of the body from its equilibnium positon, 1.e.
from the ‘fixed point” in its path {m)

e = apositive constant (s 1}

Notes (i) “The minus sign in equation [7.1] ensures thar the acceleration is always
directed towards the equilibrium position, as required by the definition.

{ii) Theconstant of proportionality is written as« (rather than w) because of the
connection with circular motion - see secuon 7.2,

Integrating equation [7.1] leads to
v o= 4 ava - [7.2]

a5
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and

x = acosal [7.3]
where

v = the velocity of the body at ime ¢ (ms™')

a = the amplitude of the motion, i.¢. the maximum displacement from
the equilibrium position (m).

Equation [7.3] requires that x = @ when 1 = 0. An alternative expression for x is
x = asined; this requires that x = 0 when ¢ = 0, i.e. that the motion is taken o
start from the equilibrium position rather than the point of Mmaximum positve
displacement,

Timing may commence when the body is at any point of its oscillation. To take
account of this the expression

x = asin (o +£)

is used, in which &, the initial phase angle or epoch, is a constant expressed in
radians and given by sine = x;/a, where x, is the value of x at ¢ = 0. The reader
should confirm thart this reduces o x = a sin (wt + 1/2) = a cos wt when x = a
at ¢ = 0, and reduces to x = a sin (wr + 0) = asinor when x =0 at 1 = 0.

The period T of the motion (1.¢. the tme for one complete oscillation) is given by
T = 2nfw [7.4]

Mote that for any particular system the period is independent of the
amplitude. For example, if the ampluode of oscillation of a simple pendulum is
increased, its average speed increases and there is no change in the ome it takes o
complete an oscillation.*

Fig. 7.1 illustrates the positional dependence of some of the parameters which are
associated with the motion of a body whose oscillations are simple harmonic, The
positive direction of x is, as usual, toward the right and therefore whenever the
body 15 moving to the left its velocity 1s negative. Also, the acceleration is negative
when it is directed rowards the left. (Note that a negative acceleration must not be
confused with retardation; the body slows down only when its acceleration is in the
opposite direction to its velocity.)

As the body moves from A towards its equilibrium positon, O, its speed increases
and reaches a maximum at O, During this time its acceleration decreases o zero,
Although there 15 no force acting on the body when it is at O, its inertia carries it
through to B, From O 1o B there iz a retarding force; the speed of the body
decreases and is momentanly zero at B, As the body moves back to O its speed
increases, and then decreases again from O 10 A

Bearing in mind that the acceleration of a body of constant mass is proportional o
the force acting on it, we see that a body which is moving with simple harmonic
motion does so because there is a force acting on it which is proportional to the
displacement of the body from its equilibrium position and is directed vowards that

*The motson of a simple pendulom is not exacily simple harmonic and cherefore this stcatement is only
approsimately tree.
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Fg. 7.1
Characteristics of SHM

EXAMPLE 7.1

a7
Maximiem PE Zarg PE Maximum PE

Zera KE Maximum KE Zero KE

B (] i

i i ¥ - x
r= M [ L F=mn
x A = a X 1
v o= 10 ] ¥ = 0
] ] E =0 X = -@'a
r= T2 ! 374 P =T
¥ = -4 K 4] x &
W o (. | v = 0
X = ull g = 0 § o= —wlag

I Node: x noceleration)

position. Such is the case, for example, of a body oscillating on the end of a spring
which obeys Hooke's law (section 11.1). If the body is pulled down below its
equilibrium position and then released, a net upward force acts on it because the
tension in the spring is greater than the weight of the bodyv. The grearer the
downward displacement, the greater the tension and therefore the greater the
upward directed force. When the body is above its equilibrium positon its weight
is greater than the tension and so the resultant force s downwards.

A particle is moving with SHM of period 8.05 and amplitude 5.0 m. Find: (a) the
speed of the particle when it is 3.0m from the centre of its motion, (b) the
maximum speed, (c) the maximum accelerarion.

Solution

The equations for speed and acceleration invelve w; our first step therefore is 1o

find .

T = 2njw
w = /T = 2n/8.0 = 0.785 5!
(a) 0 o= o yal -yt

v = £0.785 v5.0F - 3.07 = +3.14ms!
i.e. Speed 3.0m from centre = 3.1ms!

(b) It follows from equation [7.2] with ¥ = 0 thart the maximum speed v, 15
given by

i
0.785 x 5.0 = 393ms’
ie. Maximum speed = 3.9ms ™’

Tanax

Treux
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(¢} It follows from eguation [7.1] that the magnitude of the acceleration is
greatest when x = £ a and is given by

maximum acceleration = o'a
= (0.785)" x50 = 3.08ms"?
e, Mavimum acceleration = 3. 1ms ?

EXAMPLE 7.2 e

Fig. 7.2
Diagram for Example 7.2

iNote the use of radiansg,
mof degrees.)

ix iz the displacement
from O, it is not tha
distance from D 1o B}

A particle is moving with SHM of period 24 s between two poines, A and B (Fig.
7.2). Find the dme taken for the particle o travel from: {2) Aw B, (b) D w B,
€ O, {d Db, (e CoE

40m | 40m
i ¢ ey
I0m
-— &
3.0m
15m

Solution

Let 1,z = time from A w B, tp = time from B w C, erc.
(a) ixy = time for half an oscillaton = 125

(b} ton = ume for quarter of an oscillation = 6§

fc) Amplitude(a) = OA = OB = 4.0m. w = 2n/T = 22/24 = 0.262s° "
Therefore by

X = @ 8in el
OC = 4.0sin (0.262 )
2.0 = 4.0 smn (0.262 15 )
sin (0.262¢8:) = 0.5
026215 = sin! (0.5) = E — 0,524 rad
tge: = 208
(d} fom = fgp. Therefore by
X = QCO8 kf
0D = 4.0cos (0.26254)
3.0 = 4.0 cos (0.262 fps)
cos (0.2621h) = 0.75
0,262y = cos™' (0.75) = 0.723 rad
fpp = 2.88
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(&) tcg = fog — loc. Since oo has already been found, it remains to find top.
By
X = asinml
OE = 4.0sin (0.262 fyy)
35 = 4.05n (0.262 t5g)
sin (0.262 tog) = 0.875
0262t = sin ' (0.875) = 1.065 rad
g = 4.15
e = e — e = 4.1 -20 = 2138

QUESTIONS 7A 0

1. A particle is moving with SHM of period 165

4. A particle moves with SHM of pernod 4.0 5 and

and amplitude 10m. Find the speed of the

particle when it is 6.0m from its equilibrium
position.

How far is the particle in question 1 from its
equilibrium position 1.5 s after passing through
it¥ What is its speed at this ime?

A tuning fork has a frequency of 256 Hz. What is
the maximum speed of the tips of the prongs if
they each oscillate with SHM of amplitude
0. 40 mm. (Assume that the tps of the prongs
move in straight lines.)

MOTION

amplitude 4.0m, Iz displacement from the
equilibrium position is x. Find the time taken
foritto travel: (a) fromx = 4.0mtox = 3.0m,
(b) rom x= - 4.0m to x = 3.0m, ()} from
x=0 to x=30m, (d) from x=1.0m to
x=3.0m.

A particle moving with SHM has a speed of
8.0ms~! and an acceleration of 12ms~? when
it 15 3.0 m from its equilibrium position. Find:
(a) the amplitude of the moton, (b) the
maximum velocity, () the maximum accelera-
tion.

7.2 RELATIONSHIP BETWEEN SHM AND CIRCULAR

Consider a pamticle P moving with constant angular velocity w around the
circumference of a circle of radius a (Fig. 7.3). Consider, in particular, the motion
of N, the point at which the perpendicular from P meets the diameter ADB.

The acceleration of P is o°a (see section 6.3) and is directed towards O, It follows
that the x-component of the acceleration of P is

— o a cos i

(The accelerarion is direcred towards the left, i.e. itis in the negative direction of x,
hence the inclusion of the minus sign.) Since N is always vertically below P, its
acceleration d*x/dr” is equal to the x-component of the acceleration of P and

therefore is given by
&
dr?

= —m acos

[7.5]
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Fig. 7.3 4
To illustrate the
relationship between
SHM and circular motion \
i
R ] .
# i
: :
f O
" o B L

But cos ! = OM/a, and ON is equal to x, the displacement of N, and therefore
cos ! = x/a. Substituting for cos {f in equation [7.5] gives

'Ii:-: ¥
F = =X

Since this is the equation of motien of a particle which i3 moving with simple
harmonic motion, the motion of W 15 simple harmonic. N completes one cycle in
the time it takes P to complete one revolution, and therefore

Period of Period of 2%

romtion of P~ oscillation of N~ @

7.3 THE SIMPLE PENDULUM

Consider a pendulum bob, P, of mass m antached o a light, inextensible string of
length L. Suppose that the pendulum is suspended from a fived point, O, and that
when the string is at an angle @ to the vertical the velocity of the bob is = (Fig. 7.4).

The forces acting on the bob are its weight, mg, and the tension, F, in the string.

Fig. 7.4
To determine the pariod

of osclllation of a simple
pandulum
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&

Consider the motion perpendicular to PO, By Newton's second law

do

dr

The velocity, v, can be wotten in terms of the angular velocicy difdr as
di

W= = —

dr

(The minus sign 1s necessary because s measured from the vertical and therefore
v is in the direction of & decreasing.) Substruting for v gives

pig sin i = m

. d*0
pig sin il = —mlL ia
) di .
1L.g. F = = E gin

If the amplitude of oscillation is small, @ is small and therefore sin & == #, in which
case, to a reasonable approximation

d*f £

7 i) i [7.6]
Since both g and L are positive constants, so also is g/L and therefore equation
[7.6] 15 of the same form as eguation [7.1]. It follows that, to a reasonable
approximation, the motion of a simple pendulum is simple harmonic. Further, the
posiive constant w® of equation [7.1] is equal to g/L and therefore, by equation
[7.4], the pericd T of a simple pendulum 15 given by

L
T g f— 7.7
\ﬂ: [7.7]

(1)  Equation [7.7] does not involve m and therefore the period of oscillation of
a simple pendulum is independent of its mass. This can be shown 1o be
true no matter what the amplitude of oscillation.

{(ii) Even for amplitudes of oscillation of as much as 15” the period calculated on
the basis of equation [7.7] is accurate to within %%

7.4 DETERMINATION OF g USING A SIMPLE
PENDULUM

A reasonably accurate determination of the acceleration due 1o gravity ¢ can be
made by measuring the period of oscillation and the length of a simple pendulum.

The pendulum, in the form of a small lead sphere attached to a suitable length

(about 1 m) of sewing thread, should be suspended in the manner shown in Fig.
7.5. The wooden blocks should have well-defined right-angled edges at X so that
there is no possibility of the pendulum swinging about more than one point.

Onice the apparatus has been assembled the procedure outlined below should be
followed.

(i) Measure the length L. (Note that the measurement i1s made to the centre of
the bob.) Take care not to stretch the thread.
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Fig. 7.5
Apparatus for the
determination of g

Notes
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E'%‘ Waoden blocks

=

/ Small kead boh

(ii) Displace the pendulum through about 5° and then release it so that it
executes oscillatons of small amphude.

(i) Determine the period T by using a stop-watch to time 30 oscillations. By
using 50 oscillatons, rather than one, the error that anses through being
upable o start and stop the watch when the pendulum is exactly in the
intended position is greatly reduced. The error which remains is minimized
by making the timings to the mid-point of the motion because that is where
the speed of the pendulum is greatest.

(ivl] Repeat (i), (i) and (i) for about five more values of L.
From the theory of the simple pendulum

T = 2= UII%

2
y L ]
E
It follows that the gradient of a graph of T2 against [ is 47°/g, in which case g can be

determined by plotting such a graph and measuring its gradient.

(i} A graph of T against 'L has a gradient of 2n/, /g and therefore such a graph
could have been used to determine g. The reason for choosing to plot T2
against [ is that the graph is linear and its gradient is 42°/¢ even if there is an
error in the measurement of L, providing it is a constant error.

(ii} The approximation made in deriving equation [7.7)] leads to an error of less
than 0.05% if the amplitude of oscillavon does not exceed 5% This 13
ingignificant compared with the errors thart are likely o be involved in the
measurements of L and T,

7.5 A BODY ON A SPRING

The exrension of a spring which obevs Hooke's law (secton 11.1) is proportional
to the tension which has produced it. Therefore

Tension = k x extension [7.8]
where

k = a constant of proportionality which is known as the spring

constant. It 15 eqgual to the tension required to produce unit
extension (Nm™'),
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Fig. 7.6
Crscillation of a body on a
spring

83

Suppose that a suspended spring which obey: Hooke's low has a body of mass m
attached to its lower end. In Fig, 7.6{a) the body is at rest in its equilibrium
position. There can be no resultant force acting on the body and therefore the
rension Fy is given by

Fo = mg

P

Natural
length
of spring

i

It follows from equation [7.8] that since the extension 1s ¢

mg = ke [7.9]
Suppose now that the body 15 displaced downwards through a distance x (Fig.
7.6(b)). The body is no longer in equilibrium and feels a ner upward force of
[F — mg), where IF s the instantancous value of the tension in the EPTING.
Therefore by Mewton's second law

5

" dx
dr?
(The minus sign is present because the resultant force on the body 15 direcred

upwards and therefore acts so as to decrease x.) By equation [7.5], since the wotal
EXTENsion 18 now (¢ + x)

Feomg = —1 710

F = Be4x)
Therefore from equation [7.10]
kle+x) - - md—zx
I. d .I “Hg - d12

Burt, from equation [7.9], mg = k¢, and therefore

d’x

ﬂ = - MF
, dx k . .
j F = - ;I’ l?-ll-]

Since both & and m are positive constants, so also is &/m and therefore equation
[7.11] may be written as

dz:.' ,:
—_— = =X
dr?
where o is a positive constant equal o &/m. This equation represents simple

harmonic metion and therefore the moton of the body is simple harmonic, Since
o = k/m, equation[7.4] gives the period of the motion as
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Period = 2= ‘k@ [7.12)

Exceptin the idealized case of a spring of zero mass, it is necessary to take account
of the fact that the spring itself oscillates, It can be shown that m needs to be
replaced by (m + m,), where m, is a constant known as the effective mass of the
spring. (Mote that m, is less than the actual mass of the spring because it is the
lowest coil which oscillates with the full amplitude of the suspended body.) With
this modification then, equation [7.12] becomes

m 4

Period = 2= % [7.13]

7.6 DETERMINATION OF g BY USING A MASS ON AN
OSCILLATING SPRING

From equation [7.9], m = ke/g. Substituting for m in equation [7.13] and
squaring leads to

z 2 |I!"3'."I§"|':"i"|s
I~ = dn (—.k )

where T is the period of oscillation. Removing the brackets gives

2 2
g _ A2 i,
'y &

[7.14]

Thus a graph of T° against ¢ is linear (Fig. 7.7) and has a gradient of 4=°/g,
and therefore enables g to be determined. Such a graph can be obtained by
adding a number of different masses to the spring and measunng the statc
extension ¢ which each produces, together with the corresponding period of

oscillation T
Fig. 7.7 T
T against @ for a body
oscillating on a spring T Gradient = dnig
hemcn g
#
dzim, -
T R
o F

Mote “When ¢ =0, T? = 4x? m, /k, and therefore m, can be found providing & is known.

The value of & is found by plotting » against ¢ since, by equation [7.9], the gradient
of such a graph s k/g.
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7.7 THE WORK DONE IN STRETCHING A SPRING

The tension, F, in a spring whose extension is x and which obeys Hooke's law is
given by

F = kx
where & is the spring constant. If the extension is increased by dx where dx is s0
small that F can be considered constant, then (by egquation [3.1]) the work done,

A W, is given by
a W F éx
i.e. dW = kxix

The total work done in increasing the extension from 0 to x, 1e the elastic
potential energy stored in the spring when its extension is x, is given by W, where

[-r“'=lk_td.'q'
@

1.e. W = Lkx*

2

Substituting for & from F =kx gives W =
W = F/(2k), i.e.

L T :
3 Fx; substituting for x gives

CONSOLIDATION !

A body is moving with SHM if its acceleration is directed towards a fixed point in
its path and is directly proportional to its distance from that point.

The amplitude of the motion (2) is the maximum displacement from the

equilibrium position,
If a body is moving with SHM, its motion can be described by an equation of the
form
dix = 11
ET;;‘ = =g X [7.1]

The converse is also true, and therefore if we are required to show that a body is
moving with SHM, it is sufficient 10 show that 1ts motion 15 described by an
equation of the same form as equation [7.1].

v =twvael - 7.2]
X = acosof (if x=awhent=10
X = asin i (if x = 0 when ¢ = 0)

T'=siafw f=1/T
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Magnitude of maximum scceleration = ' a at x = £ g)
Mapnmitude of maximum velocity = wa fatx =10

To obtain v in terms of ¢ substitute for ¥ in equation [7.2).

The period (17 is independent of the amplitude (a).

The first step in solving many SHM problems is to find .

L
T - E:v.; (Simple pendulum)

(Mass on a spring)

F*
. 1 e
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GRAVITATION AND
GRAVITY

8.1 KEPLER'S LAWS

‘Throughout the last few decades of the sixteenth century, Tycho Brahe made
precise measurements of the positions of the planets and various other bodies in

the Solar System. Johannes Kepler made a detailed analysis of the measurements,
and by 1619 had announced three laws which describe planetary motion.

1 The orbit of each planet is an ellipse which has the Sun atone of its foci.

2 Each planet moves in such a way that the [imaginary) line joining it to
the Sun sweeps out equal areas in equal times

3 The squares of the periods of revolution of the planets about the Sun
are proportional o the cubes of their mean distances from it.

Fig. 8.1 illustrares law 2 but gives an exaggerated idea of the eccentricity of most
planetary orbits, With the exceptions of Mercury and Pluro, the planes follow very

nearly circular paths.
B.1 c
; ; o The average speed of the
Nustration of Keplar's pilariel batvrsan & and B
second law B is greater than between
L oand D and in sush &
wary that
Area ABS - Area CDS
A
San at one
fecus of allipss

8.2 NEWTON’'S LAW OF UNIVERSAL GRAVITATION

Abourt fifty vears after Kepler's laws had been announced, Isaac Mewton showed
that any body which moves about the Sun in accordance with Kepler's second law
must be acred on by a force which is directed towards the Sun. He was able to show

87
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that if this force is inversely proportional to the square of the distance of the body
from the Sun, then the body must move along a path which is a conic section (i.e.
elliptical, circular, parabolic or hyperbolic). Newron then showed that when the
path is elliptical or circular the period of revolution is given by Kepler's third law.
Thus, a centrally directed inverse square law of atracton is consistent with all
three of Kepler's laws. Mewton proposed that the planers are held in their orbits by
just such a force. He further proposed thar it is the same ype of force which
maintains the Moon in its orbit about the Earth, and which the Earth exerts on a
body when it causes it to fall to the ground. Extending these ideas, Newton
proposed that every body in the Universe attracts every other with a force which 1s
inversely proportional to the square of their separation. His next step was to tum
his amention o the masses of the bodies involved,

According to Newton's third law, if the Earth exerts a force on a body, then that
same body must exert a force of equal magnitude on the Earth. Newton knew that
the force exerted on a body by the Earth is proportional to the mass of the body. He
saw no reason why the body should behave any differently from the Earth, in which
case the force exerted on the Earth by the body must be proportional to the mass of
the Earth. Since the two forces are equal, a change in one must be accompanied by
an equal change in the other. It follows that each force must be proportional to the
product of the Earth's mass and the mass of the body.

The ideas of the last two paragraphs are summarised in Newton's law of
universal gravitation.

Every particle in the Universe atracts every other with a force which is
proportional to the product of their masses and inversely proportional to the
square of their separation.

Thus
- L Bl
F=0— [8.1]
where
F = the gravitational force of attracrion between two particles whose

masses are pry and s, and which are a distance rapart

r = a constant of proportionality known as the universal gravita-
tional constant (= 6.67 = 107" Nm kg™ *).

Equation [8.1] is concermed with particles (i.e. point masses) but, in the
circumstances listed below, it can also be used for bodies of masses m; and m»
whose centres are a distance r apart.

(a) Itis wvalid for two bodies of any size provided that they cach have spherical
symmetry. { The Sun and the Earth is a good approximanion.)

(b It is a good approximation when one body has spherical symmetry and the
other is small compared with the separation of their centres (e.g. the Earth
and a brick).

() Itis a good approximation when neither body has spherical symmetry, but
where both are small compared with the separation of their centres (e.g.
two bricks a few metres apart).
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8.3 TO SHOW THAT KEPLER'S THIRD LAW IS

CONSISTENT WITH F — G T2

Consider a planet of mass m moving about the Sun in a circular® orbit of radius r.
Suppose that the mass of the Sun is m, and that the angular velocity of the planer is
e (Fig. 8.2].

Fig. 8.2 Flanet of
Force on planet in circular mass m
mation arcund the Sun

w
ﬂ Sxin LMARE Mgl

The force F which provides the centripetal acceleration o7 r (section 6.3) is given
by Mewron's second law as

F = me’r 5.2
By Mewton's law of universal gravitation {(equation [B.1]}
e,
F = 3

Therefore, from equation [8.2]

)
L=

€]

F

But w = 2a/T, where T is the period of revolution of the planet, and therefore

. wim gn*
I'_E—; = W —r
F T

A
i.e. T? = G rt
Since 7, mr, and m have the same values no matter which planet 1s being considered,
T xr?
This is Kepler's third law; it has been denived on the basis of Mewton's law of
universal gravitation and therefore the two laws are consistent.

*The mathematics required to treat the general case of an elliprcal orhic i bevond the scope of this
bk but leads o the sarme nesull,
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8.4 NEWTON'S TEST OF THE INVERSE SQUARE LAW

The last two sections make it clear that Mewton's law of universal gravitation is
consistent with Kepler’s laws of planetary motion. However, the forces which hold
the planets in their orbits are due, in every case, to the Sun. In order to show that
gravitational attraction is universal, Mewton needed o test it In croumstances
which did not invalve the Sun. The obvious test was to apply his ideas to the Earth-
Moon system.

If & body of mass s 15 at the surface of the Earth, the force acting on the body is its
welght myp. This same force is given by the law of universal gravitation as

(P
i)

&

e
where m and ». are respectively the mass and radios of the Earth. Therefore

(r nw-:, = M
g~
e, G =S 8.3
R
The law of universal gravitation gives the force exerted by the Earth on the Moon in
its orbit as
G_ FFlpy M0

5

Frg

where wiy 15 the mass of the Moon and ry 15 the radius of its orbit. It is this force
which provides the Moon's centripetal acceleration o Py, and therefore

. WMy Mg

iy —— = MMy o
Fu®
iy
. I 1
ie G— = wny
P

But w, the angular velocity of the Moon, is equal to 2r/ T where T'is its period of
revolution about the Earth, and therefore
. Mg 4?:1_!',‘1
rﬂ! - T?

Substituting for & from equaton [8.3] leads to
4:.!2 r.MJ-

Tp.?
The value of r; which was available to Newton was poor by present-day standards.
Even so, equation [8.4] gave a value for g that was sufhiciently close to the accepted

value for Newton to conclude that the Earth exerted the same type of force on the
Moon as the Sun did on the planets.

QUESTIONS BA

1. Find the gravitatdonal force of atrractdon 2. ‘The average orbital radi abowt the Sun of the
between two 10 kg particles which are 5.0cm Earth and Mars are 1.5x%10'"m and
apart. 2.3 % 10" m respectively. How many (Earth)

(G=6T=10"Nm*kg ) vears does it take Mars to complete its orbit?
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3. Calculate the mass of the Earth by considering (Radius of Earth = 6.4 x 10" km,
the force it exerts on a particle of mass m at its £2=98ms 3 G=67x10"Nm’kg %)
surface.

8.5 THE MASS OF THE EARTH

In 1798, a hundred and twenty one years after Newton had proposed the law of
universal gravitation, Henry Cavendish made the first laboratory determination of
the value of G.* Once this had been done, it was possible to obtain a value for the
mass of the Earth on the basis of equation [8.3]. (Newton had worked the
calculation in the opposite direction. He estimated G by using a value for myg which
was based on a guess at the density of the Earth.)

8.6 DEPENDENCE OF THE ACCELERATION DUE TO
GRAVITY ON DISTANCE FROM THE CENTRE OF
THE EARTH

The density of the Earth varies with depth but is largely independent of direction,
It follows that the Earth can be treated as being made up of a large number of
spherical shells of uniform density. This is useful, for it can be shown that:

(i) the acceleration due to gravity outside a spherical shell of uniform
density is the same as it would be if the entire mass of the shell were
concentrated at its centre, and

(n) the acceleration due to gravity at all points inside a spherical shell of
uniform density is zero.

These results will now be used to obtain expressions for the acceleration due to
gravity both above and below the surface of the Earth.

Outside the Earth (i.e. r>rg)

The acceleration due to gravity, g, at the surface of the Earth is given by rearranging
equation [8.3] as
g =G 8.5]

re*

where my and r, are respectively the mass and the radius of the Earth.

It follows from (i) that the acceleration due to gravity at a point outside the Earth
has the value it would have if the entire mass of the Earth were at its centre.
Thercfore, by analogy with equation [8.5], the acceleration due to gravity g’ ata
distance r from the centre of the Earth when r > rg is given by

' mE r
¢ =G 18.6]

*Cavendish had two lead spheres attached (one) to each end of a honzontal beam suspended by a
silvered copper wire. When two larger spheres were brought up to the smaller ones, they deflected
under the action of the gravitational force and twisted the suspension. The wire had been calibrated
previously so that the strength of the force could be determined by measurning the angle through
which the wire was twisted. An improved version of the expeniment was performed by Boys in 1895,
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Dividing equation [8.6] by equation [8.5] leads to
2
’ r . -
=3t [8.7]

Inside the Earth (i.e. r < rg)

Consider a point P (Fig. 8.3) which is inside the Earth and at a distance r from its
centre. From (1) the acceleration due to gravity ¢ ' at P is due only to the sphere of
radius r. If the mass of this sphere is m, then by analogy with equation [3.5]

i ., IR

Saurface af
= tha Earth
s

If the Earth 15 assumed o have umform densitv®, p, then
m=dar'p and my = 1argtp

and therefore
1., S
my rg?

Substtuting for m in equation [B.8] gives

g =G

rg”
Replacing Gmy fre” by g (equation [B.5]) gives

F 5 -
= — =0
4 e g j5- 4

The variation of g’ as a functon of Fon the basis of equation [B.7] and equation
[8.9] is shown in Fig. 8.4. Note that each of these equations reduces to ' = ¢
when r = rg.

Assumes - e

unifoam
density \\\

]
i
1

Ingidn i
thas Earth I the Earth

¥

=iy

*As has been stated at the beginning of this section, the density of the Earth i not uniform, 1t s,
however, normal practice, at this level, o assume that it is in carmying ok this caleulation.
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e

8.7 ESCAPE VELOCITY

MNotes

If a ball is thrown upwards from the surface of the Earth, its speed decreases from
the moment it 15 projected due to the retarding effect of the Earth's gravitational
field. The height which the ball ultmately attains depends on the speed with which
it is projected — the greater the speed, the greater the height, If the ball were
to be required to escape from the Earth, it would have to be projected with a
velocity which is at least grear enough for the ball 1w reach infinity before
coming to rest. The minimum velocity that achieves this is known as the escape

velocity.

Consider a body of mass m being projected upwards with velocity v from the
Earth's surface. When the body is at a distance r from the centre of the Earth it will
feel a gravitational force of attraction, F, due to the Earth and given by equanon
[8.1] as

Mg

F=G—
=

where mg is the mass of the Earth. In moving a small distance dr against this force,
the work done 40 ar the expense of the kineric energy of the body is given by
equation [3.1] as

PR

oW = G or

2
Therefore the total work done, ¥, in moving from the Earth's surface (where
r = rg) to infinity (where r = oo is given by

W = rs'fidr
=

L

LE. W = Gong [_lJ

le. W =g1®
g

If the body is to be able to do this amount of work (and so escape), it needs 1o have
at least this amount of kinetic energy at the moment it 1s projected. The escape
velocity v is therefore given by

Lme? = G
F] i
i . | 20 nrg
o= Il,'l_"l-' [8.10]

Substituting known values into equation [B,10] leads 1o v = 11 kms™",

{iy This calaculation applies only to bodies which are not being driven, i.e. w
projectiles, A body which is in powered flight does not have to rely on its
initial kinetic energy to overcome the Earth's gravitational attraction, and
therefore need never reach the escape velocity.

{ii) The escape velocity does not depend on the direction of projection. This
is because the kinetic cnergy a body loses in reaching any particular
height depends only on the height concemed and not on the path taken

to reach it
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8.8 SATELLITE ORBITS

Consider a satellite of mass m orbiting the Earth with speed v along a circular path
of radius r. The centripetal force, me” (v, is provided by the gravitational attraction
of the Earth, and is given by Newton's law of universal gravitation as Gromg /v,
where my is the mass of the Earth. Therefore

mts” I
= 7 E

F

= —
i Gml‘!
|

i.f. kL — 1|‘|

[8.11]

F
The orbital period, T, is given by T = 2ar/v, and therefore by equaton [B.11]

T = 2¢ IllIII| ;,-.'-

G [8.12]

Since both 7 and s are constants, it follows from equations [B.11] and [8.12] that
both the speed and the orbital period of an Earth satellite depend only on
the radius of its orbit. Two situations arc of particular interest.

An Orbit Close to the Earth's Surface

To a good approximation, for a satellive which is less than about 200 km above the
Earth we may put r = rg, where rg is the radius of the Earth, Substituting for r in
equations [8.11] and [8.12] gives

-
[ Gmg [ rd
v = 4/ and T = 2my/
1!' FE 1|'| Crmp

Taking G = 6.7« 107" Nm’ kg™, mg = 6.0 x 10" kg and rg = 6.4 x 10°m,
we find

v = TO0kms' and T = B5minutes

Geostationary (synchronous) Orbit

A satellite with an orbital period of 24 hours will always be at the same point above
the Earth's surface {providing, of course, it is above the equator and s moving in
the same direction as the Earth is rotating). Sarellites of this type can be used 1o
relay television signals and telephone messages (by radio link) from one point on
the Earth's surface to another. Examples of these communications satellites are
Swyncom 2, Syncom 3 and Early Bird,

Substituting G = 6.7 = 10°" Nm kg%, m; = 6.0 x 10** kg and T = 24 hours
(= B.64 = 10"s) in equation [8.12] gives

ro= 42400 km

Having calculated rwe can use equation [8.11] {or 2ar = ¢T) to calculate v. We
find

v = 31kms'
Since rg = 6.4 = 10% m, the height above the Earth's surface of the geostationary
orbit is

42 400 — 6400 = 36 000 km
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Notes (i)

(i)

(iii)

[

Many artificial sarellites acrually move in elliptical orbits. For example, the
orbit of Spumik 1 wok it from less than 250 km to over 900 km above the
surface of the Earth. This is not so far from circular as it mighe at firse seem.
The radius of the Earth is abouwr 6400 ki, and therefore the semi-major axis
of the ellipse was only about 1094 bigger than the semi-minor axis,

The Moon, of course, 15 an Barth satellive and therefore equatons [8.11]
and [8,12] also apply to the Moon,

When a satellite 15 to be placed in orbit it is first carnied to the desired height
by rocket. Itis then given the necessary tengential velocity (o) by fining rocker
engines which are aligned parallel to the Earth's surface. If the satellite s stall
moving upwards when it reaches orbital height, it needs also to be given a
downward directed thrust at this stage.

8.9 THE VARIATION OF g WITH LATITUDE

The acceleration due to gravity at the equator is 9. 78 m s~ %, whereas at the poles it
is 9.B3ms “. There are two main causes of this variation.

(i)

(i)

The equarorial radius of the Earth is greater than the polar radius, Therefore
a body at the equator is slightly further away from the centre of the Earth and

consequenty feels a smaller gravitatonal atraction. This accounts for
0.02m s * of the observed difference of 0.05 ms 2.

Because the Earth rotates, its gravitational pull on a body at the equator has to
provide the body with a centripetal acceleration of 0.03m s . This does not
apply at the poles,

8.10 WEIGHTLESSNESS

Consider an object of mass m hanging from a spring balance which is itself
hanging from the roof of a lift (Fig. 8.5). The body is subjected to a downward
directed force my due to the Earth, and an upward directed force T, say, due to the
tension in the spring. The net downward force 15 (mg — T, and therefore by
Mewton's second law

mg—T = ma [B.13]

where a is the downward directed acceleration of the body.

Fig. B.5
Object suspanded by a
gprimg in & lify

ln

4

If the lift is stationary or is moving with copstant speed, o = 0 and therefore, by
equation [B.13], T = mg, Le, the balance registers the weight of the body as my.
However, if the lift is falling freely under graviry, both it and the body have a
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downward directed acceleration of g, i.e. a = g. It follows from equation [8.13]
that T = 0, i.e. the balance registers the weight of the body as zero. It is usual to
refer to a body in such a situation as being weightless. The term should be used
with care; a gravitational pull of magnitude myg acts on the body whether itis in free
fall or not, and therefore, in the strictest sense 1t has weight even when in free fall.
The reason it is said o be weightless is that, whilst falling freely, it exens no force
on its support. Similarly, a man standing on the floor of a lift would exert no force
on the floor if the lift were in free fall. In accordance with Newton's third law, the
floor of the lift would exert no upward push on the man and therefore he would not
have the sensation of weight.

An astronaut in an orbiting spacecraft has a centripetal acceleration equal o g's
where g’ is the acceleration due to gravity at the height of the orbit. The spacecraft
has the same centripetal acceleration. The astronaut therefore has no acceleration
relative 1o his spacecrafl, i.e. he is weightless,

A body is weightless in the strictest sense only at a point where there s no
gravitational field. An example of such a pointis vo be found berween the Earth and
the Moon where the two gravitational fields cancel.

8.11 GRAVITATIONAL POTENTIAL AND POTENTIAL

ENERGY

MNotes

The gravitational potential at a point in a gravitatonal field 15 defined as
being numerically equal to the work done in bringing a unit mass from
infinity (where the potential 1s zero) to that point.

Thus

w
IJ =
i

[8.14)

where
I/ = the gravitational potential at some point (Jkg™")
W = the work done in bringing a mass s from infinity to that point.

It has been shown in section 8.7, that the work which has to be done to take a mass
mt from the surface of the Earth to infinity is Gmmy/ry, where myg and rg are
respectively the mass and the radius of the Earth. The work required to accomplish
the reverse process, i.e. to bring the same body from infinity to the surface of the
Earth, is therefore —Gmmg/ry. It follows from equarion [8.14] that the
gravitational potential Uy at the surface of the Earth is given by

U = -G22 [8.15]
g

(i)  The minus sign in equarion [8.15] indicates that the gravitational potential
at the surface of the Earth is less than that at infinity, It follows that a body at
infinity would “fall’ towards the Earth; a body on the Earth does not “fall’ wo
infinity.
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Jirs
(i) It follows from equation [5.15] that in general
U=-6=
F

where LV is the gravitational potential due to a'body of mass s at a point
putside the body and at a distance r from its centre. (This assumes that the
body has sphencal symmetry andfor 15 small compared with r.)

(i} The gravitational potential energy of a body of mass m at a point where
the gravitational potential is UM is given by

PE = mU

This follows from the definiton of gravitational porential and because the
potential at infinity is zero.

8.12 GRAVITATIONAL FIELD STRENGTH

MNote

The gravitational field strength at a point in a gravitational field is defined
a5 the force per unit mass acung on'a mass placed at that point.

Thus

where
g = gravirational field scrength (N kg ' = ms %)

¥ = the force acting on a mass m

The same symbol () is used for gravitatonal Geld strength as for acceleration due
to gravity. T his s because they are one and the same thing, 1.e. the field strength ata
point in a gravitational field is equal to the gravitational acceleration of anv mass
placed at that point. We shall illustrate this for the particular case of the Earth. The
gravitational force acting on a mass » at the Earth's surface is its weight, meg, where
£ 15 the acceleration due to gravity, and therefore the force per unit mass, i.e. the
gravitational field strength, is mgfr - which is also g.

Gravitational field strength is a vector quantity. [ts direction 15 that in which a mass
would move under the influence of the field, i.e. owards a point of lower
gravitational potential.

The gravitational field of the Earth is shown in Fig. 8.6, Note that it 85 a radial field
directed rowards the Earth and than it is stronger (field lines closer together) close
12 the Earth’s surface than it is farther away, Over a limited area of the Earth's
surface (an arca that can be considered flat) the field can be considered to be
uniform (Aeld hnes equally spaced) - see Fig. B.7.

Field Strength Due to a Point Mass

The force on a point mass s»r at a distance r from a point mass m 15 given by
Newton's law of universal gravitation as F where
i’

F=6G
FE
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Fig. 8.6
The gravitational field of

the Earth

Fig. 8.7

The gravitational field of
the Earth over a small
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Fiedd line directed
towards centre of Earth

/

Limited area of
Earth's surface

The force per unit mass, i.¢. the gravitational field strength, g, at a distance r from
the point mass m is therefore given by

Lc.

M

(i)

- F
E = o
g = G-g- (8.16)

Equation [8.16] also applies outside an extended body of mass m at a
distance r from its centre providing the body has spherical symmetry and/or is
small compared with r.

When m = the mass of the Earth, mg, and r = the radius of the Earth, rg,
equation [8.16] becomes

P G,:—:z' [8.17]

where gis the field strength (acceleration due to gravity) at the surface of the
Earth. We arrived at this same result in section 8.6 (equation [8.5]) by
thinking of g as the acceleration due to gravity. Equation [8.17] is particularly
useful for it is often necessary when solving examination questions to express
g in terms of G and vice versa.

8.13 THE ANALOGY BETWEEN GRAVITY AND
ELECTRICITY

Electric field strength is force per unit charge ~ gravitational field strength is force
per unit mass. The definition of electrical potential involves the work done in
bringing a unit (positive) charge from infinity -~ that of gravitational potential
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Table 8.1.
Gravitational and
alectrical quantities
compared

Table 8.2.

Comparison of effects of
point masses and point
charges

MNotes

s

involves the work done in bringing a unit mass from infinity. The reader may find it
useful to compare results (1) and (1) of section 8.6 with the way in which the electric
field of a hollow sphere varies with distance from the centre of the sphere (Fig.
30_8).

Gravitatianal Elpstrical
quaniity quantity
W . W
I P
: 0
F , F
E ntl K 0
dit di
i - sam E — :]I.
Gravitational Elactrical
quarnfity guantity
[ il s 1 @
U=-a r Vo= dnrg r
o
Cr i
g P | dme,
I
Feg™ | g 1"
- I Fady -

In Table 8.1 expressions for gravitanional potential and field strength are given
together with the analogous electrical expressions. Table 8.2 compares the
gravitational field strength and the gravitational potendal ar a distance r from a
point mass m with the analogous electrical quantities at a distance r from a point
charge . Note also the similanty berween the expression for the gravitagonal
force between two point masses with that for the electrical force between two point
charges in vacuum.

(f} There 15 no gravitational analogue of electrical permittivity, ie. the
gravitational force between two masses does not depend on the medium n
which thev are situated.

(i1} The gravitational force, unlike the electrical force, is always attractive,

8.14 TO SHOW THAT g — —dU/dx

Suppose that a particle of mass m 15 moved by a force F from A to B in a
gravitational field of strength ¢ (Fig. 8.8). Suppose alzo that AB = dx, where dx is
so small that F can be considered constant between A and B,

The work done 4 in going from A to B is given by
oW = Fix

By definition g = —F/m (the minus sign is necessary because g and F are
oppositely directed), therefore

W = —mgdx B.18|
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&,

74— — F

II..-"'II i

PB'I'IiIZI|E of mass m

« 0

By defimition, the increase in gravitational potential, 4L, i moving the mass wm
from A 1o B is given by

AT = AW 'm
Therefore, by equation [8.18]

Sl = —gix
Therefore, in the limit
z -dJ fdx

Usze the [ollowing notation: mp = mass of Earth, rp = radius of Earth,
g = acceleration due o gravity at surface of Earth, & = universal gravitatnonal
CONSTANT.

{a) Wrte down an expression for the gravitational potential ar the Earth's
surface.

b By how much would the gravitatonal PE of a body of mass m increase if it
were moved from the Earth's surface to infinity.

() Hence find an expression for the minimum velocity with which a body
could be projected from the Earth's surface and never rerurm: (1) which
involves O7, (i) which involves g

Solution

__— . . Hig
fa) Cravitational potential = —0s r—k
E
(b} The gravitational porential at infinity is zero and therefore “in moving 1o
infinity” the potential increases by G/ 1. Therefore

Increase in PE of mass m = e

g
{c) (i) If a projectile of mass »r is to have just sufficient KE to reach infinity

from the Earth’s surface, then (since decrease in KE = increase in
PE) its velocity v on leaving the surface must be given by

-
Hirg , | 2 Crmg

e, © o= '
T I||' e

Since the projectile has just sufficient KE o reach infinity, this is the
minimum velocity that wiall prohubit its return, .e.

myt = 7

b f—

f
3
I' _G.I':I'EE

Minimum velocity = Ili'l . [B.19]
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in} The acceleration due to gravity, g, at the surface of the Earth i1s given by
Hitg .
g = G- '1 (B.17]
ry’
iy

G = BT

Fg
Substituting in equation [&.19] gives

Minimum velocity = LH

EXAMPLE 8.2

Using the notacon of Example 8. 1, find expressions for: (a) the gravitational PE of
a satellite of mass m orbiting the Earth at a distance rfrom its centre, (b) the KE of
the satellive, (c) the wral energy of the satellive. (d) Explain how each of these
quantities would change if the orbit of the satellive were so low that it encountered a
cofisiderable amount of air resistance.

Solution
(a) At a distance r from the centre of the Earth

Grravitational potential 7 ":r
. , . - M N f
Gravitational PE of satellite = — & |8.207
r
{b) By the law of universal gravitation and Newton’s second law
My v
— = P ——
= r
KE of satellite (= Lwn®) = m: - [8.21]
- =
(c) Total energy = PE + KE
_ —G mufﬂ*{_; RN
r 2r
_, Ty .
ie. Total energy O ":'r [8.22]

(d) If the satellite encountered air resistance, it would do work against friction
and therefore 1ts total energy would decrease, i.e. become more negative,
It follows from equatnon [8.22] that r would decrease and therefore by
equation [8.20] the PE would decrease (i.e. become more negative); it
follows from equation [8.2] that the KE would increase.

CONSOLIDATION

Newton's law of universal gravitation Every particle in the universe attracts
every other with a force which is proportional 1o the product of their masses and
inversely proportional 1o the square of their separation.

F oo g Mm

=
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QUESTIONS ON SECTION A

Assume g = 10ms* = 10 Nkg ' unless otherwise stated.

MECHANICS (Chapters 1-5) On which body does the force which pairs with
force O act? Give its direction.

A1 Find, both graphically and by calculation, the

horizontal and vertical components of a force
of 50 I which 15 acting at 40° to the honzontal.

The horzontal and vertical components of a
force are respectively 20 and 30X, Calcu-
late the magnitude and direcrion of the force.

Calculare the magnitude and direction of the

resultant of the forces shown in the Hgure
below.

GO M

The diagrams below show a sphere, 5, resting
on a table and a free-body diagram on which
the forces acting on the sphere have been
marked.

We know from Newton's third law of moton
that forces occur in equal and opposite pairs.
iOn which body does the force which pairs with
force Pact? Give its direction.

Al

A force F), acts on an object O and this same
force F, forms a Newton's third law pair with a
second force, Fa. State reo wavs in which Fy
and Fa are similar and soo ways in which they
differ. [L,"a1]

Raindrops of mass 5 = 107 kg fall vertically in
soill air with a uniform speed of 3m s~ I Ifsuch
drops are falling when a wind 1s blowing with a
speed of 2m s, whart is the angle which the
paths of the drops make with the vertcal?
What 15 the kinetc energy of a drop? 5]

A ship initially at rest accelerates steadily on a
perfectly smooth sea. How would you atempt
to estimate the value of the acceleraton from
within the ship? You cannot see out, but you
have available all the apparamus normally
found in a school laboratory, (You may
assurne that the acceleration is not less than

Ims™) (W]

A light string carrving 2 small bob of mass
5.0 = 10 kg hangs from the roof of a moving
vehicle.

(@) What can be said about the moton of the
vehicle if the string hangs vertically?

(b} The vehicle mowes in a horizontal strajght
line from left 1o right, with a constant
acceleration of 2.0m s 2,

{i) Show in a sketch the forces acting on
the bob.

(ii} By resolving hornzontally and wvern-
cally or by scale drawing, determine
the angle which the string makes with
the vertical.

(€} The wehicle moves down an incline
making an angle of 30° with the horizontal
with a constant acceleration of 3.0ms %
Determine the angle which the string
makes with the vertical. []; "92]
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AB A hose with a nozele 80 mm in diameter ejects

A10

A

A2

Al13

a horizontal stream of water at a rape of
0.044m’ s !, With what velooity will the
water leave the nozzle? What will be the force
exerted on a vertical wall siruated close to the
nozzle and at oght-angles to the stream of
water, if, after hitting the wall,

{a} the water falls vertically to the ground,
(b} the water rebounds horzontally?
{Density of water = 1000 kgm.)[AEB, '79)

What 15 the connection between force and
momentum? A  helicopter of tomal mass
1M kg 15 able o remain in a8 swtonary
positon by imparting a uniform downward
velociry 1o a cylinder of air below it of effective
diameter 6 m. Assuming the density of air to be
1.2kgm ™", calculate the downward velocity
given to the air. n

An astronaut 1s outside her space capsule in a
region where the effect of gravity can be
neglecred. She uses a gas gun o move herself
relative to the capsule. The gas gun fires gas
from a muzzle of area 160 mm” at a speed of
150ms~', The density of the gas is
0800 kgm * and the mass of the astronaut,
including her space suit, 15 130 ke, Calculate:
{a) the mass of gas leaving the gum per
second,
(b) the acceleration of the astronaut due o
the gun, assuming that the change in mass
is negligible. 11 "92]
Sand is poured at asteadvrate of 5.0gs ' ontwo
the pan of a direct reading balance calibrated
in grams. If the sand falls from a height of
(.20 m on to the pan and it does not bounce off
the pan then, neglecting any motion of the
pan, calculate the reading on the balance 10s
after the sand first hits the pan. [, "92]

A pebble 1s dropped from rest at the top of a
cliff 125 m high. How long does it take to reach
the foot of the cliff, and with what speed does it
strike the ground? With what speed must a
second pebble be thrown vertically down-
wards from the cliff top if it is w reach dhe
bottom in 4 s¢ (lgnore air resistance., ) 5]

A stone thrown horizontally from the top of a
vertical chiff with velocity 15ms ™! s observed
1o strike the (horzental) ground ar a distance
of 43m from the base of the chiff. What is

(a) the height of the cliff, (b) the angle the

Al4

A15

A6

A7

A8

SECTION A4 MECHANICS

path of the stone makes with the ground at the
moment of impact? [5]

A ball is thrown vertically upwards and caught
by the thrower on its return. Sketch a graph of
velocity  (taking the upward directon as
positive) against e for the whole of s
motion, neglecung air resistance. How, from
such a graph, would vou obtain an estimate of
the height reached by the ball? [L]

A bus travelling steadily at 30ms "' along a

straight road passes a statonary car which, 55

later, begins to move with a uniform accelera-

tion of 2 m s in the same direction as the bus.

(a) How long dees it take the car 1o acquire
the same speed as the bus?

(b) How far has the car wravelled when it is
level with the bus? [W7, "92]

A cnicketer throws a ball of mass 0.20kg
directly upwards with a velocity of 20ms ',
and catches 11 again 4.0 5 later.

Diraw labelled sketch graphs to show

(a) the velocity,

(b} the kinctic energy,

(e} the height

of the ball against ame over the stared 4.03
penod. Your graphs must show numerical

values of the given quantites. [5]

A ‘hammer’ thrown in athletics consists of a
metal sphere, mass 7,26 kg, with a wire handle
attached, the mass of which can be neglected.
In a certain attempt it is theown with an inital
velocity which makes an angle of 45° with the
hornzontal and its fight takes 4.00 5.

Find the horzontal distance travelled and the
kinetic emergy of the sphere just before it
strikes the ground, stating any assumpuons
and approximations you make in order to do
N [5]

The graph shown represents the variaton in

vertical height with ume for a ball thrown
upwards and returning to the thrower,

Varmical
haight

Time
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From this graph how could a velociry against
fime graph be constructed? Sketch the likely
form of such a graph. (L]

A19 The diagram shows the speed—time graph fora
swimmer performing one complete cycle of

the breast stroke,
g o
20— "-r\ —
Sowed PPl NG HE
Fr 1 tH:
i H T
1.0 B T
TE HEHS
% 0.2 0.8 1.0
Tomess

(a) Derermine the maximum acceleration of
the swimmer. Explain how vou arrive at
POUF ANSWer.

(b) Without making any further calculations
sketch a labelled acceleration-time graph
for the same time interval as that shown in
the diagram.

(cy Use the graph o estumate the distance
travelled in one complete cycle of the
stroke. Show vour working clearly.

|AEB, "89]

AZ20 The graph shows how the speed of a car varies
with time as it accelerates from rest.

Speadims '

Timads

I e e e e

(a) Stare:

(i) the time at which the acceleratonisa
AL,

(i) how you could use the graph o find
the distance wavelled berwesn tmes
t; and t;.

(b} The driving force produced by the car
engine can be assumed to be constant,
Explain, in terms of the forces on the car,
why
(i} the acceleration is not constant,

(if) the car eventually reaches a constant
speed,

(c)

A21 (a)

()

A22 (a)

{15

The diagram shows a simple version of an
instrument used to measure acceleration,
in which a mass is supported berween two
springs in a box so that when one spring 15
extended, the other is compressed. Ar
rest, the mass is in the posidon shown,

Redraw the diagram showing the position
of the mass when the box accelerates 1o
the right. Explain why the mass takes up
this position. [], "e1]

A ball is thrown verucally upwards from
the surface of the Earth with an initial
velocity w, Meglecting frictional forces,
sketch a graph to show the vanation of the
velocity v of the ball with time ¢ as the ball
rises and then falls back w Earth. Whar
information contained in the graph en-
ablez vou to determine: (i) the gravita-
tional acceleration, (ii) the maximuom
height vo which the ball rises?

If the frictional forces in the air were not
negligible, how, in the above situation,
would: (1) the sutial deceleration of the
ball, (L) rhe maximum height reached by
the ball, be affected? [AEB, '79]

Define acceleration. Explain how it is
possible for a body 1o be undergoing an
acceleration although its speed remains
constant,

(b} A ball is placed at the top of a slope as

shown in Fig. 1.
Bah

Feg. 1
A block is fixed ngidly to the lower end of
the slope. The ball of mass 0.70kg s
released at time ¢ = 0 from the top of the
incline and ¢, the velocity of the ball down

the slope, 15 found to vary with ¢ as shown
in Fig. 2.
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A4

Fig. 2

Desenbe qualitatively the motion of
the ball during the periods OA, AB
and BC,

Calculate; (1) the acceleration of
the ball down the incline, {2) the
length of the incline, (3) the mcan
force experienced by the ball during
impact with the block.

IDhscuss  whether the collision
between the block and the ball is
elastic. [C, 22]

A rocket is caused o ascend vertically from the

ground with a constant acceleration, a. At a

tme, §,, after leaving the ground the rocker

maotor is shut off.

(a) MNeglecung air resistance and assuming
the acceleration due o gravity, g, is
constant, sketch a graph showing how
the velogity of the rocker varies with ume
from the moment it leaves the ground to
the moment it returns to ground. In vour
sketch represent the ascending velocity as
positive and the descending velocity as
negatve, Indicare on vour graph (i) r.
{iiy the time to reach maximum height,
fys (iii) the time of flight, £

(b} Account for the form of each portion of

the graph and explain the significance of

the area between the graph and the time

axis from zero time to (1) f, () &, (i) 6

Either by using the graph or otherwise,

derive expressions in terms of a, g and 1,

for (i) #y, C(ii) the maximum height

reached, (L) . n

A sphere of mass 3 kg moving with velocity
4ms~' collides head-on with a smationary
sphere of mass 2kg, and imparts to it a

(i)

(ii)

(i)

(<)

A26

AT

SECTION A MECHANICS

velocity of 4.5 ms~'. Calculate the velocity of
the 3 kg sphere after the collision, and the
amount of energy lost by the moving bodies in
the collision. [5]

The diagram shows a body of mass 2 kg resting
in a frictionless horizontal gully in which it is
constrained o move. It s acted upon by the
force shown for 535 after which time 1t strikes
and sticks ro the body B of mass 3 kg, the force
being removed at this instant. What will the
speed of the combined masses be? [L.]

01N

30"

A railway truck of mass 4 = 10" kg moving ata
velocity of 3ms~! collides with another truck
of mass 2 = 10'kg which is at rest. The
couplings join and the trucks move off
together. What fraction of the first truck’s
initial kinetic energy remains as kinetic energy
of the two trucks after the collision? Is energy
conserved in a collision such as this? Explain
vour answer briefly. L]

(a) (1) Define Fnear momentum,

(ii) State the principle of conservation of
fvear momientii making clear the
condition under which 1t can be
applied.

(b) A spacecraft of mass 20000 kg is wavel-
ling at 1500m s !. Its rockers eject hot
gases at a speed of 1200 ms™" relative to
the spacecraft. Dunng one bum, the
rockets are fired for a 5.0s period. In this
time the speed of the spacecraft increases
by 3.0ms .

(i) Whar is the acceleration of the
spacecraft?

(il) Assuming that the mass of fuel
ejected is negligible compared with
the mass of the spacecraft determine
the distance travelled during the
burmm. Give vour answer to four
significant figures,

What is the thrust produced by the

rocker?

{iv) Determine the mass of gas ejected

by the rocket during the burn.
[AEB, "92]

(i)
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A28 A bullet of mass 0.020 kg is fired horizonrally

at 150m s ! at a wooden block of mass 2.0 kg

resting on a smooth horizontal plane. The

bullet passes through the block and emerges

undeviated with a velocity of 80 ms~'. Calcu-

lare:

{a) the velocity acquired by the block,

(b} the rotal kinetic energy before and after
penetration and account for their differ-

ence. [W, "91]

Distinguish between an alastie collizion and an
inelastic collision.

A particle A of mass m moving with an initial
velocity u makes a ‘head-on’ collision with
another particle B of mass 2m, B being initially
atrest. In terms of i, calculate the final velocity
of A if the collision is (i) elastic, (i) inelasuc,
(assume that the two particles adhere on
collision). [AEB, 'T9]

A puck collides perfectly inelastically with a
second puck originally at rest and of three
times the mass of the first puck. Whan
proportion of the onginal knetic energy 1s
lost, and where does it go? 1

State the law of conservaton of linear
MOTEnTUm.

A proton of mass 1.6 x 10 ¥ kg tavelling
with a velocity of 3 = 10° ms~' collides with a
oucleus of an oxygen atom of mass
2.56 = 107" kg (which may be assumed 1o
be at rest initially) and rebounds in a direction
at 90° w s incident path. Calculate the
velocity and direction of motion of the recoil
oxyvgen nucleus, assuming the collision is
elastic and neglecting the relativistic increase
of mass. [y & C¥]

A32 (a) Inan experiment to investigate the narure

of different types of collision, a trolley of
mass 1.6 kg was given a push towards a
second trolley of mass 0.8kg travelling
more slowly but in the same direction.
The speeds of both trolleys before and
afrer collision were measured. The resules
for two different types of collisions were as

follows:

Type A collivon Speed before  Speed after
l.6kg trolley 0.70ms~' 0.30ms!
0.8kg rolley 0.10ms™' 0.89ms !

(b}

A33 (a)

(b)
(c)

(d)

7
Tupe B colliston
l.6kg rolley 0.60ms* 0.3Tms '
DBkgolley 0.10ms " 0.57Tms’

Describe a technique for measuring the
speed of a wolley before and after a
collision, showing how the speed is
calculated.

Show that the results grwen above are
consistent with the principle of conserva-
ton of linear momentum. Why should the
speeds be measured fmmrediarely before
and after the collisions?

Distinguish clearly between dlastic and
ielastic collisions. Determine the nature
of each of the collisions in (a) above,
supporting your choice with appropriate
calculations.

Describe how: (i) an elastic collision,
(i) an inelastc collision, could be simu-
lared experimentally using the pwo orol-
leys and any necessary  additional
Apparas, [L]

A linear air-track 15 a length of metal erack
along which objects {gliders) can move
with neglhgible fricuion, supported on a
cushion of air. A glider of mass 0.40 kg 1s
stationary near one end of a level air-track
and an air-rifle s mounted close w the
glider with its barrel ahgned along the
track. A peller of mass 5.0 = 107 kg is
fired from the riffe and sticks to the glider
which acquires a speed of 0.20ms ',
Calculate the speed with which the pellet
struck the glider.

Diescribe an experimental arrangement
vou would vse to verify the above result.
A student using an air-track fails to level it
correctly. The speed of a glider along the
track near its centre is 0.20ms ' and
when it has moved a further distance of
0.90m it 15 0.22ms"'. Determine the
angle made by the wrack o the horizontal.
A glider reaches the end of a level air-track
and rebounds from a rubber band
stretched across the track. Assuming
that, whilst in contact with the band, the
force exerted on the glider is proportional
to the displacement of the band from the
point of impact, sketch a graph showing
how the velocity of the glider vanes with
time. Explain the shape of the graph. []]
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A34 (a) The law of conservation of momentum

(b)

A35 (a)

(b)

(c)

SUgEests momentum is conserved in any

coflision, A tennis ball dropped onto a

hard floor rebounds w aboutr 60% of its

initial height. Sware how momentuim is
conserved in this event.

(i) A top class tennis player can serve
the ball, of mass 57 g, at an inital
horizontal speed of 50ms ', The
ball remains In contact with the
racket for 0.030s. Calculate the
average force exerted on the ball
during the serve.

(ii) 3Skerch a graph showing how the
horizontal acceleration of the ball
might possibly vary with ome during
the serve, giving the axes suitable
scales,

(iii) Explain how this graph would be
vsed to show that the speed of the
ball on leaving the rackeris S0ms~".

[AER, "90]

(i) What is meant by the term linear
HROFHENTLHT?

(ii} State the law of conservation of
linear momentum,

(iii) Explain how force is related to linear
MMEntum.

Consider the following:

(i} a wehicle in space changes its direc-
tion by firing a rocker motor,

(i) adartis thrown at a board and sticks
o the board,

(ifi) a ball iz dropped to the floor and
rebounds.

In each case discuss how the law of

conservation of linear momentum may

be applied.

A smudent devises the following expen-

ment to determine the velocity of a pellet

from an air rifle.

Barrel of rifla

SECTION & MECHAMCS

A piece of plastucine of mass M iz balanced
on the edge of a table such that it just fails
to fall off. A pellet of mass m s fired
horteontally into the plasticine and re-
mains embedded in it As a result the
plasticine reaches the floor a horzontal
distance & away. The height of the table is
f,
(i} Show that the horizontal velocity of

the plasticine with pellet embedded

. FRLL
15 k(i};}
(ii) Obtain an expression for the velocity

of the peller before impact with the
plasticine. [5]

A36 A particle A is suspended as shown in the

figure by two strings, which pass over smooth
pulleys, and are attached o partcles B and C.
At A, the sirings are at right angles 1o each
other, and make equal angles with the
horontal. If the mass of B 15 1 kg, what are
the masses of A and C? [5]

=] C

State the conditions that a ngid body may bein
equilibrium under the action of three forces.

¥

B i

A uniform sphere of mass 2kg is kept in
position a5 shown by two strings AB and CD.
AR s horzontal, and CD i3 inclined at 307 w
the wvertical. Calculate the tension in each
SITIng. [5]

A uniform beam AB of length 5 m and which
welghs 200 N is supported horizontally by two
vertical ropes X and Y at A and B reapectively.
Calculate the tensions in the ropes if a man
welghing 700N stands on the beam at a
distance of 2 m from A.
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moving glider passes sensor number 1, an Card :E.:I.mﬂ]':ﬁf and
electronic timer is started. As the glider passes Pailat - d-’ conneched 1o Hme
each sensor, the tme taken for the glider 1o b

travel from sensor number | is recorded. A SIDE VIEW ' —

glider of mass 0.40 kg 15 given a push along the AL

track. As it passes sensor number 5, it collides
with, and sticks to, a stationary glider of mass
0.60 kg. The recorded times at each sensor are
shown below,

Swensor | i
number

Timas

(a) Calculate the speed just before and the
speed st after the collision.,

(b} Show that momentum is conserved in the
collision,

(c) Calculare the kinetic energy before the
collision and the kinetic energy after the
collision.

Account for the difference. []; "91]

k4 3 4 5 L 7 ]
0 o6 152 198 204 431 5098 T.65

A5l A motor car collides with a crash barrier when

rravelling at 100 kmh " and is brought to rest
in 0.1 5, Ifthe mass of the car and its occupants
i5 900 kg calculate the average force on the car
by a consideration of momentum.

Because of the seat belt, the movement of the
driver, whose mass 15 80kg, 15 restricted to
.20 m, relative to the car. By a consideration
of energy calculate the average force exerted
by the belt on the driver. [N

This question is about the design of experi-
ments o measure the speed of an air-gun
pellet.

The speed of the pellet is known to be about
40ms ' and the mass of the pellet is about
0.5g.
(@) One student suggests that momentum
ideas might be used. It is proposed that
the pellet be fired into a trolley of mass M
and that the speed ¢ of the trolley after
impact be determined by finding the time
it takes a card 1o cross the path of a light
beam. The light beam illuminates a
photodiode which controls a dmer. The
timer can record the time the light beamn is
cut off to the nearest 0.01 s. The system is
shown in Fig. 1.
(i) Explain how the speed of the pellet
could be obtained from the pro-
posed measurements.,

PLAN VIEW | ——

Pallst — Phatodsode

ﬂ'— ~ Light source
Ffy. 1

(ii) It is decided that the final speed
should be about 0,1 ms ', Deducea
suitable mass for the wolley.

(iil) Assuming that the final speed is to
be determined to a precision of
about 2% give a suitable length for
the card. Explain how you arrived at
VOUT ANEWET,

(iv) Iris suggested that the answer is not
accurate because the trolley will not
be ‘frction-free’. How will this
affect the final result?

(v} State and explain whether vou
would expect the result 1o be more
accurate or less accarate if the card
were made longer. [AERB, "%1]

A53 Explain whart is meant by kineric enengy, and

show that for a particle of mass m moving with

velocity o, the kinetic energy is :,:rm.lz-

A steel ball is:

(a) projected honzontally with velocity v, ata
height & above the ground,

(b} dropped from a height b and bounceson a
fixed horizontal sveel plate.

MNeglecting air resistance, and using suitable

sketch graphs, explain how the kinetic energy

of the ball varies in (a) with its height above the

ground, and in (b) with its height above the

plate. [J]

A model railway truck P, of mass 0.20kgand a
second truck, Q, of mass 0,10 kg are at rest on
two horizontal straight rails, along which they
can move with negligible friction. Pis acted on
by a horizontal force of 0. 10 W which makes an
angle of 30 with the wack. After I' has
travelled 0.50m, the force is removed and P
then collides with and socks o Q) Caleulate:
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(a) the work done by the force,

(b)) the speed of P before the collision,

{c) thespeed of the combined trucks after the
collision. LI, "o0]

A lorry of mass 3.5 x 10" kg antains a steady
speed o while chimbing an incline of 1 in 10

—
g1 |

with its engine operating at 175 kW, Find v.
(Meglect friction.) [V, 0]

A particle A of mass 2 kg and a particle B of

mass | kg are connected by a light elastic siring
i, and initally held at rest 0.9 m apart on a
smooth horizontal table with the stnng in
tension. They are then simultanecusly re-
leased. The sirng releases 12 ] of energy as it
contracts to its natural length, Calculate the

A e B
s IQ—G” JXXIK/Q’;’/,

velocity acquired by each of the particles.
Where do the particles collide?

[5]

State Mewron's laws of motion, and show how
the principle of conservation of linear mo-
mentum may be derived from them.

A particle of mass 3 kg and a particle QQ of mass
| kg are connected by a light elastic string and
initially held at rest on a smoeoth honzontal
table with the string in tension. They are then
simultanously released. The string gives up
24 ] of energy as it contracts to its natural
length. Calculate the velocity acquired by each
of the particles, assuming no energy is lost,

A helicoprer of mass 810 kg supports itselfin a
stationary position by imparting a dewnward
velocity v to all the air in a circle of area 30 m’,
Given thar the density of air is 1.20kgm °,
calculare the value of v. Whart is the power
needed 1o support the helicopter in this way,
assuming no energy 15 lost? [S]

AB8 The acceleration-time graph above is drawn

for a body which starts from rest and moves in
a straight line. The body 15 of mass 10kg. Use
the graph to find:

AS9

ABD

SECTION A: MECHANICS

fccelnrationms ¥
'

2

(a) the distance travelled in 155,
(b} the average force acting over the whole
15 s period. [L]

A stone of mass B0 g 1s released at the top of a

vertical cliff. After falling for 3 5, it reaches the

foot of the cliff, and penetrates 9 cm into the

ground, What is:

(a) the height of the cliff,

(b) the average force resisting penetration of
the ground by the stone? [5]

{a) A carof mass 1000 kg 1s initially at rest. It
moves along a straight road for 2005 and
then comes to rest again, The speed—time
graph for the movement is:

[ ==
R
o

l."-l.-n r

- L

(i) What is the total distance travelled?

{iiy What resultant force acts on the car
during the part of the moton
represented by CD?

(ifi) What is the momentum of the car
when it has reached its maximum
speed? Use this momentum value to
find the constant resultant acceler-
ating force,
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(iv) During the part of the motion
represented by OB on the graph,
the constant resultant force found in
(i) is acting on the moving car
although it is moving through air,
Sketch a graph to show how the
driving force would have wovary with
time to produce this constant accel-
eration. Explain the shape of your
graph.

(b} If, when travelling at this maximum
speed, the MM kg car had struck and
remained attached to a stationary vehicle
of mass 1500 kg, with what speed would
the mmterlocked wehicles have rravelled
immediately after collision?

Calculate the kinetic energy of the car just
proor to this collision and the kinetic
cnergy of the interlocked wehicles just
afterwards. Comment upon the values
obrained,

Explain how certain design features in a
modern car help to protect the driver of a
car im such a collision. [L]

AB1 A large cardboard box of mass 0.75kg is

pushed across a horizontal floor by a force of
4.5 N, The motion of the box is opposed by
(i) a frictional force of 1.5 W between the box
and the floor, and {ii) an air resistance force
ke, where kB = 6.0 » 1072 kgm "’ and v is the
speed of the box in ms™".

Sketch a diagram showing the directions of the
forces which act on the moving box, Calculare
maximum values for

(a) the acceleration of the box,

(b) its speed. (L]

A stone is projected vertically upwards and
eventually retums to the point of projection.
Ignoring any effects due 1o air resistance draw
skevch graphsa o show the variation with time
of the following properties of the stone:
(i) velocity, (ii) kanetic energy, (iii) potential
energy, (iv) momentum, (v) distance from
point of projection, (vi) speed. [AEB, '82)

(a) Stare Mewton's laws of motion. Explain
how the netoton 15 defined from these laws,
(b} A rocket is propelled by the emission of
hot gases. It may be stated that both the
rocket and the emitted hot gases each gain

idd

kinetic energy and momentum during the
firing of the rocket.

Dhizcuss the significance of this statement

in relation to the laws of conservation of

energy and momentum, explaining the

essential difference berween these mwo

Quantities.

{c) A bird of mass 0.50 kg hovers by beating

its wings of effective area 0.30m".

(i} What iz the upward force of the air
on the bird?

(ii} Whart is the downward force of the
bird on the air as it beats its wings?

(iii) Esumare the velocity imparted 1o
the air, which has a density of
1.3kgm°, by the beating of the

WIES.
Which of Mewton's laws is applied in each
of (i), (ii) and (iii) abowve? [L]

AB4 A horizontal force of 2000 is applied o a

vehicle of mass 400 kg which is initally at rest

ont a honzontal surface. If the total force

opposing moton s constant st B0 N, calou-

lake:

(@) the acceleraton of the vehicle,

(b} the kineuc energy of the vehicle 55 after
the force 15 first applied,

(e} the tetal power developed 55 after the
force s first applied. [AEB, '83]

On a linear air-track the gliders float on a
cushion of air and move with neglgible
friction, One such glider of mass 0.50 kg 15 at
rest on a level rack. A student fires an air rifle
pellet of mass 1.5 = 10 * kg at the glider along
the line of the track. The peller embeds irselfin
the glider which recoils with a velocity of
0.33ms"’,
(@) State the prnoople vou will use 0
calculate the velocity at which the pellet
struck the glider.

Caleulate the velocity at which the pellet
struclk.

(b) Another student repeats the experiment
with the air-track inclined at an angle of 2"
to the honzontal. Initally, the glider is ar
rest at the bottom of the rack. Afver the
impact the glider recoils with the same
imitial velocity but slows down and stops
momentarily further along the wack.

Explain n words how to calculate how far
along the air rack the ghider moves before
StOpPPING instantaneously.
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Calculate how far the glider moves along
the air track before stopping momentarily.
[O&C, "92]

ABE Two ski slopes are of identical length and

Fig.w X __ __ ™

ABT7 (a)

vertical height. Slope A, Fig. 1 15 concave
whilst slope B; Fig. 2 is partly convex, Two
skiers, of equal weight, start from rest at the top
of each slope. Assume that the effects of
friction on the skis and of air resistance on
the moving skiers’ moton are negligible.

™ ~

e

&

— Figp2z L _ __ ___ 3

(a) At the bomom of the ski fun, will the skier
on slope A be moving faster, at the same
speed, or slower than the skier on slope B
Justify your answer,

(b} Wil the skier on slope A take longer, the

same time, or less time than the skier on

slope B o complete the ski run? Justfy

VOUr answer,

A heavier skier joins the first skier on slope

A. He also starts from rest at the wop of the

slope. Will he take longer, the same ome,

or less ime than the first skier to complete
the ski run? Justify yvour answer.

(d) Which of the three skiers will have most
energy ar the bortom of the ski run?
Explain. [0 & C, "90]

(<)

What do vou understand by the principle of

conservation of energy?

(b) Explain how the principle applies to:
{i} an object falling from rest in vacuo,
{ii} a man sliding from rest down a
vertical pole, if there i3 a constant
resisiive force opposing the motion.
Skewch graphs, using one set of axes for
(i) and another set for (if), showing how
each form of energy you consider varies
with rime, and point out the important
features of the graphs.

{c) A motor car of mass 600 kg moves with

copstant speed wup an inclined straight

road which rises 1.0m for every 40m

rravelled along the road. When the brakes

arc applied with the power cut off, there is

a constant resistive force and the car

SECTION A MECHANILS

comes to rest from a speed of 72kmhb ™!
in o distance of 60m, By using the
principle of conservanon of energy, cal-
culate the resistive force and the decelera-
tion of the car. )

ABB A vehicle has a mass of 600 kg. Its engine

AT0

exerts a ractve force of 15300 M, but motion is

resisted by a constant frctional force of 300 N,

Calculate:

(a) the acceleration of the velhicle,

{b) s momenoam |0 s after staFting to move,

{c) s kinetic energy 153s after starting to
Move, [5]

A typical escalator in the London Under-

ground rises at an angle of 30° w the

honzontal. It Lifts people through a vertical
height of 15 m in 1.0 minute. Assuming all the
passengers stand soll whilst on the escalator,

75 people can step on at the bottom and off at

the top in each minute. Take the average mass

of a passenger o be 75 kg.

(a)} Find the power needed to lift the passen-
gers when the escalator is fully laden., For
this calculation assume that any kinetic
energy given o the passengers by the
escalator is negligible.

(b} The frictional force in the escalator
system is 1.4 = 10" N when the escalator
15 fully laden. Calculate the power needed
to overcome the friction. Hence find the
power input for the motor driving the fully
laden escalator, given that the motor is
only T0% efficient.

{c) When the passengers walk up the moving
escalator, is more or less power required
by the motor 1o maintain the escalator at
the same speed? Explain yvour answer.

[O & C, "90]

A muscle exerciser consists of two steel ropes
attached to the ends of a strong spring
contained in a rtelescopic wbe. When the
ropes are pulled sideways in opposite direc-
tions, as shown in the simplified diagram (on
p. 123}, the spring is compressed.

The spring has an uncompressed length of
0.80m. The force F {in W) reguired 1o

compress the spring w a length x (in mj is
calculated from the equation

F = 500 (0.80 — x|
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The ropes are pulled with equal and opposite
forces, P, so that the spring is compressed toa
length of 0,60 m and the ropes make an angle
of 30" with the length of the spring.

(a) Calculate
(i} the force, F,
(ii) the work done in compressing the

spring.

(b} By considering the forces at A or B,
calculate the rension in each rope.

{c) By considering the forces at C or DD,
calculate the force, P L], 1]

AT1 “The blades of a large wind murbine, designed o
generate electncity, sweep out an area of
1400 m® and rotate about a horizontal axis
which points directly into a wind of speed
15ms ", as illustrated in the diagram.

s
15" ———
—

{a) Calculate the mass of air passing per
second through the area swept out by
the blades.

{Take the density of air to be 1.2 kgm—.)

(b} The mean speed of the air on the far side
of the blades is reduced to 13ms ™' How

128

much kinetic energy 1s lost by the air per
second?

() How many ruebines, operating with 70%
cfficiency, would be needed to equal the
power output of a single conventional
1000 MY power station?

() Suggest e advantages, and meo dis-
advantages, of wind turbines as a source
of energy. [y, "92]

AT2 The thrust F exerted on a rocket by the jer of
expelled gases depends on the cross-sectional
arca, A, of the jet, the density, g, of the mixture
of gases and the velocity, v, at which they are
gjecred. The following relationships have been
suggested between these quantities, in each of
which & is a dimensionless constant:

(ay F = hdpv

(b) F = kApt?

{e) F = kA*pe?.

Tze the method of dimensions o show for
each whether it is possible, [5]

CIRCULAR MOTION AND
ROTATION (Chapter 6)

A73 What force is necessary to keepa mass of 0.8 kg
revolving i a horzontal circle of radius 0.7 m
with a period of 0.5 57 What is the direction of
this forcer
{Assume that = = 0.} [L.]

AT4 Use Newton's laws of motion o explain why a
body moving with uniform speed in a crcle
must experience a force rowards the centre of
the circle.

An aircraft of mass 1.0 = 10 kg s travelling at

a constant speed of 0.2km s"! in a horizontal

circle of radius 1.5 km.

(a) What is the angular velocity of the air-
crafte

(b) Show on a skerch the forces acting on the
mircraft in the vertical plane contamming the
mircraft and the centre of the circle. Find
the mapnitude and direction of their
resultant.

{c} Explain why a force is exermed on a
passenger by the aircraft. In what direc-
tion docs this force act? [€5]

ATS A spaceman in training is rotated in a sear at
the end of a horizontal rotating arm of length
5 m. IfThe can withstand accelerations up to 9g,
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ATG

AT

AT

A3

what 15 the maximum number of revolutions
per second permissible? [L]

A simple pendulum, suspended from a fixed
povint, consists of a light cord of length 500 mm
and a bob of weight 2.0 M, The bob s made to
move in a horizontal circular path. If the
maximum tension which the cord can with-
stand 15 5.0N show whether or not it is
possible for the radius of the path of the bob
to b 3000 mm. L]

Explain why there must be a force acting on a
particle which is moving with uniform speed in
a circular path. Write down an expression for
its magnitude,

A conical pendulum consists of a small
massive bob hung from a light string of length
1 m and rotatng in a horizontal circle of radius
30 cm. With the help of a diagram indicare
what forces are acting on the bob. How do they
account for the moton of the bob? Deduce the
speed of rotation in revolutions per minute.

[1]

A particle of mass m travels at constant speed,
o, in & vacuum along a path consisung of two
srraight lines connected by a semicircle, AB, of
diameter d as shown in the diagram.

(R |

For the secton of the path from A o B, find:

{a} the ume mken,

(b) the change in the momentum of the
particle,

{c) the force acting on the particle arany point
along the semicircular path AB,

(d} theworkdone onthe parucle by this force.

(1

The diagram shows a section of a curtain track
in a vertical plane. The curved section, CDE,
forms a circular arc of radius of cunvatare

SECTION A MECHANICS

0.75 m and the point I i5 0,25 m higher than

B. A ball-beanng of mass 0.060 kg 15 released

from A, which is 0.50m higher than B.

Assume that rotagonal and frictional effects

cap be ignored and that the ball-bearing

remains in contact with the track throughout
the motion,

(a) Calculate the speed of the ball-bearing
(i) ar B, (ii) ar .

(b) Draw a diagram showing the forces acting
on the ball-bearing when it is at I and
calculate the reaction berween the track
and the ball-beanng at this point. n

A compressed spring is used 1o propel a ball-
bearing along a track which contains a circular
loop of radius O, 10m in a vertical plane, The
sprng obeys Hooke's law and requires a force
of 0,20 1o compress it 1.0 mm.

0.10m
P —

(111187

{a)} The spring s compressed by 30mm.
Calculare the energy stored in the spring.
(b) A ball-bearing of mass 0.025 kg 15 placed
against the end of the spring which is then
released, Calculate
(i) the speed with which the ball-
bearing leaves the spring,
(ii) rthe speed of the ball at the top of the
loop,
(iii) the force exerted on the ball by the
track at the top of the loop.
Assume that the effects of friction can be
ignored. [1. "89]

i _

A gpecial prototype model acroplane of mass
400 g has a control wire 8 m long attached toits

body, The other end of the control line is
attached to a fixed point. When the acroplane

flics with its wings horizontal in a honzontal
circle, making one revolution every 45, the
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control wire is elevated 30° above the hor-
izontal. Draw a diagram showing the forces
exerted on the plane and determine:

{a) the tension in the control wire,

(b} the lift on the plane,

(Assume that ° = 10.) IAER, "7T9)

A smiall mass of 5 g is artached to one end of a
light inextensible string of length 20cm and
the other end of the string is fixed. The string is
held taut and honzontal and the mass 15
released, When the siring reaches the vertical
position, what are the magnitudes of;

() the kinetic energy of the mass,

(b) the velocity of the mass,

(c) the acceleration of the mass,

(d} the rension in the sring?

(Meglect air fricton.) n

A boy tes a string around a stone and then
whirls the stone so that it moves in a horizontal
circle at constant speed.

(a) Draw a diagram showing the forces actng
on the stone, assuming that air resistance
is negligible. Use vour diagram to explain
(1} whv the string cannot be horiontal,
(ii} the direction of the resultant force

on the stone and
(ili) the effect that the resultant force has
on the path of the stone,

(b} The mass of the stone i5 0.15 kg and the
length of the string between the stone and
the bov's hand is 0.50m. The period of
rotation of the stone s 0,405, Calculare
the tension in the string,

{2) The bov now whirls the stone in a vertical
circle, but the string breaks when it is
horizontal. At this instant, the stone is
1.0m above the ground and rising at a
speed of 15ms™'. Describe the subse-
guent motion of the stone until it hits the
ground and calculare iz maximum
height. [ & C, "a1]

ABd Derve an expression for the magnitude of the

acceleration of a particle moving with speed o
in a circle of radius r.

e B

¥

A particle of mass m moves 0 a circle noa

vertical plane, being attached to a fixed point A

by a string of length v, The motion of the mass

15 such that the string 1= just fully extended at

the highest point. Determine:

(a) the minimum speed ¢ at the highest point
for this to happen,

(b) thespeed Fof the particle, and the tension
in the string when the particle 5 at ns
lowest point.

What is the component of the acceleration of

the particle along the wangent o the circle at

the instant when the string makes an angle §
with the vertical?

If the particle was initally suspended ar rest
vertically below A, and was set in motion as
described above by an impact with a particle of
mass 2pp, determine the velocity u of this
particle on the assumption that no energy is
lost in the collision, [5]

(a) In problems involving linear motion the

following cquations are often used:

(i) Force = mass = acceleraton,

(i) Kinetic = 1 = mass » I,".'-:]-;J-;:it'_'.':l:.
energy

(iii} Work = force = distance

Ulsing words, write down the correspond-

ing eguations for rotational motion,

(b} A couple of torque 5N m 15 applied to a
fiywheel initially at rest. Calculate its
kinetic energy after it has completed 5
revolutions. Ignore friction., [, "92]

A gramophone record A is dropped on o a
mwmtable B which is rotating freely at 10
revolutions per second. The mass of A is
0.25kg and the mass of B is 0.50kg. The
radius of A 15 0.05m and the radius of B is
0.10m. What is the final speed of rotation (in
revs ') of the record and mirntable together?
i 'he moment of inerta of a disc 15 given by
I= ; MR [V, "90]

A swivel chair consists of a seat mounted on a
screw-threaded column in such a way that
when the seat is given a clockwise rotagion it
rises vertically. The sear, of moment of inertia
about its rotation axis fand mass M, is given an
mmitial clockwise rotation of angular velociny w.
How far does the sear mse, assuming no
friction?
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What change of angular momentum  has
occurred during the rise?

Explain the apparent violation of the law of
conservation of angular momentum. W]

(a) For a rigid body rotating about a fixed
axis, explain with the aid of a suitable
diagram what is meant by angudar velocity,
kineric evergy and moment of inertia.

In the design of a passenger bus, it 18

proposed to derive the motive power from

the energy stored in a flywheel. The
flywheel, which has a moment of inertia
of 4.0 x 10°kgm®, iz accelerated 1o its

maximum rate of rotation of 3.0 = 107

revolutions per minute by electric motors

at stations along the bus roure,

(i} Calculate the maximum kinetic
energy which can be stored in the
flywheel.

(ii) If, at an average speed of 36 kilo-
metres per hour, the power required
by the bus is 20 KW, what will be the
maximum possible distance between
stations on the level? n

(b)

A cylindrical rocket of diameter 2.0 m develops
a spinning moton in space of penod 2.0s
about the axis of the cylinder. To eliminate this
spin two jer motors which are attached to the
rocket at oppogite ends of a diameter are fired
until the spinning motion ceases. Each motor
turns the rocket in the same directon and
provides a constant thrust of 4.0 = 10°N in a
direction tangential to the surface of the rocket
and in a plane perpendicular to its axis, If the
moment of inertia of the rocker abour its
cylindrical axis is 6.0 x 10° kgm®, calculate
the number of revolutions made by the rocket
during the firing and the tme for which the
motors are fired. [n

{a) (i) Explainwhatis meant by the moment

of inertia of a body.
(ii) Why is there no unique value for the

moment of inertia of a given body?

{iii} A rigid body rotates about an axis

with an angular velocity . If the

relevant moment of inertia of the

body is [, show that its rotational

kinetic energy is E‘I{uz.

A motor car 15 designed 1o run off

the rotatonal Kinetic energy stored

in a flywheel in the car. The flywheel

(b) (i)

A1 (a)

(b)

()
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i5 to be gocelerated up to some
maximum rotational speed by elec-
tric motors placed at various stations
along the route. If the flywheel has a
moment of inertia of 300 kg m” and
is accelerated to 4200 revolutions
per minute at a station, calculate the
kinetic energy stored in the flywheel.
Assumung that at an average speed of
54kmh ' the power required by the
car is 15kW, what is the maximum
possible distance between stations
on the car’s roure?
What assumption did you make in
the last calculation? Comment on
the feasibiliry of the design,

(W, "o0]

(ii)

A nigid body is rotaung with angular
velocity m abour a fixed axis 0. Consider-
ing a small particle of the body of mass m,
at distance r from the axis, state the linear
velocity of the particle at any instant, the
linear momentum of the particle at that
instant, the angular momentum of the
particle, and the kinetic energy of the

particle.

Write down expressions for (i) the angu-
lar momentum about the axis O, (i) the
kinetic energy, of the whole body, re-
garded as an assemblage of individual
particles, and hence explain the meaning
and the importance of the idea of moment
of inertia,

Describe how vou would determine
expenmentally the moment of inertia of
a flywheel abour its usual axis of rotation.
An outline of the method only is required,
and no formulae need be proved,

-
02 kg m?

Llkg 0.¥5kp
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Masses 0.20kg and 0.25kg are sus-
pended as in the figure on p. 128 from a
light cord which passes over a wheel of
radius 0,.15m and moment of nerta
0.12kgm®. Initially, the two masses are
held at the same horizontal level. Explain
what happens when they are released
from rest if the cord does not slip on the
wheel. Assuming that the wheel rotates
frecly about its axis, calculate the angular
velocity of the wheel and the speed of each
mass when the vertical distance berween
the masses is 0.3 m. [C3]

A92 The wrntable of a record player rotates at a

steady angular speed of 3.5 rad s '. A record is

dropped from rest om o the turnmable.

Imdally, the record ships but eventually it

moves with the same angular speed as the

turntable.

(a) The angle the murntable turns thrrough
while the record is slipping on its surface is
0.25 rad. Find the average angular accel-
eration of the record while it is attaining
the steady speed of the tumitable.

(b) The moment ofinertia of the record about
its axis of rotation is 1.1 % 10~ kgm®.
What additional torque must be applied
by the murntable motor 1o maintain the
constant angular speed of the turntable
while the record is accelerating? [C]

(a) Explainwhat is meant by moment of inertia
and angular momentum. State the relation-
ship berween them.

(b} Explain the following observations:

(i} Flywheels are often large diameter
wheels with heswvy rims rather than
disc type wheels of constant thick-
ness,

(ii) A pirouetting skater rotates faster as
she draws her arms closer o her
body.

{c} In a single cyvlinder petrol engine, cnergy
from the combustion process is supplied
to the crankshaft (the axle of the engine)
once every two rotations of the crankshaft,
namely during each power stroke , and a
Aywheel is amached to the crankshaft to
smooth the motion,

In such an engine cach power siroke
produces mechanical energy E = 1EK],
and its flywheel has moment of inertia
I =05kgm”.

[

(i) If the engine stars from rest, deter-
mine the angular velocity after 20
revolutions, MNeglect the effect of
friction.

(ii) Show, that in the case of zero
friction, the crankshaft angular ac-
celeration o 1s given by

E
dnf

(iii) In the practical case where there
is friction, calculate the frictional
torque when the engine 15 operating

at s highest speed. [W, "a92]

SIMPLE HARMONIC MOTION
{(Chapter 7)

A84 (a) Define simple harmonic motion (SHM)

for a particle moving in a straight line,
(b} Use vour defimition o explain how SHM
can be represented by the equanon

dix - 3
dr? e
(c) A mechanical system is known 1o perform

SHM. What quantity must be measured
in order to determineg o for the system?

(1]

A9 A body of mass 200g is executing simple

harmonic motion with an amplitade of
20 mm. The maximum force which acts upon
it is 0,064 N. Calculare:

(a) its maximum velooity,

(b} its period of oscillation, [L]

(a) Stare the conditions for an oscillavory
motion to be considered simple harmomic,

(b} A body of mass 0.30kg executes simple
harmonic monon with a period of 2,53
and an amplitude of 4.0 < 10°* m. De-
termmine:
(i} the maximum velocity of the body,
(ii) the maximum acceleranon of the

body,
(iii) the energy associated with the
TR, [5]

A particle moves with simple harmonic motion
in & straight line with amplirude 0.05m and
pernied 12 5. Find:

{a) the maximum speed,

(b) the maximum acceleration, ofthe particle.



Wrte down the values of the constants Pand
L in the equation

xfm = Psin [Qe/s)]
which describes its motion. [C]

A sinusotdal voltage is applied 1o the Y plares
of a cathode ray oscilloscope which has a
calibrated ume base, A stationary trace, with
an amplitude of 4.0cm and a wavelength of
1.5 cm, is obrained when the time base is set at
1.0cmms . The rime base is then switched
off and the trace becomes a vertical line,
Calculate the maximum speed of the spot of
hight on the end of the tube when producing
the vertcal line, [L]

A small piece of cork in a Apple tank oscillates
up and down as npples pass it. If the ripples
travel ar 0.20ms ', have a wavelength of
15mm and an amplitude of 5.0 mm, what is
the maximum velocity of the cork? [L]

A100 A bodyv moving with simple harmonic

motion has velocity v and acceleration a
when the displacement from its mean posi-
tiom i5 x. Sketch graphs of 2 against x, and ©

aEainsk x. L]

A101 The displacement v of a particle vibrating

with simple harmonic moton of angular
speed w15 given by
4 = aain e where ris the nime

What does a represent?

Sketch a graph of the velaciry of the parncle as
a function of ome starting from ¢ = 05,

A particle of mass 0.25 kg vibrates with a
period of 2.0s, If its greatest displacement is
0.4 m what 15 1ts maximum kinetic energy?

L]

A102 The displacement-ume equation for a

particle moving with simple harmonic mo-
LHon is
£ = g&in (wf+ )

(a) Explain what each of the svmbols
represents, illustrating  your answer
with a rough graph showing how x
varies with r.

(b} Write down the velociny—time equation,
and draw a corresponding graph show-
ing how the velocity © varies with .

SECTION A MECHANCS

(e} Ifmisthe mass of the particle, the kinetic
energy at displacement x is £ mow?
{@® — x*). Write down the expressions
for the potential energy at displacement
x, and the total energy.

(d) The total energy of an atom oscillating in
a crystal latice ar temperature T i, on
average, 3T, where & i5 the Boltomann
constant 1.38 = 10 * JK ', Assuming
that copper atoms, each of mass
1.06 = 10 kg, execute simple har-
monic motion of amplinade 8 « 107" m
at 300K, calculate the corresponding
frequency. [O]

A103 The bob of a simple pendulum moves simple

harmonically with amplitude 8.0cm and
perod 2.00s. Its mass s 0.50kg. The
motion of the bob is undamped.

Calculare maximum values for
{a) the speed of the bob, and
(b} the kinetic energy of the bob. [L]

A104 The following statements refer to a body in

simple harmonic motion along a straight line.

Write each reference lewer 0A, B, etc.) on a

new line and state whether the corresponding

statement 15 oorrect or incorrect. If you
consider a statement to be incorrect, make

a short comment pointing out the ceror.

A. The displacement of the body must be
small.

B. The kinetic encrgy of the body is
constant.

(.. The peniod is consrant,

D. The amplitude varies simusoidally with
nme.

E. At certain instants, the acceleration s
ZErn,

F. The acceleration of the body can be
greater than the acceleration due to
gravity.

Show that the motion of a simple pendulum

is simple harmonic, and obtain an expression

for the period, stating any assumprions
made.

How would vou obtain experimentally the
relationship berween period and length?
Explain how vou would use your results to
obtain the value of the acceleration due to
Eraviry.

(If the acceleration of a body is relared to s
position x by a relationship of the ype
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A105

A106

A07

a = —kx, vou may assume that the subse-

guent motion is simple harmonic of period
2k )

Explain why the tension in the string of a
simple pendulum is not constant as it swings.
At what points does the tension have its
maximum and minimum values? Consider
whether these values are greater or less than
that when the pendulum hangs stanonary,

W]

A light spring is suspended from a rigid
support and its free end carmes a mass of
0.40kg which produces an extension of
0.060m in the spring. The mass is then
pulled down a further 0,060 m and released
causing the mass o oscillate with simple
harmonic motion,

(a) Potential energy is stored in two ways in
this arrangement explain briefly whart
they are.

(b} Calculate the kinetic energy of the mass
as it passes through the mid-point of its
motion. IL]

The displacement x, in m, from the
egquilibrium positon of a particle mov-
ing with simple harmonic moton s
given by

x (105 sin 61

where 1 is the ume, in s, measured from

an instant when x = 0,

(1) State the amplitude of the osclla-
Lons.

(ii} Calculate the time period of the
oscillations and the maximum accel-
eration of the particle.

A mass hanging from a spring sus-
pended vertically is displaced a small
amount and released. By considering
the forces on the mass at the instant
when the mass 15 released, show that the
motion is simple harmonic and derive an
expression for the tme period. Assume
that the spring obeys Hooke’s law.

(1, "89]

A small mass suspended from a light helical
spring 15 drawn down 15mm from s
equilibrium position and released from rest.
After 3 seconds the mass reaches this
position once more. Find values for the
constants 4, © and g in the eguation
x=asin (a4 &) which describes  the

(a)

(b)

Al08

A109

motion of the mass. Here x measures the
distance from the equilibrium position and !
the elapsed time since release. [

(a) Define simple harmonic motion,

(b} Alight belical spring, for which the force

necessary to produce unit extension 1s &,

hangs vertically from a fixed support and
carrics a mass M oat 15 lower end.

Assuming that Hooke's law s obeyed

and that there 15 no damping, show thar

if the mass 15 displaced in a vertcal
direction from its equilibrium position
and released, the subsequent mobion is
simple harmonic, Derive an expression

for the tme period in terms of M and k.

If M= 030keg, = 30Nm ' and the

minal displacement of the mass 15

0.015 m, calculate:

{i} the maximum kinetic encrgy of the
mass,

(ii) rhe maximum and minimum values
of the tension in the spring during
the motion.

Skerch graphs showing how (i) the

kinetic energy of the mass, (ii) the

rension in the spring vary with displace-
ment from the equilibrium position.

If the same spring with the same mass

amached were taken o the Moon, what

would be the effect, if any, on the time
period of the oscillations? Explaim your

ANSWeET. 1]

(c)

(d)

(e}

Define sumple harmonic modion.

The displacement of a body undergoing

SHM is given by v = A sin ot

(i) Explain what A and o represent.

(ii) Drraw agraph showing how v varies
with r.

(iii} Undernecath this, and using the
same scales for ¢, sketch graphs
showing how the velocity v and the
acceleranon a vary with 1,

A mass on hangs on a string of length J

from a rigid support. The mass is pulled

aside, so that the string makes an angle 0

with the vertical, and then released.

(i) Show that the mass executes

SHM, smting any assumprions

miade.

Prove that the period T of this

(a)
(b)

(c)

(ii)

EHM isgivenby T = 2 'l";i'
£
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{d)
A110 (a)
(b}
(c)
A111 (a)
(b)

(i) A student dmes a simple pendu-
lum o determine I, Does it matter
how many oscillations are counted?
Dwoes it matter from where the
counts are taken — the end or the
middle of the swing? Give reasomns.

A piston in a car engine performs SHM.

The piston has a mass of 0,50 kg and its

amplitude of vibration 15 45mm. The

revolution counter in the car reads 750

revolutions per minute, Calculate the

maximum force on the piston. [W, '90]

A body of mass m is suspended from a
vertical, light, helical spring of force
constant &, as in Fig. 1. Wnte down an
expression for the pericd T of vertical
oscillations of m,

Two such identical sproings are now
joined as in Fig. 2 and support the same
miass s, In terms of T, what is the period
of vertical oscillations in this case?

The identical springs are now placed
side by side as im Fig. 3, and mr 15
supported symmetnically from them by
means of a weightless bar. Interms of T,
what 15 the perntod of vertical osallations
in this case?

Fig. 3

Fig. 2 mlr. !g I.!

Define simple harmonic motion, Use
vour definition to explain whar relation-
ship must exist at any instant between
the force acting on a body performing
such a motion in a straight line and its
distance from a fixed point. At what
point(s) in the motion is (i) the velocity,
(ii} the acceleration, a maximum?

Ohne end of a spring is attached to a fixed
point and the other end carries a body of

small mass m which produces a static

(<)

SECTION A MECHANMCE

extension g. Show that, if the body is
displaced vertically through a further
small distance, it will oscillate with
smimple harmonic motion. (The mass of
the spring may be neglected. )

Ciiven that the time peried, T, of the

body performing simple harmonic
maotion is given by the expression

" Mass of the bud}f.

T == 1'..' Force on the body per

unit displacement

derive an expression for the period of
oscillation of the body on the spring.

Suggest how vou would investigare
experimentally whether the bob of a
simple pendulom, when oscillating
through a small angle, was executing
simple harmonic motion. (L]

A112 A 100 g mass is suspended vertcally from a

light helical spring and the exwension in
equilibrium is found o be 10 cm. The mass
15 now pulled down a further 0.5 cm and 15
then releazed from rest. S1ating any assump-
tions vou make, show that the subgequent
motion of the mass 15 simple harmonic
motion. Calculate:

(a) the period of oscillarion,

(b) the maximum kinetic energy of the

mass. (1]

A113 Alight platform is supported by two identical
springs,

each having spring constant

20 M m~',; as shown in the diagram.

Flatfarm

- ]

Spring

AL,

(a) Calculate the weight which must be

placed on the centre of the platform in

order to produce a displacement of
3.0 em.
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All4

A115

A116

{b) The weight remains on the platform and
the platform is depressed a further
[.0cm and then released. (i) What is
the frequency of oscillation of the plat-
form? (i) What is the maximum accel-
eration of the platform? [C, "21]

Define simple harmonic motion.

An extension of 2.5 cm is produced when a
mass is hung from the lower end of a light
helical spring which is fixed at the top end
and 1o which Hooke’s law may be assumed 1o
apply. If the mass is depressed slightly and
then released, show thar the vertical vibra-
tions executed are simple harmonic and
calculare their time period.

If the mass of the spring is taken into account,
the oscillating mass M may be considered
increased to (M -+ m). Give reagons why mr is
less than the actual mass of the spring and
describe an experiment in which a series of
known masses is used to determine the value
of m. [n

Define stmple harmronic motfon and  state
where the magnitude of the acceleraton is
(a} greatest, (b) least.

Some sand 15 sprinkled on a honzontal
membrane which can be made to vibrate
vertically with simple harmonic motion,
When the amplitude is 0.10cm, the sand
just fails o make continuous contact with the
membrane. Explain why this phenomenon
occurs and calculate the frequency of vibra-

fom. [ﬂ

Define semple harmuontc monon, and explain
what is meant by the amplitede and period of
such a motion,

Show that the vertical oscillabions of a mass
suspended by a light helical spring are simple
harmonic, and obrain an expression for the
period.

A small mass rests on a scale-pan supported
by a spring; the period of vertical oscillations
of the scale-pan and mass 15 0.5s It is
observed that when the amplitude of the
oscillation exceeds a certain value, the mass
leaves the scale-pan. At whar point in the
motion does the mass leave the scale-pan,

and what is the minimum amplitnde of the
motion for this to happen? 5]
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AT {a) The displacemenmt v of & body moving

with SHM is given by
¥y = A sinmi,

(1) Skerch the variation of ywith 1.

(i) With reference 1w your sketch
explain what 15 meant by A and .

(ili) Skerch on the same axes the
variation of velocity v with ime.

(v} Copy and complete the expression
for the velocin:

v o= Ao osio (o |

{(b) A light spring of force constant & 1s
attached 1o a solid support and a mass m
i5 fixed to its lower end as shown below.

A A SIS A S A

Prowve thar when displaced verrically and
released, the mass moves with SHM of
penod

y O L

o ||r.' E

(e} The following syvstem may be wsed
commercially to measure mass (or

weight),
A
UL
Sprirg
Sansor [
it g
dasplatamant
Mass

(i) If, at the sensor, the maximum
mmeasurable deflection 18 10mm
and &= 10°Nm !, calculate the
maximum measurable mass, M ...



() Caleulare the frequency of oscilla-
tion when M., 15 applied.

(lii) Suggest an improvement to the
svstem 0 enable many measure-
ments of mass to be made in raped
BUCCession. [V, "92]

A118 A mass hangs from a light spring. The mass is

A118 (a) (i)

pulled down 30 mm from s equilibrium

position and then released from rest. The

frequency of oscillation 1s 0.50 He.

{ay Calculate:

{i) the angular frequency, o, of the
oscillation

(1) the magnitude of the acceleration at
the instant it is released from rest.

(b} Sketch a graph of the acceleration of
the mass against time during the firse
4.05 of its modon. Put a scale on each
Axis.

{e) Afier a few oscillations half of the mass
becomes detached when it 15 at the
lowest point of its moton, The act of
detachment still leaves the remaining
half instantaneously at rest.

Is the period of the subsequent oscilla-
tion the same, shorter or longer than the
original periods Account for your
ANSWer. [y &, "0l

Define simple harmonic motion.
(ii) Show that the equanon

¥ = asin (o + )

represents such 8 modon and
explain the meaning of the sym-
bols v, @, o and £,

(iii} Draw with respect to a common
tme axis graphs showing the
variation with ome ¢ of the
displacement, velocity and kinetic
energy of a heavy particle that is
describing such 8 motion.

(b} When a metal cvlinder of mass 0.2 kg 15
attached o the lower end of a light
helical spring the upper end of which 15
fixed, the spring exvends by 0. 16 m. The
metal cylinder 15 then pulled down a
further (.08 m.

(i} Find the force that must be exerted

o keep it there, if Hooke's law is
obeved.

SECTION 4 MECHANICS

(ii) The cylinder is then released. Find
the period of vertical oscillations,
and the kinetic energy the cvlinder
possesses when it passes through its
MEAn posimion, [CY]

GRAVITATION (Chapter 8)

A120 Explorer 38, a radio-astronomy research

AT

satellive of mass 200 kg, circles the Earth in
an orbit of average radius 3 B2 where B is the
radius of the Earth. Assuming the gravita-
tional pull on a mass of 1 kg at the Earth's
surface to be 10N, calculate the pull on the
satellite. [L]

A sarellive of mass 66 kg 15 in orbit round
the Earth at a distance of 57K above is
surface, where R 15 the value of the mean
radius of the Earth, If the gravitational field
strength at the Earth's surface is 2.8 M kg ',
calculave the centripetal force acting on the
satellite.

Assuming the Earth's mean radius 1o be
6400 km, calculate the period of the satellite
in orbit in hours, [L]

A122 (a) Deline accelerabion. An obpect 15 thrown

vertically upwards from the surface of
the Earth. Air resistance can be
neglected, Sketch labelled graphs on
the same axes oo show how (1) the
velocity, (i) the acceleration of the
object vary with time. Mark on the
graphs the tme at which the object
reaches maximum height and the ome
at which it returns to s original
positon.

(b} Modern gravity meters can measure g,
the acceleraton of free fall, o a high
degree of accuracy, The principle on
which they work 15 of measuring 1, the
time of fall of an object through a known
distance & in a vacuum. Assuming thar
the object starts from rest, deduce the
relation berween g, 1 and k.

{c) State Mewton's law of gravitation relat-
ing the force F bertween two point
objects of masses s and M, their
separaton r and the gravitavonal con-
stant (7.
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Al23

A124

A1ZS

Sandard
1 kg mBas
Surface of
Earth

200 e

Mar fo scale

(d} The diagram shows a standard kilogram
mass at the surface of the Earth and a
spherical region § of radius 2000 m with
its centre 4000 m from the surface of the
Earth. The density of the rock in this
region is 2800 kgm . What force does
the matter in region 5 exert on the
standard mass?*

If region 5 consisted of o] of density
900 kgm* instead of rock, what differ-
ence would there be in the force on the
standard mass?#

Suggest how gravity meters may be used
in oil prospecting. Find the uncertainty
within which the acceleration of free fall
needs to be measured if the meters are to
detect the (rather large) quantity of oil
stated in ().

(G =667 x 107" Nmkg ) [C,"91)

(e}

(£}

A communication satellite is placed in an

orbit such that it remains directly above a

fixed point on the Earth's surface at all tmes,

(@) What is the period of this satellite?

(b} Explain why the satellite must be in orbit
above the equator.

() Show that the correct height for the orbit
does not depend upon the mass of the
satellite. 5]

The gravitational force acting on an astro-

naut travelling in a space vehicle in low Earth

orhit is only slightly less than if he were

standing on Earth.

(a) Explain why the force is only slightly
less.

(b} Explain why, when tavelling in the
space vehicle, the astronaut appears to
be “weightless’. [L]

(@) Stare the Kepler law of planetary motion
which relates period to orbit radius.
Show that it 18 consistent with an

A126

A127

A28

AlZ9

a5

inverse square law of force between
massive bodies.

When a space shuntle is in an orbit at a
mean height of 0.33 x 10" m above the
surface of the Earth, it requires 91
minutes o complere one orbit, Use this
information to obtain a value for the
mass of the Earth.

Describe a laboratory experiment 1o
measure the acceleration of free fall.
Explain carefully how the wvalue 15
obrained from the measurements made
and comment wpon the accuracy you
would expect.

Explain why an astronaur inside the
shuttle of part (b) feels weightless even
though the ntensity of the Earth's
gravitational field at that height s
approximately 9 N kg .

(b)

(<)

(d)

{Mean Earth radius = 6.37 = 10" m;
Universal Gravimtional consiani =
6.67 « 100 " Nm kg 2. [S]

An artificial satellite travels in a ciecular orbit
round the Earth., Explain why its speed
would have to be greater for an orbit of
smiall radius than for one of large radius.

(L]

A man is able o jump vertically 1.5m on
Earth. What height might he be expected w
jump on a planet of which the density 1s one
third that of the Earth but of which the radius
is one half that of the Earth? (L]

Assuming the Earth to be a sphere of radius
h o= ]'IZII“L'nr cstimate the mass of the Earth,
given that the acceleration of free fall is
10ms ? and that the gravitational constant
GisT= 10 " Nm kg ° [C(O)]

The Moon=rover used by astronauts on the
Moon breaks down. Explain whether or not
the force required (&) to lift it, (b) to swaer it
moving horizontally with a given acceleration
would be more or less than on Earth.
Frictiomal forces mav be considered 1o be
negligible.

While engaged in lifting the wehicle an
astronaut lers drop simultaneously a span-
ner and a piece of paper. Describe and
cxplain the fall of these rwo obpects come-
pared with what would be observed on Earth.

[AEB, "79]



136

A130 The diagram shows a binary star system

O

consisting of two stars cach of mass
4.0 % 10" kg separated by 2.0 = 10'' m.
The stars rotate about the centre of mass of

thie syslemm.
\l}.rﬁmu:ln of modian

O

o

g T

EDunr.l wun af motson

A1

A132

(a) (i) Copyv the diagram and, on your
diagram, label with a lemer L a
point where the gravitational field
strength 18 zero. Explain why you
have chosen this point.,

(i) Determine the  gravitational
potential at Lo
(G =67 %10 "Nm kg 2}
(b) (I) Calculate the force on cach star

due to the other.

(if) Calculate the linear speed of each
star im the system.

(iii) Determine the penod of rotaton.

[AEB, '02)

Kepler's third law of planetary motion, as
simplified by taking the orbits to be circles
round the Sun, states that if r denotes the
radius of the orbit of a particular planet and T
denotes the pericd in which that planet
describes its orbit, then #¥T has the same
value for all the planers.

The orbits of the Earth and of Jupiter are very

nearly circular with radii of 150 = 10° m and
778 = 10°m respectvely, while Jupiter's
period round the Sun is 11.8 years,

{m) Show that these figures are consistent

with Kepler's third law.

(b) Taking the value of the gravitarional con-
stant, (7, 1o be 6.67 = 107" Nm*kg?,
estimate the mass of the Sun. [O*]
{a) State Newton's law of gravitation and
derive the dimensions of the gravita-
tional constant Cr,

If a planet 15 assumed o move around
the sun in a circular orbit of radius rwith
periodic time T, derive an expression for
T in terms of r and other relevant
quantities. [1]

(B)

A133

Al134

A1l

A136

SECTION A MECHANICS

Explain what is meant by the gravitational
constant {f, and dermve its dimensions in
terms of mass M, length Lo and ome T.

Assuming that the pernod of rotation 1 of a
planetin its orbit depends only onits distance
d from the Sun, the mass M, of the Sun and
the gravitational constant (7, show that r* is
proportional to 4°/M,. Use the following
data on the Selar Svstem 1o 1est, as far as
posaible, the validity of this result.

Plaret Distance from Pariod/
Sundkm days
Mercury 0.53 = 10° BE
Earth 1.4% = 108 165
Mars 228 = 10% Q&7
Jupiter T.78 = 108 4333
Uranus 287 = 108 30690

The distance of the Moon from the Earth is
3.8 % 10°km and its period of rotation is
27.3 davs. Deduce the ratio of the mass of the
Sun to that of the Earth. [ & C]

Assuming that the Earth {mass ») describes a
circular orbit of radius & at angular velocity o
round the Sun (radius r, mass A due

gravitational atcracton:

{a} wrnte down the Earth's equaton of
motion,

{b) obtain the mean density of the Sun,
given w = 2.0 % 10 " mads '}
RI.":' = E'I:H'.l;
F=67=10 "k 'm's %
volume of a sphere = 3 ¢, [5]

Explain how the mass, M, of the Sun can be
calculated from a knowledge of the following:
R, distance from Earth to Sun,
r, distance from Earth to Moon,
T, orbital peried of Earth,

t, orbital peried of Moon,

m, the mass of the Earth. (L]
Explain what is meant by the universal
gravitational constant Cr. Derive the relation-
ship between (7 and the acceleration of free
fall, g, at the surface of the Earth (neglecting
rotation of the Earth and assuming that it is
spherical).

Explain why the rotation of the Earth about
its axis affects the value of g at the equartor.

Calculate the percentage change in g be-
mween the poles and the equator (again
assuming that the Earth is spherical).
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A137

A138

A139

A140

The orbit of the Moon s approximately a
circle of radius 60 times the equatorial radius
of the Earth. Calculate the time taken for the
Moon to complete one orbit, neglecting the
rotation of the Earth.

(Acceleration of free fall at the poles of the
Earth =9.8ms . Equatorial radius of
the Earth = 6.4 x 10°m. 1 day = 8.6 = 107
seconds.) (L]

Dieseribe the circumstances under which a
body can be said to be menghless., €]

Show that Nkg™' is a valid unit for g, the
acceleration due to graviry.

Diraw a graph showing how g varies with
distance from the Earth’s centre. Start your
graph from the Barth's surface and assume
that g = 10m s at the surface. Take as your
unit along your distance axis the Earth's
radius (6.4 x 10" m) and extend the axis o
six radii.

Esrimate from wour graph the loss in
potential :ncrg"ll,r as a body of mass 1 kg falls
from 2.56 = 10" mto 1.92 = 10" m from the
Earth’s centre.

Determine (pot from your graph) the dis-
tance from the Earth to the Moon, and the
value of the Earth's g at the Moon. (You may
assume that 1 lunar month = 28 davs.)

W)

Diistinguish berween the gravitational con-
stant (F and the acceleration due to gravity g.

Assuming that the Earth 58 a umiform
homogeneous sphere of radius R and den-
sity A obtain expressions for the acceleration
due to gravity:

{a) ata pole of the Earth,

(b} at a height k above the Earth at the pole,
() ata point on the equator. []]

(a) (i) Define gravitational field strength.

(ii) Show that gravitational field
strength is equal to g (the accelera-
ton due to gravity).

{b) Explain carefullythe distinction between

welght and mass.

{c) How are weight and mass each

measured? [(One semternce om each @

ﬂpﬁlﬂd.:l [Wa ’Qﬂ]
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Al147 (a) (i} Explain what is meant by gravira-

momal  porenrial and  pravirarmornal
potential energy.

(if) Use your explanations to show that
the difference in potential energy
between a point on the Earth's
surface and one at a height & above
It 15, to a close approximation, equal
to megh where we is the mass of the
body under consideration and g is
the gravitational field strength at the
Earth's surface.

(b) The base of a mountain is at sea level
where the gravitational field strength is
G810 kg ", The value of the gravita-
pional field strength at the top of the
mountain is 9.790 N kg ', Calculate the
height of the mountain above sea level.

() Outline a method of measuring the
gravitational field strength to the accu-
racy required in {b) above.

(Radius of the Earth = 6000 km. )

[O & C, "92]

A142 (a) Define gravitanonal field strengeh and

gravitational polential, stating the rela-
donship between them. Explain what is
meant by the term wniform field and
discuss 1o what extent the gravitational
field of the Earth can be considered to be
uniform by considering two points on
the surface (i) separated by a distance of
about 10 km, (ii) at opposite ends of a
diamerer. Assume that the Earth is a
homogeneous sphere.

(b} Wrte down an expression for the
gravitational potential at the surface of
the Earth in terms of its mass M, radius B
and the gravitational constant (s, Sketch
a graph showing the vananon of poten-
tial with positon along a line passing
through the centre of the Earth and point
out the important fesiures of the graph.
(Only consider points external oo the
surface and in one direction only.)

{¢) Derive an expression for the escape
velocity, v, at the surface of a planet in
terms of the radius, r, of the planet and
the acceleration of free fall, g, at the
surface of the planet, [T]

A143 Whar are the gravitational potentials at a

point on the Earth’s surface due to (a) the
Earth, (b} the Sun?
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A144 (a) ()

A145 (a)

{Mass of Earth = 6.0 = 10°"kg; radius of
Earth = 6.4 = 10°m; mass of Sun = 2.0
10 kg; radius of FEarth's orbit=1.5x
10 m; G=67x 10" Nmkg?) [C]

arate Wewton’'s law of gravitaton.
Give the meaning of any symbol
VOu use.

Define gravitational freld strength.
Use your answers to (1) and (H) 1o
show that the magnitude of the
gravitational field srength ar the
Earth's surface 15

oM
Re

where M is the mass of the Earth, R

15 the radius of the Earth and & 15

the gravitational constant.
Define graviranonal potential,
Use the data below to show that its value
at the Earth's surface is approximately
—63MJkg~'.
A communications satellite occupies an
orbit such thar its period of revolution
abour the earth is 24hr. Explain the
significance of this period and show that
the radius, Ky, of the orbir is given by
R, = [GMT?

B 4nt
where T'1s the penod of revolution and &
and M have the same meanings as in
{a) (i),
Calculare the least kinetic energy which
must be given 1o a mass of 2000 kg an the
Earth's surface for the mass to reach a
point a distance R from the centre of the
Earth. Ignore the effect of the Earth's
rolation,
(G=67x 10" Nmkg*,
M=60x10%kg, R =64 = 10°m.)
(I, "89]

(id)
(i)

(b)

(<)

(d)

Define gravitational pofential at a point.

As a spacecraft falls towards the Earth, it

loses grawvitational potential energy.

What becomes of the lost potental

energy

(i} when the spacecraft 15 falling freely
towards the Earth well away from
the Earth's atmosphere,

() when the spacecraft is falling
through the Earth's atmosphere at
constant speed?

(b)

A146

SECTION A: MECHANICS

(e} (i) Calculare the gravitatonal poten-
tial difference berween a point on
the Earth's surface and a point
1600 km above the Earth's surface.,
Calculate the minimum energy
required to project a spacecraft of
mass 2.0 = 10% kg from the surface
of the Earth so that it escapes
completely from the influence of
the Earth's gravitational field.

(Radius of Earth=6400km; Universal
Gravitational constant = 6.7 = 1071 N
m® kg*; mass of the Earth = 6.0 x
10*" kg.) [AER, '87)

(id)

What do you understand by the rerm
gravitanional  feld; define gravirational field
strength.
Show that the radius R of a satellite's circular
orbit about a planetr of mass M is related w
its period as follows:
oM

T!
4
where F is the universal gravitational con-
stant.

B =

HE R
e

The diagram shows two graphs of R against
T; one is for the moons of Jupiter and the
other is for the moons of Saturn. R is the
mean distance of a moon from a planet's
centre and T is its period,

The orhits are assumed wo be circular,

“The mass of Jupiter is 1.90 = 107" kg.

{a) Why are the lines straight?

(b} Find a value for the mass of Saturn.

{c) Find a value for the universal gravita-
tional constant (7. [L*]
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A147 Explain what is meant by the statement: The
pravitattonal potential at one Earth’s radius
above the Earth s surface is —31.3 = 10°Tkg ',

(a)

The table below gives the gravitational
potential ¥, atdistances from the centre
of the Earth in units of Earth radii. The
radius of the Earth R = 6.38 = 10" m.

VoiMlikg' =627 3.5 209 15.7
Distance/K 1.0 2.0 3.0 4.0

{i} Use these data to determine the
gravitational potential ar distances
from the Earth’s cenire of
10 x 10°m and 15 » 10* m. Indi-
cate how wyou determined the
values,

(if) A spacecraft of mass 4.0 = 10"kg
has its motors switched off. It slows
down as it moves away from
10 x 10°m above the Earth's
centre to 15 x 10°m. Find the
loss of kinetic energy of the craft
and the average force acting on the
craft.

(idi) A slow-moving meteorite is cap-
tured by the Earth's gravitanonal
field. Determine the speed with
which it will crash into the surface
on the assumption that it 15 not
slowed by air resistance.

{(b) The Space Shutle, with its engines

A148 (a)

shut down, 15 moving in the same
circular orbit above the Earth and ar
the same speed as a satellite that it is
trving to capture. The two craft are
gseparated by a distance of a few
kilometres. The Shuttle can catch up
the zarellite by using its engines in
reverse for a few seconds to slow it
down. The Shunle falls into a lower
orbit and passes the satellite. Using
its engines to accelerate for a few
seconds it returms to the onginal orbit
just in front of the satellite. Use your
knowledge of gravitatonal forces and
uniform motion in & circular orbit 1o
explain the physics of this procedure.
[O & C, "o0)

Write down an expression for the gravi-
tatonal potental difference between a
point P on the Earth's surface and a
distant point O as shown below,

Gravitational patential diffprance®™d kg™

)
Earth
mass i P a
[P r

Show that if 15 only shightly greater than
R, the gravitational potental difference
becomes g{r — K} where g is the gravita-
tional field swrength on the Earth's
surface.

(b} The graph shows how the gravitational

potential difference berween a point on
the Earth's surface and a distant point,
distance x from the Earth's surface,
changes near to the Moon's surface.
The Moon's surface is 384 000 km from
the Earth"s surface,
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The graph shows the gravitational

potential difference first increasing,

then achieving a maximum value and
finally decreasing to a smaller value on
the Moon's surface.

(i) Use the graph to determine the
amount of potenual energy re-
leased as a mass of 200 kg falls w
the surface of the Moon from a
height of 14 000 km. At what speed
will it hit the surface?

(ii} What feature of the graph justifies
the assumption that the porential
encrgy of a body measured with
respect o the Moon™s surface is
proportional to its height above
that surface? Obtain from the
graph the height to which this
ASSUMPLHON i% rue,

x'krm
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(iil) The net force acting on a body
moving from the Earth's surface to
the surface of the Moon 15 the
resultant of Two cComponents, one
due to the arraction of the body
towards the Earth and the other
due o its attracton towards the
Moo,

Explain how the net force changes
in going from the Earth’s surface to
the point 5, shown on the graph,
where the gravitational potential
difference is a maximum,

What is the value of the net force at
the point where the gravitational
potential difference is a masimum?
Crive a reason for your answer,

Explain why the gravitatonal
potential difference is a maximum
at this point, [L]

Explain why a force is required for
| mass to travel ar a constant speed
in a circular path. State the direc-
tion of this force and give an
equation for its magnitude, defin-
ing any terms used.

(i) State how this force is provided in
the case of a satellive orbitting the
Earth.

(iii)} Show that the speed of a satellite in
orbit close 1o the Earth is given by
(gR)* where gis the acceleration of
free fall and R is the radius of the
Earth.

{iv) Calculate the speed of the satellite

and the period of the orbit

given that g=98ms* and

R = 6.4 = 107 km.

(b) The most useful communication satel-

lites are those in geostationary orbits. A
satellite in geostationary orbit réemains
above the same point on the Earth's

Equatarial

plana

SELTION A MECHANILS

Morih
Pale - London ketstude 517 M)

1
U Nat o scale .,.-"

Sarellite

surface at all times. This 15 only possible
when the satellite 15 in an orbit in the
equatorial plane. Only ‘line of sight’
communication is possible in satellite
communicarions. This means that com-
munication can only ocour provided
there is no obsitruction between the
transmirter, the satellite and  the
FECEIVET.
(i) The relationship between the

period T and radius R of an orbit

15

T = ER?
where & 1% a constant.

Using wvour answer to (a) (iv)
determine the radius of the orbit
for a geostationary satellite.

{iiy Estimate the delay between the
transmission and reception of a
signal using the satellite. Show
how you arrive at your answer,

{iil} Calculate the most northerly lat-
tude for which satellite commumni-
cation is possible.

(iv) Swte with reasons how many
satellites are needed to provide
communication  berween  all
places on the equator and indicate
on a disgram how this can be
achieved.

(¥} State and explain the advantages
of communicating using geo-
stationary  satellites compared
with those whose position relative
to the Earth’s surface is continually
changing. |AER, "89]
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SOLIDS AND LIQUIDS

9.1 INTRODUCTION

The kinetic theory accounts for all three states of matter (solid, liquid and gas) by
assuming that matter 15 made up of molecules which are in continual motion, This
motion existz at all emperatures above absolute zero, and the kinetic energy
associated with it is often referred 1o as thermal energy. The molecules™® exert
torces of attraction on each other, and so they also possess potential energy. The
forces are due to the electrostate intéractions of the electrons and nuclei of the
molecules, The force between a pair of molecules depends upon the spatial
distribution of the electrons and the separaton of the molecules. At very small
separations the net force must become repulsive, for if the attractive force were to
exist right down to zero separation, all matter would collapse in on itself. The force
must be neghgble at large separations in order to account for the properties of
gascs. The kinetic energy, on the other hand, depends only on temperature; in fact
temperature is the outward manifestation of kinetic energy. [tis the relatve
magnitude of the kinetic and potental energies which determines whether a
substance 1s in the solid, the liquid or the gaseous state.

9.2 INTERMOLECULAR FORCE AND POTENTIAL
ENERGY

Consider two isolated molecules whose separation is such that they are exerting
attractive forces on each other. If one of the molecules were 1o be removed to
infinity, work would have to be done on it in order to overcome the attractive force,
and therefore its potential energy would increase. However, it 1s convenient to
regard the potential energy of each molecule as being zero when their separation is
infinite (because at such a separation they have no influence on each other), and
therefore when two molecules are atttacting each other their potential energy is

negative.

9.3 TO SHOW THAT F — —dE/dr

Consider two molecules exerting forces of attraction on each other (Fig. 9.1). Ifthe
force Fon A moves it a small distance or (50 that F can be considered constant) 1o
the right, then the work done 4 W on A 15 given by

iW = Far [9.1]

*We shall not distinguish berween atoms and mobecubes

T4
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Fig. 8.1
Mutually attracting
maolecules

143
T
If &k 15 the resulting change in the potental energy of A, then
dFE = —4W [9.2]

The minus sign is present because as A moves towards B, under the influence of
the attractive force, its potential energy decreases. By equations [9.1] and [9.2],

iE Fir
and therefore in the lhimit

F = —dE/dr

9.4 THE INTERMOLECULAR POTENTIAL ENERGY AND
FORCE CURVES

Fig. 8.2

The potential energy of a
pair of molecules gs &
function of thair
sEparation

The potential energy E of a pair of molecules {or avoms), due w the electrostatic
force F berween them, varies as a function of their separation r as shown in Fig.
9.2 Since F dE/dr, aplotof F against ris, in fact, a plot of the negative of the
gradient of the energy curve against r. Such a plot is shown in Fig. 9.3,

Malecular patential

anargy {1
F
r l s
i) I *
i Mlalaculas
| soparation |rj
¥ i Pl il sl @i
‘ = i, Bl i wiigrs
E = =a b == o= o Thig asction of the
el curee is stoepest)

When r = r, there 5 no net force between the molecules and their potential
energy (Fig. 9.2) has its minimum value, Thus if two molecules have a separation
of ry they are at their equilibrium separation. Any increase or decrease in their
separation would require energy, since work would have to be done against the net
attractive or the net repulsive force respectively. The equilibrium is stable because
an increase in r leads to an attractive force which restores r w ry; similarly a
decrease in r produces a repulsive force which again restores r 1o r. { The value of
ry depends on the particular solid burt it is often ~ 3 = 107" m.)
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Fig. 9.3

The force betwean a pair
of molecules as a
fumction of their
saparation

9.5 SOLIDS

SECTION B: STRUCTURAL PROPERTIES OF MATTER

Imtermolacular

Badea |FY
[ LI]

ﬂ -
Malecular
saparation rh

rox r, net I row o, net Mlimirnurm corresponds
farca s | P g ta poing af inflexion
rapulsive aftractive of Fig. 8.2

Solids have fixed shapes and fixed volumes. Consider a solid at absolute zero;
the molecules would have no kinetic energy and therefore would be stationary at
their equilibrium separation r,. At higher remperatures the molecules would
possess kinetic energy and could use this to oppose the intermolecular forces.
Suppose a pair of molecules has an amount of kinetic energy &, By exchanging this
kanetic energy for potential energy, they would be able to increase their separation
such that their situation became that represented by the point X on the energy
curve (Fig. 9.2); or decrease it to Y. At X the molecules would feel an attractive
force which would restore them to their equilibrium separation ry. On reaching ry
they would once again have kinetic energy £ but would now be moving toward each
other; they would therefore decrease their separation to the state represented by,
At Y their directions of motion would again reverse. Thus, the molecules of a
solid at temperatures above absolute zero oscillate about their equili-
brium positions. Because their kinetic energy is low compared with their
potential energy (s < 0. leg), the molecules of solids can merely vibrate about fixed
positions. They are therefore locked into a geometnically ordered array, and as a
consequence a solid has both a fixed volume and a fixed shape.

At remperatures above absolute zero the mean separation 15 not necessarily ry. In
Fig. 9.2 XN is greater than Y, and therefore the mid-point of XY, the point on
which the oscillation is centred, corresponds to a separation which is greater than
Fa. As the temperature increases from absolute zero, the mid-point moves from G
towards . Thus, the mean separation of the two molecules (and consequently of
all the pairs of molecules wathin the sohd) increases with temperature, i.e. the curve
shown represents the normal situation, that of a solid which expands on heating.

The linear expansivity 2 of a solid is defined by
LT

"= Ta0

[9.3]

where

4. = the increase in length brought about by a small increase in
remperature 40

L = the original length of the specimen.
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The value of x depends on the temperature at which it is measured. However, for
temperarure increases of less than about 100°C the vanation is slight and egquation
[9.3] can be replaced by the more useful expression

Ly = Ly+ aLy(th - ) [9.4]
where

g = the mean linear expansivity of the solid in the temperature range 00,
o iy (unit = "C'or K1)

Ly = the length of the specimen at &
L, = the length of the specimen at .

A liquid has a fixed volume but no fixed shape. The molecules of liquids, like
those of solids, vibrate. In liguids though, cach molecule has a particular set of
nearest neighbours for only a short tme. This occurs because the molecules of
liquids have greater average kinetic energies than those of solids. (Note thar the
molecules of liquids, like those of solids and gases, have a range of kinetic energies,
and the energy of any purticular molecule 15 constantly changing due 1o
intermolecular collisions.) The increased kinetic cnergy results in larger
amplitudes of vibration, and therefore there iz more likelihood of a molecule
being able to pass through the gaps berween the molecules surrounding it. There
i5, therefore, a continual molecular migration superimposed upon the vibrational
motion, and this accounts for the ability of a liquid o adopr the shape of its
container. The molecules, however, are close together and a change in volume
would require that the intermolecular forces were overcome = liquids, therefore,
have fixed volumes.

9.7 BROWNIAN MOTION

This was first observed in 1827 by Robert Brown, a Scotrish botanist, while using a
microscope to look at a suspension of pollen grains in water. He noticed that the
pollen grains were in a state of continual motion. The motion was both random
and Eflﬂr Brownian motion can be observed when small particles n’c‘ﬂ knd are
suspended in a fluid {e.g. smoke particles suspended in air). The modon can be
made more pronounced by:

(i) increasing the remperature of the fluid, and /or

(i)  decreasing the size of the suspended particles.

Brownian motion is now regarded as strong evidence that fluids are
composed of molecules in a state of unceasing random motion. For
example, we consider that a smoke particle suspended in air is constantly being
bombarded by air molecules. At any one ume, though, if the air molecules move
randomly, the smoke particle is likely to receive a bigger impact on one side than on
the opposite side. Because the smoke particle 15 small, this statistical imbalance
will be significant and therefore the particle will speed up or slow down and/or
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Fig. 9.4
The structure of
(@) diamond, {b] graphita Lal
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Fig. 9.9
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Many polymers may be classified as being either thermoplastics or thermosetting
plastics. Some polymers are described as elastomers, some as fibres. These four
classifications are discussed in the sectons that follow and examples are given in

Table 9.1.

Thermoplastics

These soften and become more flexible on heating; they regain their previous
rigidity on cooling. They can be moulded while warm and retain their moulded
form when they cool. There are usually only weak forces (e.g. van der Waals forces)
between the chains, Heating overcomes these, and the chains can then slide past
each other so that the material takes up the shape of the mould. Since the bonds are
weak, the amount of heat required is not 30 great that the polymer decomposes.
The bonds reform and restore the ngidity on cooling.

Thermosetting Plastics

Theze are cross-linked polymers and are more brinde and more rgid than the
thermoplastics, They do not soften on heating and can withstand higher
temperatures than thermoplastics because more cnergy is necded to break the
relatively strong bonds berween the chains, If the temperatare is increased w the
extent that the bonds break, the material decomposes.

Thermosetting plastics are moulded before polymernzation is complete. They are
then heated 1o produce further cross-linking, so seting the material, irreversibly,
in its moulded form®*.

*Wirth some matcrials, epoxy resins for example, lymerization can be completed at room
ple, po p
temperature,
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Table 5.2

A typical low-density and
a typical high-density
palythene compared

Fibres

These are linear chain polymers in which the chains have been aligned along the
length of the fibre, and in which there are reasonably strong bonds berween the
chains (hydrogen bonding in the caze of nylons, dipole—dipole bonding in the case
of Terylene), Synthetic fibres are thermoplastic matenals; many of them can be
used in their non-fibre forms {e.g. nylon). Cellulose is a natural polymeric fibre,

Crystallinity in Polymers

In some polymers there are regions in which the chains are close together and
parallel to each other. There is therefore a degree of long-range order in these
regions, and they are said o be crvstalline. At the other extreme are the so-called
amorphous polymers in which the chains criss-cross in a random way like
tangled strands of spaghetti. Linear chain polymers may be either crystalline or
amorphous. Crystallinity tends not to occur in polymers with highly branched
chains because the chains cannot pack sufficiendy closely. Highly cross-linked
polymers are completely amorphous.

We have seen that increased ngidity can be produced by increasing the amount of
crosg=linking between the chains. It can also be produced by creating crystalline
regions in the polymer. The rigidity is due to the forces between individual atoms
in adjacent chains in the crystalline regions. Although these forces are usually weak
(¢.g. van der Waals forces), the side-by-side arrangement of the chains means that
there are large numbers of these “bonds’, making it difficult for the chains to shde
past each other.

The greater the crystallinity, the higher the melting point and the higher the
density. The effects of crystallinity are illustrated by the two forms of polythene*
{see Table 9.2,

Low-darnsiy Migh-density

palythane polythana
Crystallinity 50% T6%
Dremsiry O kgm I Ol kg
Melting point inc | 1350
Tensile sivength at vield 12 = 10" Pa [ 31 = 10%Pa
Chain type Branched | Linear

(Dhata kindly supplied by BPF Chembeals Limived)

General Properties of Polymers

The main bonds in polymers are covalent; this accounts for their low thermal and
electrical conductivities. Polymers are less dense than both metals and ceramuics.
They are usually resistant to water and acids but mav be anacked by organic
solvents. Production costs for plastics are much less than those for metals — a
polvthiene bucket is much cheaper than a metal one.

Plastics often have other materials incorporated with them. The purpose of these
additives may be to increase flexibility, increase strength, improve weathering
properties, provide better insulation characteristics, add colour or simply to

*The two forms are produced by employing different conditions during polyvmerizanon.,
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reduce cost, For example, glass fibres can be added o epoxy and polyester resins 1o
increase strength, The addition of mica to some thermoseting plastics makes
them even bertter electrical insulators, Lead compounds can be added o PVC wo
prevent it decomposing in strong sunlight,

9.11 CRYSTAL STRUCTURES

Fig. 9.10

Spheres packing together
to oCcupy the minimum
SaCE

Early crystallographers suspected that the external regularnty of coystals was due to
their atoms being arranged in regular three-dimensional arrays. This was
confirmed in 1912 when von Laue and his students, Friedrich and Knipping,
showed that crystals could be used to diffract X-rays, and therefore must be acting
as three-dimensional diffraction gratings. The diffraction patern they obrained
was (oo complicared for them to use it o determine the structure of the crystal that
had produced it, but one year later, using a simplified version of the technique,
W.H. and W.L. Bragg succeeded. X-ray diffraction has since proved to be the
single most important method of determining crystal structures.

The atoms (or wons or molecules) in a crystal are arranged in such a way that the
total potential energy of the structure 15 as small as possible, in which case the
structure 15 as stable as possible. The way in which this is achieved depends on the
wpe of crystal concerned. Some examples are discussed below,

Metal Crystals

The valence electrons of metals are free 1o move throughout the whole of the
mietal, and therefore metals can be regarded as an arrav of positive jons in a *sea’ of
clectrons. For the purpose of this discussion we may consider the ions w be
incompressible, equal-sized spheres, There 15 no directional bonding (as there is,
for example, in diamond), In these circumstances the most stable arrangement is
that in which the spheres occupy the minimum possible volume, This
arrangement 15 known as close packing. The spheres are arranged in lavers,
where each sphere is surrounded by a hexagonal ring of six others in contact with it
‘Fig. 0,10}, Fig, 9.11 shows the way in which two of these layers must fit together in
order to fulfil the reguirement of close packing. There are two types of hollows in
layer B - those marked by crosses and those marked by dots. There are therefore
two ways in which a third layer may be added to the first two.

If the spheres of the third layer occupy the hollows marked by crosses, they are
directly above the spheres in layer A, When this is so, the fourth layer is always a
repeat of layer B, and the overall sequence 1s ABAB, etc. = a structure known as
hexagonal close packing (Fig. 9.12).

If the spheres of the third layer occupy the hollows marked by dots, the layer is
different from both A and B; we shall call it layer C. In this situation the overall
sequence is alwavs ABCABC, erc, — a structure known as cubic close packing.



SOLICYS AND LICMADS 155

Fig. 8.11
Close-packed layers
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The unit cell contains ions from four layers and is known as a face-centred cube
(Fig. 9.13) because there is an ion at the centre of each face. Fig. 9.13{a) shows the
relatonship berween the layers and the unit cell.
A more open structure than the two discussed so far is that known as body=
centred cubic (Fig. 9.14). The least stable metals (e.g. lithium, sodium,
potassium) tend to crystallize in this form. Close packing cannot occur because
the thermal vibrations of the 1ons are able to overcome the relatively weak cohesive
forces in these metals.
Fig. 9.13

Linit call of cubic close-
packed (face-centred
cubic) structura

/

Coordinglion number = 12
Litilizes 74% of avallabls spece
Ewmmiples: Cu, Ag. Au, Al;

Fé Babwwasn 308°C and 1401°C
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Fig. 9.14
Unit cell of body-centred
cubie structure

Fig. 8.15
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Cogrdinalion nurmber = 8
LHdlizes 68% of available space
Exarmgles: Li, Na, K Fa habow
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lonic Crystals

As with metals, the ions tend o pack closely together because the bonding is non-
directional., We may still regard the ions as incompressible spheres, but we need to
take account of there being both posidvely charged and negatively charged ions
present. The arrangement shown in Fig. 9.15(a) is more stable than that in Fig.
9.15(b) because in Fig. 9.15(b) there are much stronger repulsive forces between
the negative jons. Consideration must also be given to the fact that in practice the
two types of 1on are normally of different sizes. Fig. 9. 16 illustrates the effect of the
relative size of the cenrral ion and those around it. Each arrangement makes
maximum use of the available space, and each does so without allowing the
negative ions to be in contact with each other,

073 = rfr = 100 041 < rfr. < 0.73
Example: CLI Example: KalCl

Caesium chloride crystallizes in the form of Fig. 9.16(a); the extended structure is
shown in Fig. 9.17. There are eight Cl~ ions around each Cs* ion, and eight Cs*
ions around each Cl- — the so-called 8:8 coordinaton. Though the lattice
resembles that shown in Fig. 9,14, it is not known as body=-centred cubic because
there are two rypes of ion present.

Sodium chloride crystallizes in the form of Fig. 9.16({h); the extended structure is
shown in Fig. 9.18. It can be regarded as pwo interpenetrating face-centred cubic
structures. Each Ma™ ion has six Cl™ ions as its nearest neighbours, and each C1™
ion has six Na® ions as nearest neighbours - 6 : 6 coordination.

There are two crystalline forms of zinc sulphide — @inc blende and wurtzite. The
radius rato of Zn** to 8- is 048, and therefore zinc sulphide would be expected
1o have the sodium chloride structure, However, both cryvstalline forms of zinc
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Fig. 8.17

Caesium chloride lattice
showing 8:8
coordination

Fig. 9.18
Sodium chlafide lattice

Fig. .19
Tetrahedral siructure in
diarmaond
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sulphide are such that each Zn** ion is surrounded terrahedrally by four 5% ions

and vice versa. The reason for this is thought to be that the Zn—5 bond has a
degree of covalent character which imposes directional constraints on the crvstal

form adopted.

Diamond Structure

D¥iamond is one of the rwo crysmalline forms of carbon (see section 9, 107, Each
carbon atom is covalently bonded to four others. Covalent bonds are highly
directional; and we can no longer think in terms of spheres being packed wogether
as closely as possible. The four bonds on each carbon atom point towards the
vertices of a regular tetrahedron (Fig. 9.1%a)). Fig. 9.19%b) shows how the
tetrahedron can be orientaved so that its vertices are at four corners of a cube. The
extended structure of diamond is shown in Fig. 9.4{a).

[LH] [4+1]
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9.12 MEASUREMENT OF LINEAR EXPANSIVITY

Fig. 8.20
Apparatus for
determining linear
B ANy

9.13 THE OIL

Fig. 9.20 shows an apparatus for determining the linear expansivity of a material in
the form of a rod about 50 cm long, The length, L, of the rod is meazured at room
temperature. The rod is then placed in the apparatus with one end against the
frame, and the micrometer 15 screwed up until it s in contact with the other end.
The micrometer reading, and the temperature, ¢, are noted. The micrometer is
now screwed back to allow the rod room to expand, and steam is passed through
the mcket. When the thermometer reading has stopped incressing, the
temperature, 1y, is recorded. The micrometer is brought back into contact with
the rod and the reading is noted. The difference, AL, berween the two micrometer
readings 15 the amount by which the length of the rod has increased. The linear
expansivity, x, is calculared from

Lo AL
L'_l”: — F.Fl :l
e Tharmometar
Steam In Stwam out  Steam jackel

\

i 1|||- Mg rsalar

Rigyid rmrtsl Fetped winiBar Tes
frame

FILM EXPERIMENT

If a small drop of olive oil is placed on the surface of some clean water, the oil
spreads to form a large circular flm. If it is assumed that the ol spreads untl the
film is only one molecule thick (i.e. a monomolecular layer), an estimare of the size
of an o1l molecule can be made by determining the thickness of the film.

It is important that the surface of the water is clean. To this end, water is poured
into a large shallow tray untl it is overflowing. The surface is then cleaned by
drawing two waxed rods across it from the centre ourwards, Lycopodium powder
is now sprinkled onto the surface so thar when the film is formed its edges may be
seen casily. A small, spherical drop of oil 15 obtained on a V-shaped fine wire by
dipping it into the oil. The diameter of the drop is measured by holding it in front of
a millimetre scale and viewing it through a magnifyving glass, or by using a travelling
microscope. The drop is then touched ontoe the water surface. The oil spreads and
pushes the lycopodium powder ourwards to leave a clear film of il whose diameter
can be measured.

Volume of oil drop = Volume of film

(4)- (3

il e
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where
d = diameter of oil drop
D = diameter of Glm
¢ = thickness of film
Rearranging gives
2 4°
{ = =
3 D
hence &

A drop with a diamerer of 0.5 mm produces a film with a diameter of about
200 mm, and gives a value for r of approximately 2 nm. Oil molecules are long and
thin, and ‘stand on end’ on water. It follows that this figure of 2 nm represents the
length of the molecule.

CONSOLIDATION

Kinetic energy of molecules depends on temperature,

Potential energy of cach of two molecules is taken 1o be zero atinfinite separation
because they can have no influence on each other at infinite separation. The PE 15
negative at the equilibrium separation because work has 1o be done (and therefore
the PE has to be increased) to separate the molecules to infinity.

Intermolecular PE and Force Curves
Minimum on PE curve corresponds to zéro on force curve.
Point of inflexion on PE curve cormesponds to minimum on foree curve,

Force = = (gradient of PE curve)

L PE
- Force

-

Farce HaEro

r l'r:/"' FE minimum
|

|
\ Farce = mirimum
PE

poant of inflexion

=

Solids
Fixed volume, fixed shape.
Mouolecules vibrate about fixed positions,
Ly = Lo+l (0 — 05
Liquids
Fixed volume, no fixed shape.
Mouolecules vibrate about non-fixed positions.
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FLUIDS AT REST

10.1 INTRODUCTION

This chapter is concerned with fluids, A fluid is a substance thar can flow; it follows
that both liguids and gases are fluids.

An important concept in connection with fAuids is that of pressure. The pressure
inn & fuid depends on its density, and we shall begin the chapter by discussing
density.

10.2 DENSITY

The density of a substance is defined by

P % [10.1]
where

p = density of substance (kgm )

m = mass of substance (kg)

V' = volume of substance (m”)
The relative density of a substance is defined by

Relative (it = s 0L StanE [10.2]

Density of water (at 4°C)

ERelative density has no units.

The specific volume of a substance 15 the reciprocal of its density, 1.e. it is the
volume of unit mass of the substance, Unit = m* kg~". (Note the use of the word
‘specific’ to denote unit mass, as it does in specific heat capacity, etc.)

Methods of determining densities by experiment are summarized in section 10,14,

rax
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10.3 PRESSURE

The pressure acting on a surface is defined as the force per unit area acting
at right angles to the surface, 1.¢.

p=L [10.3)

p = pressure on surfsce (SI unit = the pascal (Pa). 1Pa = 1Nm %)
F = the force acting at right angles to the surface (N)

A = the area over which the force is acting (m”).

Mote The SI unit of pressure is the pascal. Other units in common use are the
atmosphere (atm), the millimetre of mercury (mmHg) and the bar. Mone of these
is an SI unit. Standard atmospheric pressure is 1.01 = 10* Pa (3 sig. fig.) and in
these various other unirs it is 1 arm (exactly), Y60 mmHg and 1.01 bar.

10.4 PRESSURE IN FLUIDS

(a) The pressure in a fluid increases with depth. All points ac the same
depth in the fluid are at the same pressure.

(b)  Any surface in a fluid experiences a force due o the pressare of the
fluid.

(i} The force is perpendicular to the surface no matter what the
orientation of the surface.

{if} The magnitude of the force is independent of the ofentation of
the surface.

This final statement is illustrated in Fig. 10.1 and is often stated as *pressure acts
equally in all directions”.

Fig. 10.1
@ Iw i
Pressure acts equally in F = p&dinaach case

F
all directions ¢ F whare p o= pressuss in fluid
- ;‘1- and 4& = area of surface, (The
’ . surlaces are sesurmed 1o be
"'-..\_‘_'F
F

small 2 that vasiation of
pressure with depth may b
wnored.

Mote Though the force associated with the pressure at a point is a vector quantity, the
pressure itself is a scalar, i.e. pressure has no direction, (The statement that
pressure acts equally in all directions can be misleading in this respect!) Consider
the pressure at a point in a fluid.

We cannot assign a directon to the pressure = all we can do is assign a direction to
the force that the pressure creates on some surface placed in the fluid, and this
depends on the orientaton of the surface.
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Fig. 102
To calculate pressure as &
function of depth
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Corogg-gattioma|
A AR A

Flusid of

w
l . density p

Pressure Variation with Depth

Consider a cylindrical region of cross-sectional area A and height & in a fluid of
density p (Fig, 10.2), The vop of the cylinder is at the surface of the fluid, and the
{vertical) forces acting on it are its weight, W, and an upward directed force of pd
due to the pressure, p, at the bottom of the cylinder. The cylinder is in equilibrium
and therefore

pd = W
= mass of cyvlinder =g
= volume of cylinder =pg
= hApg

p = hpg [10.4]

where p is the pressure due to the fuid at a depth b below the surface,

{i}l

()

(i)

Equation [10.4] is not valid in the case of gases when & is large. The density
of a gas decreases with height, and the equation has been denived on the
assumpiion that the density is constant. The eguation is a reasonable
approximation when  is small. However, the densities of gases are low, and
when # 15 small the pressure vanation with depth 15 also small and 15 usually
ignored.

We have derived equation [10.4] by considering a cylindrical region within
the fluid. The same result would have been obtained whatever shape the
region had been taken 1o be,

A lictle thought should convince the reader that the difference in pressure,
A p, berween two points separated by a vertical distance & in a fluid of

density p is given by

10.5 WHY THE SURFACE OF A LIQUID IS HORIZONTAL

Consider two points, M and M, on the same horizontal level in a stationary liquid.
Consider also a evlindrical region of cross-sectional area A whose end faces are
centred on M and N (Fig. 10.3).
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Fig. 10.3
To show that all points on
the same leval are at the

S8ME pressung
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D
A

Cylindrical regeon of
croas-sectional san A

The horizontal forces acting on the cylinder are py A and py, A as shown, where p,,
and py are the fluid pressures at M and N respectvely, The cvlinder 15 in
equilibrium and therefore py A = py A, It follows that py, = pe and therefore
that all points on the same horizontal level are at the same pressure.

All poines in the liquid surface must be at atmospheric pressure, o, and it follows
from equation [10.4], therefore, thar they must all be ar the same height above
MN. Since MN is horizontal, the surface must also be honzontal.

10.6 THE U-TUBE MANOMETER

Fig. 10.4
The iopen) U-tube
maroimeater

This consists of a U-shaped tube containing a liguid. It is wsed ro measure
pressure, The pressure o be measured (that of a gas, sav) is applied to one arm of
the manometer; the other arm is open to the atmosphere (Fig. 10.4).

Pressure at X
= aimaspharnic
PFESSUNE, Py

T

This @ Gpan
L {0 ArmoEphee

To pas At

pressure p ___'j-\_l

h p= g+ hpg

Progaure — vt — — — |- _

MY = p
-
dandity o

The liquid surface at Y is a vertical distance & below that at X. Therefore, by
equation [10.4],

P = pa+ hog
hence p.

(D Manometers can be used o0 measure pressures both above and below
atmospheric pressure.,

(i)  Mercury is used as the manometer liquid unless the pressure being
measured is close to atmospheric pressure, in which case a liguid of lower
density (e.g. 01l or water) is more suitabli,
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Fig. 10.5
U-tube manometar for
absolute pressure

EXAMPLE 10.1

SECTION 8: STRUCTURAL PROPERTIES OF MATTER

The pressure registered by the manometer, hpg, 15 known as the gange
pressure. The actual pressure; pa + hpgs 15 called the absolute pressure.
The manometer shown in Fig. 10.5, in which the arm on the aght is closed
and evacuated, registers absolute pressure directly.

-
1 - Wncuum {pragaure = 0

i
To pas at ) i

progaung o

hoop o= g

N/

Refer o Fig. 1006, Calculate the pressure of the gas in the bulb. (Amospheric
pressure = 1.01 = 10° Pa, density of mercury = 1.36 = 107 kgm ", g =981 ms )

Fig. 10.6
Diagrarm far Example
101

Tuba opan bo
atmosphore
I
I|' DL120m
Bully conaining
gas under o ' I— -l L
OFEsEsLra
Bl reinry

Solution

Pressure at A = armospheric pressure = 1.01 = 10°Pa

Since pressure increases with depth,

Pressure at B 1.01 = 10° + 0,120 x 1.36 = 10" = 9.81
= 1.0Y = 10% + 0.16 = 10%
= 1.17 = 10%

Since C i5 at the same level as B,

b2,

Pressure at C = 1.17 x 10°
Pressure of gas = 1.17 = 10°Pa
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EXAMPLE 10.2

717

Refer to Fig. 10.7. Calculate the pressure of the gas in the bulb. (Atmospheric

pressure = o0 mmHg.)

Fig. 10.7
Diagram for Exampla
n.z

Gas undar
Fasduicad
pressung

Solution
Pressure at A =
Pressure at B =
Pressure at & =

L&, Pressure of gas =

QUESTIONS 10A

Where necessary and unless otherwise stated
use the following data: atmospheric pressure =
760 mmHg, density of mercury = 1.36 =
10¥kgm ', g =981ms %,

1. An open U-tube manometer containing an oil
of density B9Tkgm ™ * is used to measure the
pressure of a gas, The oil level in the open tube is
25.0cm higher than that in the limb connected
to the gas. Calculare {a) the gauge pressure,
(b) the absolute pressure of the gas.
(Artmospheric pressure = .98 » 10% Pa.)

2. Whar iz the armospheric pressure (in pascals) on
a day when a mercury barometer is reading
772 mmHg?

3. Abeakerofcross-sectional area 60 cm® contains
600 cm” of mercury. Find the pressure on the
inner surface of the base of the beaker,

4. The pressure on the upper surface of a sub-
merged submarine is 1.20 = 10° Pa; the pres-
sure on the base of the hull is 1.40 = 10" Pa.
Calculate the height of the submanine.
{Density of seawater = 1.04 = 107 kgm .}

= L=
30 mem
1: B _Ha

o Tabsd Gl 10
||' atmosphane
i

MErcary

To0mmHg

T mmHg

760 — 30 = T30 mmHg
730 mmHg

Find the pressure of the enclosed gas in each of
the following situations.

iai H-_____. WAC LT 1) Fichd dxgin Lo

A" armoEphers

| - Mercury

4 T L Marcury 40 mm]

T Gas T Gas

L&l

T ity
BOED kg 1
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10.7 THE BOURDON GAUGE

Fig. 10.8
The Bourdon gauge

The Bourdon gauge (Fig. 10.8) has a curved meral rube which is closed at one end
and of elliptical cross-section. The closed end 15 linked to a pointer. If the pressure

in the fube increases, the tube straightens slightly and moves the pointer over the
scale.

~Curved metal
il

To peréssure
BRing maasured

The gauge detects the difference in pressure between the inside and outside of the
curved mube, i.e. itdetects the difference between the pressure being measured and
the atmospheric pressure prevailing at the time. In this sense, then, it behaves like
the open tube manometer shown in Fig. 10.4.

The scale 15 cahbrated in some suitable umit of pressure (e.g. Pa, mmHg, atm).
Some gauges are calibrated in such a way that when they are open to the
atmosphere the scale reading is zero, i.e. the pointer ‘starts” from zero. The
absolute (actual) pressure is obtained by adding the value of the prevailing
armospheric pressure to the scale reading. Others have the pointer offset so that it
‘starts’ at 4 reading of one atmosphere (or its equivalent, e.g. 760 mmHg or
1.0 % 10% Pa) and gives a reading which is {approximately) equal to the actual
value of the pressure being measured. The reading is approximare because the
gauge cannot take account of varations in atmospheric pressure.

Bourdon gauges with an extensive variety of pressure ranges are available, and they
can be used 1o measure pressures below atmosphenc pressure as well as above 1t
Some gauges are used 1o measure (actual) pressures of as little as one millimerre of
mercury, whilst others have ranges extending up to a few thousand atmospheres.

10,8 BALANCING COLUMNS

Fig. 10.9

Balancing columns

Fig. 10.9 shows a U-tube containing two immuiscible liquids (i.e. liquids that do
not mix with each other, such as paraffin and warer].

Ligud B
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The pressure, py, at X 15 equal 1o atmosphenc pressure, p, plus the pressure
exerted by the head, by, of Liquid A, i.e.

Px = P+ hy Py £
where p, is the density of liquid A. Similarly, the pressure, py, at Y 15 given by

Py = p+thupug

where p, is the density of liquid B. Since X and Y are at the same level in liguid B,
P = Py, and therefore

Prhapg = pthpgppg
hypof = hyppg

. o _ ha

e a by,

The ratio of the densities of the liquids can therefore be found by measuring &, and
b If liguid B is water, bg/ iy 15 the relaove density of lguid A.

10,9 THE HYDRAULIC JACK. PASCAL’'S PRINCIPLE

Fig. 10.10
The hydraulic jack

Fig. 10,10 illustrates the operating principle of a hvdraulic jack in which a
downward directed force, Fy, is being used 1o balance a much larger force, Fy. The
pressure in the liquid at both X and Y is p. The lguid therefore exerts upward
directed forces of pAy and p Ay on the pistons at X and Y respectively,

Pistan of

GIaE-SRchna
aren A,

Piztom of
Cross-Sectonal
area A&,

L by el o idl|

A bl Torce appliod a1 X
creates a large forca at 'y

It follows that

Fy = pAx and Fy = pdy
Eliminating p between these cguations gives

Fy Ay

Fy — Ay
Thus, the ratio of the forces is equal o the ratio of the arcas of the respective
pistons. Bearing in mind that the areas of the pistons are proportional 1o the
squares of their diameters, it follows thar if the diameter of the piston at Y 15 ten
times that of X, then a moderate effort of 100N, say, at X could move a load of
10000 M at Y. However, (assuming that the liquid 1s total incompressible) the
effort has o move one hundred times further than the load is moved, Hydraulic
braking systems and hydraulic presses work in a similar fashion.

Suppose that the pressure at X and Y in the absence of the forces Fy and Fy 15 pg.
When the forces are applied the pressure at both X and Y increases by (p — pa). In
fact, the pressure at every point of the liquid increases by (p — o). This 15 an
illustration of Pascal’s principle, which can be stated as:
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Any pressure applied o an enclosed fluid is ransmited undiminished w
every part of the fluid and to the walls of its container regardless of its shape.

MNotes (i)

{it)

Fig. 10.11
Solids transmit force

Although Pascal’s ponciple applies to both liquids and gases, a gas cannot be
used as the working fluid in a hydraulic jack because gases are compressible.
Most of the effort would go into compressing the gas rather than into moving
the load.

Pascal's principle illustrates an important difference berween fluids and
solids, namely that a fluid transmits pressure (unchanged), whereas a
solid transmits force (unchanged). Consider Fig. 10.11. If a force, F, 15
applied to the (smaller) lefi-hand face, X, of the solid, the solid (assuming
that it does not move) exerts the same force on anything in contact with its
right-hand face, ¥, even though the faces are not the same size. Thus, when
the force at X increases; the force at Y increases by the same amount.
However, the increase in pressure at X is greater than thatat Y.

L
i
F —r —F
Sndig

10.10 ARCHIMEDES® PRINCIPLE

A body immersed in a fimd (rotally or partially) experiences an upthrust (i.c.
an apparent loss of weight) which is equal to the weight of flud displaced.

The principle 15 easily deduced. Consider a cylinder of height b and cross-sectional
area A a distance fy, below the surface of a fluid of density p (Fig. 10.12).

Fig. 10,12
To deduce Archimedes”
prirui pla

Clendisr o LR}
:rm-m-l:liuﬂ% l
Argn A
H“H. Framaurg @

this lewel = py

|
|

__ Pressure at
T this lavel = [,

Flusd ol
danaity @ P

Volume of flud displaced = Volume of cvlinder
= Ah
Mass of fluid displaced = Ahp
Weight of fuid displaced = Ahpg [10.5]
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The fluid exerts forces of py A and py A on the top and bottom faces of the
cylinder. The upthrust {1.e. the resultant upward force due to the fluid) is therefore
given by
Upthrust = pyd — pyd
= [h+ ho)pgA — hope A (bwv equation [10.4])
= hpgA
Therefore, by equation [10.5],
Upthrust = Weight of fluid displaced

which is Archimedes' principle. {Note, the result clearly does not depend on the
fact thar we have considerad a cvlinder.) Archimedes” principle can be verified by
experiment (see section 10, 12).

If a body 15 more dense than the fluid in which it 1s immersed, then its weight is
greater than the weight of the fluid it displaces. By Archimedes” principle,
therefore, its weight is greater than the upthrust, and it falls down through the
fluid unless it is supported in some way. A body which is less dense than the fuid
around i, on the other hand, experiences a ner upward force and rises up through
the fluid.

When a body floats the upthrust on it must be equal to its weight for it moves
neither up nor down, It follows from Archimedes' principle, therefore, that the
weight of the body is equal to the weight of the fluid displaced. This is known as the
principle of fotation. As we have just seen, it 15 a special case of Archimedes’
principle. It can be stated as:

A floating body displaces its own weight of fluid.

The principle of flotaton, like Archimedes’ principle wself, applies w both
partially immersed bodies (e.g. ships) and totally immersed bodies (e.g.
submannes and airships).

EXAMPLE 10.3

An object is weighed with a spring balance, first in air and then whilst totally
immersed in water, The readings on the balance are 048N and 036N
respectively. Calculate the density of the obpect. (Density of water =
1.0 % 10°kgm )

Solution

The object has the same volume as the water it displaces and therefore

Density of object Mass of object
Density of water  Mass of water displaced

_ Weight of object
- Weight of water displaced
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By Archimedes’ principle, weight of warer displaced = upthrust, and therefore
Density of object Weight of object

Density of water - Upthrust in water [10.6]
0.48
Density of obj = ——x 1.0 = 10°
ensity of object 012 b »
= 4.0 % 107" kgm*

10.11 MEASUREMENT OF DENSITY USING
ARCHIMEDES’ PRINCIPLE

Solids
Weigh the solid in air and in water, and then use equation [10.6].

Liguids
The density of a iquid can be found by determining the upthrust on some suitable
object when it is immersed in the liquid and then when it is immersed in warter.

By analogy with equation [10.6]
Density of object  Weight of object
Density of liguid  Upthrust in liquid
Dividing equation [10.6] by equation [10.7] gives
Density of liquid _ Upthrust in liquid
Density of water  Upthrust in water

10.7)

from which the density of the liguid can be found.

10.12 VERIFICATION OF ARCHIMEDES” PRINCIPLE BY
EXPERIMENT

Suspend a plass stopper from a spring balance to obtain the weight of the stopperin
air. Gently lower the stopper into a displacement can filled vo the spout with water,
The difference between the two sprning balance readings is the upthrust on the
stopper. Collect the water that runs out of the can in a previously weighed beaker.
Weigh the beaker with the water in it to find the weight of the warter displaced by the
stopper. If the weight of the water is equal to the upthrust, Archimedes’ principle
has been verified,

10.13 THE HYDROMETER

The hydromerer provides a gquick method of measuring the relatve densities of
Liquids,
In accordance with the principle of flotation, whenever the hydrometer floats in a

liquid the weight of the bguid it displaces is equal to its own weight. It follows that i
sinks further into water, say, than it does into a liquid ofhigher density (Fig. 10,135,
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Fig. 10.13
The hydrometer

The stem is narroe snd
# harg ie a large change
in daplh (amd tharalods if
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10.14 SUMMARY OF METHODS OF DETERMINING
DENSITIES AND RELATIVE DENSITIES

(i)

(ii)

(i)
{1v)

(%)

Measure the mass (m) and volume () and then use p = m/V to obtain

the densiry.

The mass should be found by using a beam balance or top-pan balance
rather than a spring balance - a spring balance measures weight. The
valume of a solid may be found by measuring its dimensions or by a
displacement method. The volume of a liquid may be found by using a
measuring cylinder, pipette or burette. The volume of a gas may be found
by enclosing it in a container of known volume,

The method of “balancing columns” can be used for Liguids, [(See section
10.8.)

The hydrometer can be used for hquids. (See section 10.13.)

The method based on Archimedes’ principle can be used for hguids and
solids. (See secuon 10.11.)

Eelative density bottle can be used for quids and fine powders. (See
GUSE texts. )

10.15 SURFACE TENSION

A steel needle can be caused to float on water even though steel 1s more dense than
water. & liquid spilled on to a surface that it does not wet tends 1o form intoe small
drops, rather than spread into a continuous film. These are two examples of
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phenomena which suggest that the surface of a hiquid behaves like an elastic skin in
a state of tension. This is indeed the case and can be understood by a consideration
of the effects of intermolecular forces.

10.176 MOLECULAR EXPLANATION OF SURFACE
TENSION EFFECTS

Fig. 10.14
Eliminating the affects of
grasity

A molecule in the surface of a liquid 15 subject to intermolecular forces from below,
but not from above (providing the effects of the molecules of the vapour are
ignored). Thus, if the coordination number of the molecules of the interior is n,
then that of a surface molecule will be n/2. Therefore, if a molecule of the interior
has a potential energy of (say) —0.4 eV, then a surface molecule, being invelved in
only half as many bonds, will have a potential energy of —0.2¢V. Thus, the
potential energy of a molecule in the surface exceeds that of one in the
interior.

All systems arrange themselves in such a way thar they have the minimum possible
potential energy. In order that the potential energy associated with the
intermolecular forces (the surface tension forces) can be a minimum, the number
of molecules which reside in the surface has to be a minimum. Therefore:

(1} liguids have the smallest possible surface area, and

(i} the average separaton of the molecules in the surface of a liquid is greater
than that of molecules in the interior.

The requirement that the surface area is a minimum means that a liquid subject to
surface tension forces only, will assume the shape of a sphere. [ This 15 because a
sphere 15 the shape which allows a given volume of matenial to have the smallest
possible surface area.) Liguids are normally subject to gravitational forces in
addition to surface tension forces, in which case the adopted shape is that which
minimizes the total potential energy. Small drops of liquid are nearly spherical,
and become more so as the drop decreases in size. This 15 because the ratio of the
surface area (which is proportional to r* ) to the weight {which is proportional to aLjl
and therefore of surface tension force to gravitestional force, Increases as r
decreases. Soap bubbles are almost perfect spheres because they have large surface
areas and negligible masses, The effect of gravity can be climinated by using two
immiscible liguids of the same density (Fig. 10.14). The phenyviamine (aniline)
and water are at such 4 temperature that their densites are equal, in which case the
upthrust on each phenylamine globule is exactly equal to its weight, and therefore
the globule is not subject to any net gravitational force, Drops of liquid which are
falling freely under gravity are also spherical. This is because every part of the drop
is being accelerated to the same extent and the acceleration cannot, therefore,
affect the shape of the drop.

-
Globules {sphesicall

— of phenylamdne

,:.-—"' { aeileiia)

—— Warm walnr

The molecules in the interior of a liquid are, of course, ar their equilibrium
separation, and therefore the attractive forces of their neighbours are balanced by
the repulsive forces. This is not true of the surface molecules, the separadon of
these is greater than the equilibrium separation (requirement (i)}, and therefore
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they exert a net attractive force on each other. Thus, at any point in the surface of a
liquid there is a net force away from that point due to the attractuons of the
molecules around it, The surface therefore behaves like an elastic skin in a
state of tension.

10.17 SURFACE TENSION AND FREE SURFACE
ENERGY

Fig. 10.15
A thin filen of liguid being
stratched

The surface tension 3 of a liquid is defined as the force per unit length
acting in the surface and perpendicular to one side of an imaginary line drawn
in the surface. (Unit = Nm'™ ')

Free surtace energy « is defined az the work done in isothermally creating
unit area of new surface. (Unit = Jm 2 = Nm 1.}

Whenever the surface area of a given volume of liquid is increased, work has to be
done against the surface tension forces. Alternatively, one may think of the work
being necessary to provide the extra energy necded to have an increased number of
molecules in the surface.

Consider stretching a thin flm of igquid on a honzontal frame {Fig. 10.15). Since
the film has both an upper and lower surface, the force F on AB due to surface
tension is given by

F = 2Ly

i Ly +_

l | / B_ie
Lequid Movakhile Rigid
Tilim Wi frame

If AB is moved a distance x to A'B', then work has to be done against this force. The
surface tension, 7, 15 independent of the area of the film (becawse as the size of the
surface increases more molecules enter it and by so doing maintain the average
molecular separation), but decreases with increasing temperature (because this
decreases the binding energy). Thus, provided AB is moved isothermally to AR,
the force on AB will be constant, and therefore since

Work done = Force » distance
Work done = 2Lyx

The increase in surface area is 2Lx (upper and lower surfaces), and therefore the
work done per unit area increase (the free surface energy o) 15 given by
2Lyx

F B —

2lx

L, ¢ = 7
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Thus, the free surface energy 7 is equal vo the surface vension v, This provides a
second definition of 1:

The surface tension 7 is the work done in isothermally increasing the
surface area of the liquid by unit area. (Unit = Jm 2 =Nm ')

10.18 SOME SURFACE TENSION PHENOMENA

Floating Needle

The needle (Fig. 10,16} creates a depression in the liquid surface so that the
surface tension forces F (which act in the surface) now have an upward directed
component which is capable of supporting the weight of the negdle.

Fig. 10.16 Cross-section Ligquid
A needle supported by ol il Ruracs
surface tension forces
F [
Wight of
meadle

Thread on a Soap Film

In Fig, 10, 17(a) there are equal and opposite forces on each side of the thread and
therefore it stays where it has been placed. If the film is broken in the region
bounded by the thread (Fig. 10.17 (b)), there are forces on the outside of the thread
only. The thread is therefore pulled into a circle (the shape with the maximum area
for a given perimeter) and therefore the hquid film has the minomum possible area.

Fig. 10.17

To show that a liguid
attains the minimum
possible surface area

filim

bl
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Fig. 10,18
Camphor boat
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Camphor Boat

The camphor (Fig. 10,18) sublimes and interacts with the water at the back of the
boat, reducing the surface tension there, so that F' is less than F. There is therefore
a net forward force which drags the boat through the warer.,

F F
F F
| /
| /

Plastee  Small pisce
sl of casmiphar

10.19 ANGLE OF CONTACT

Fig. 10.19
{al Concawve, and
{b) convex menisci

The surface of a liquid is usually curved where it is in contact with a solid. The
particular form that this curvature takes 15 determined by the relanve strengths of
what are called the cohesive and adhesive forces.

The cohesive force 15 the attractive force exerted on a liquid molecule by the
neighbouring liquid molecules.

The adhesive force is the anractive force exerted on a liquid molecule by the
molecules in the surface of the solid.

Consider a liquid in a container with vertical sides, If the adhesive force is large
compared with the cohesive force, the liguid tends to stick to the wall and 50 has a
concave meniscus (Fig, 10, 190a) ). On the other hand, if the adhesive force is small
compared with the cohesive force, the liquid surface is pulled away from the wall
and the meniscus is convex ([ Fig. 10.19{b)}. Whether the meniscus 1s concave or
convex depends on the liquid concermed and on the solid with which it is in
contact. For example, water has a concave meniscus when in contact with glass
and a convex meniscus when in contact with wax; mercury has a convex meniscus
with (clean) glass.

.--.-‘ o

by %

~ I
Solid ."”\'-._ M L Soli
wipll ..‘I,i \ —--.H'-__.-' wall

ﬁ"';ﬂ Ligusid Ligquid B :{

o

-1 |~

|l Ll

The angle of contact 0 is defined as the angle between the solid surface and
the angent plane o the liguid surface at the point where it touches the solid;
the angle is measured through the liguid. It can be seen from Fig. 10,19 that
the meniscus iz concave when 0 is less than 9 and is convex when 0 is
greater than 90°, A liquid is said to ‘wet’ a surface with which its angle of contact is
less than %0°. The angle of contact between water and clean glass 15 zero, that
between mercury and clean glass is 137°. Thus warter “wers’ clean glass, mercury
does not,
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The zero angle of contact between water and clean glass is due to the adhesive force
between water and glass being very much larger than the cohesive force between
the water molecules themselves, This explains why water tends to spread into a
thin continuous film when splashed on a horizontal clean glass surface. Mercury,
on the other hand, forms into little drops; water on the roof of a freshly waxed car
behaves in a similar fashion.

“The addition of a detergent to a liquid lowers its surface tension and reduces the
contact angle. Water-proofing agents have the opposite effect.

10.20 CAPILLARY RISE. MEASUREMENT OF v

Fig. 10.20
Liguid in a capillary tubsa
(not 1o scalel

Water in a capillary tube nses above the level of the water outside. The effect 15
known as capillary rise and is most marked with narrow mbes, The ability of
blotting paper to soak up ink is due to the same effect; the spaces between the fibres
act as fine capillary tubes. A liquid whose angle of contact is greater than ™" suffers
capillary depression. Both capillary rise and capillary depression are caused by
surface tension and provide a means by which the surface tension 7 of a liguid may
be measured.

Suppose that a capillary tube 15 held vertically in a igquid which has a concave
meniscus [ Fig. 10.20). Surface tension forces cause the liquid o exerta downward
directed force on the walls of the rube. In accordance with Newton's third law, the
tube exerts an equal and opposite force on the bguid and it nses in the tube. At
equilibrium the weight of the liquid which has been lifted up is equal vo the vertical
component of the force exerted by the tube. The mass of the raised liquid is the
product of its density p and its volume nr h, and therefore its weight is

prrhg
Capillary tube
T I.:: . = o imterral
¥ — radius r
\ -
H e

F Ny ‘
: _ Liguid
| .-__.-'" dengity @
" e k| #

The length of the liquid surface in contact with the tube 15 equal to the
circumference 2ar of the ube, and therefore the vertical component of the force
exerted by the rbe is

2nry cos 0

Therefore at equilibrium
2arycos 0 = prrihg

. _ _prhe

Y 2cosd

from which v can be determined.

b,

[10.8]
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(i) Theweight of the small quantity of liguid in the meniscus has been ignored
in deriving equation [10.8].

(i) & and r are normally measured with a travelling microscope. The tube
should be broken at the level of the meniscus in order to measure r.

(ii) @ and p are found from tables or measured in separate experiments.
(i) Equaton [10.8] also holds for capillary depression.

10.21 PRESSURE DIFFERENCE ACROSS A SPHERICAL
INTERFACE

Fig. 10.21

Foress an air bubble in a

liguid

The pressure inside a soap bubble is greater than the pressure of the air outside the
bubble. If this were not so, the combined effect of the external pressure and the
surface tension forces in the scap film would cause the bubble o collapse.
Similarly, the pressure inside an air bubble in a liquid exceeds the pressure in the
Liquid, and the pressure inside a mercury drop 15 greater than that outside

In order to derve an expression for the excess pressure inside an air bubble ina
liquid we shall consider the forces acting on one half of such a bubble (Fig. 10.21).
Suppose that the radius of the bubble is rand that the surface tension of the liquad is
#. The half not shown exerts a surface tension force around the rim of the half we
are considering, This force is directed vo the left and, since the length of the rim is
2xr, is of magnitude 2rry. The resultant force due to the pressure p, outside is also
to the left and is acting perpendicular to an area nr” (the area of the flat face of the
hemisphere) and is therefore of magnirude p nr” since p,, is the force per unit area.
‘The resultant force due to the internal pressure p; is 1o the right and its magnimude
is prr”. The hemisphere is in equilibrium under the action of these forces, and
therefore

pnre = ponr + 2nry

2rry

i.e. B—f =

mr
ll" Ligmiid

=

AT
4

bR negin
farces

Writing the excess pressure p, — p, as A p gives

II

ap = - (for air bubbles and spherical drops) [10.5]
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Mote The smaller the bubble, the greater the excess pressure.

The excess pressure inside a sphercal drop of mercury is given by the same
expression if v and r are taken 1o represent the surface tension of mercury and the
radius of the drop respectively.

A soap film has two surfaces and therefore the excess pressure A p inside a soap
bubble is given by

Ap = - (for a soap bubble)

F

where 7 is the surface tension of the soap solution and r is the radius of the bubble,
(Mote. This assumes that the inner and outer surfaces have the same radius of
curvature - a reasonable approximation.)

10.22 EXPERIMENTAL DETERMINATION OF y BY
JAEGER'S METHOD

Fig. 10.22
Apparatus for the
determination of

The apparatus is shown in Fig, 10,22(a), When the tap is opened water drps into
the large container and increases the pressure in the system. An air bubble starts 1o
form at the lower end of the narrow tube. As more water drips into the container
the bubble grows, and as it does so its radius of curvature decreases (see Fig.
10.22(b)).

Suppose that when the radius of the bubble iz r the head of the liquid in the
manometer 18 Jy, in which case the pressure inside the bubble is

g +A
Water
Marnow
fuabsn
; ¥
Large by
COriaingr - - i
" i
P
|al
Liguid wunder Qil of |
investigation, density m
dangity py
Hemispherical
LiH] bubbla has
the smalles
radiug of

Curyaburs
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where p; 15 the density of the manometer liguid, g1s the acceleration due to gravity
and A is the armosphernic pressure. The pressure outside the bubble 15

ypag + A

where 5 15 the depth at which the bubble s formed and ps 15 the density of the

liquid whose surface tension is being measured. The excess pressure in the bubble
15 therefore

g — R pag

The excess pressure in a bubble of this type 15 given by equaton [10.9] as 27 /r, and
therefore

2y
- hypg = hapag (1010

where 7 is the surface tension of the liguid under test. The only variables in
this equation are rand &, and therefore it follows that &, will have s maxamum
value when r has its minimum value, The bubble has its smallest possible radius
of curvarure when it is hemispherical, for if it were o grow any larger, its radius
would increase. It follows thar when &; has it maximum value the bubble
is hemispherical and its radius of curvature is equal to the internal radius of the
tube.

In practice the bubble becomes unstable and breaks away from the end of the tube
@5 S00N 85 its size increases beyond the stage where the bubble is hemispherical.
When this happens the pressure in the system falls to atmospheric and another
bubble begins 1o form as more water drps from the funnel. The tap 1s set so that
bubbles form slowly (abour one per second). Onece a suitable rare has been
achieved the maximum value of &y is recorded. A travelling microscope can be
used to measure r{the internal radius of the lower end of the narrow tibe) and ;.
The values of, gy, po and g can be obtained from tables and used in equartion
[10.10], together with the measured values of &y, ks and r, to calculate 4.

Mote “When abubble breaks away its radius 15 not exactly equal to that of the tube. This
limirs the accuracy o which absolure determinations of 7 may be made by
Jaeger's method. It does, however, provide a reliable means of investgating the
temperature dependence of surface tension. Prowviding bubbles are formed at

CONSOLIDATION

Mass

Volume

Density =

Drensity of substance

Relative density =
elative density Diensity of water (at 4°C)

Valume
Mass

The pressure on a surface is defined as the force perunit area acting at right angles
tir the surface. Pressure is a scalar.

Specific volume =
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Pressure in Fluids
{a) Increases with depth (p = hpg)

(b} “Acts equally in all directions’ (Strictly, it is the force due to the pressure that
acts equally in all directions,)

Archimedes' Principle A body immersed in a fluid (totally or partally)
experiences an upthrust (L.e. an apparent loss of weight) which is equal vo the
weight of the fluid displaced.

The Principle of Flotaton A floating body dizplaces its own weight of fluid.

The surface tension of a liquid is defined as the force perunit length acting in the
surface and perpendicular to one side of an imaginary line drawn in the surface.
(Unit = Nm™'.}

Free surface energy is defined as the work done inisothermally creating unit area
of new surface. (Unit = Jm * =Nm '.}

Surface tension = Free surface energy

A liquid 15 said to “wet” (.e. stick to) a surface with which s angle of contacrt is less
than 90°,

Solids ransmit force; Auids rransmit pressure,
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ELASTICITY

11.1 DEFINITIONS

If forces are applied to a material in such a wav as to deform it, then the material is
said 1o be being stressed. As a result of the stress the material becomes strained.
Initially we shall be concerned only with solids, and with stress which results in an
increase in length (tensile stress) or a decrease in length (compressive stress).

Siress

Strain

Elasticity

Hooke's law

Elastic limit

Yield point

Strength

Breaking stress

Stffness

Dwuctility

"Seesechon 10,12,

Force per unit area of cross-section,
Unit = MNm™ = pascal (Pa)

Change in length
Original length

{pure number)

A material is said to be elastic if it returns to its original size
and shape when the load which has been deforming it is
removed.

Up o some maximum load (known as the Hmit of
proportionality) the extension of a wire {(or spring) is
proportional to the applied load.

This is the maximum load which a body can expenence and
still regain its original size and shape once the load has been
removed. (The elastic limit sometimes coincides with the
limit of propordonalicy. )

If the stress is increased bevond the elastic limirn, a point is
reached at which there 15 3 marked increase in extension. This
i5 the yield point, The internal structure of the material has
changed — the crystal planes have (effectively)® slid across
each other. The material is said o be showing plastic
behaviour, Few materials exhibir a vield point — mild steel is
one that does,

This relates to the maximum force which can be applied to a
material without it breaking.

This is also called ultimate tensile strength and is the

maximum stress which can be applied to a material,

This relates to the resistance which a material offers to having
its size and /or shape changed.

A ductile material is one which can be permanently stretched.

181
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Brittleness A brttle material cannot be permanently stretched; it breaks
soon after the elastc limit has been reached. Brittle materials
are often very strong in coOmpression.

The stress=-strain curve of a (hypothetical) elastic material s shown in Fig. 11.1.
The corresponding load—extension curve is slightly different because as the length

of the specimen increases its cross-sectional area decreases. The curve shown
represents a ductile marerial; for a brirtde marerial section EB is very short.

If the stress is removed at a point such as C, which is bevond the elastic limit, the
body has a permanent strain equal o OO0,

Fig. 111 Stress
Stress-strain curve for an + ';“I:_'I"l
ologtic materisl Elsstic H the stress is
limit 8 inerapsad bayvard
this valus the
E f wire braaks
F)
¥
4 Limig af
P proposticnality
&
[ .
7 Hﬂ_ﬁ“i L
P bairg obeyed
¥ "
L] o SIrRin

11.2 YOUNG'S MODULUS

Provided the stress is not s0 high that the limit of proportionality has been
exceeded, the ratio stress/strain is a constant for a given material and is known as
Young's modulus. Thus

Tensile (or compressive) stress [11.1]
Tensile (or compressive) strain )

E =

where
E = Young's modulus (Nm™* = Pa).
Young's modulus is clearly a measure of a marerial’s resistance 1o changes in

length. For example:
E (natural rubber]” = 1 = 10" N m™*
E (mild steel) = 2% 10" Nm?

Note Bendinga beam involves both tensile and compressive stress — the outer surface is
stretched, the inner surface is compressed.

11.3 MOLECULAR EXPLANATION OF HOOKE'S LAW

Consider a plot of intermolecular force, F, against intermolecular separation, r, for
a solid (Fig. 11.2). When the stress is zero the mean separation of the molecules is
rg- A tensile seress acts in opposition to the atcractive forces berween the molecules,

*This is an average value. Rubber does not obey Hooke's law and therefore the ranio sress ) strain
depends an the stress applied.
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Fig. 11.2
Malecular axplanation of
Hooka's lew
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and is therefore capable of increasing their separation. For values of r close to
ro the graph can be considered to be linear, and therefore, providing the stress is
not s0 large as to take r out of this region, equal increases in tensile stress will
produce equal increases in extension (Hooke’s law), Nowe that Hooke's law
applics also to compPressive siress,

The work done in stretching a wire is stored as elastic potential energy (see secton
11.5). On a molecular level this corresponds o the increased potential energy of
the molecules which results from their increased separation.

11.4 EXPERIMENTAL DETERMINATION OF YOUNG'S
MODULUS

FAg. 11.3
Apparatus for
invaestigating thea
oxtension of a wire

Consider the experimental arrangement shown in Fig. 11.3, When 0 is loaded
there is a tendency for its support to sag. The errors that would resule if this were to
happen are avoided by carrying the reference scale on a second wire, P, suspended

fff//f///f///@

Comman
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Fig. 11.4
Typical results of
extanding a wire

SECTHIN B STRUCTURAL PROPERTIES OF MATTER

from the same beam as (). Both P and () are made from the same material and are
of the same length; errors due to expansion, as a result of temperature changes
during the experiment, are therefore avoided. The test wire is loaded (opically up
to 100N in 5 N steps), and the resulting extension is measured as a function of the
load. The wires are as long as is convenient (typically 2m) and thin in order to
obtain as large an exténsion as possible; even 5o a vernier arrangement is needeaed o
measure the extension (typically 1 mm). If the test wire is free of kinks at the start
and the limit of proportionality is not exceeded, the measurement can be used 1o
produce a plot similar to that in Fig, 11.4.

Extensgian
i

Gradient {= x/F]

Load

From equation [11.1]

_ Stress
Strain
. E - FlA L
e ofL.  Alx/F)
where

F = applied load (W)
A

X

area of cross-section of wire (m™)

exrension (m)

[. = original length (m).
Bearing in mind that x/ 7 is the gradient of the graph, we have
. L
E - Ax gradient

The gradient is measured from the graph, often as the mean of the results obtained
with an increasing load and a decreasing load. I can be measured with an
extending ruler or metre rule. A 15 obtained by determining the diameter of the
wire at several places with & micToMmEeTer.

11.5 THE WORK DONE IN STRETCHING A WIRE
(STRAIN ENERGY)

Consider a wire whose extension s x when the force on it 15 F. If the extension 15
increased by dx, where dx 1% 50 small that F can be considered constant, then (by
equation [5.1]) the work done, 8 W, is given by

oW = Fix
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Fig. 115
Work done in stretching a
wire

185

The total work done in increasing the extension from 0 to x, e the elastic
potential energy stored in the wire (the strain energy) when irs extension is x, is
given by W, where

X
W = l Fd=x [11.2]
2]
If the wire obeys Hooke's law, we may put
F = kx
where & is a constant, and therefore by equation [11.2]
W = rhdx
0
Le. W = Lkt [11.3]
Alternatively, since F = kx, substituting for & pives
W = 1Fx [11.4]

A wire of length L and cross-sectional area A has a volume of AL and therefore by
equarion [11.4]

1F
Strain energy per unit volume = ljf
1 Fxx
24 L
Iz, Strain energy per unit volume =§m:n ¥ SErain [11.5]

(i) For a wire of a material with Young's modulus E it follows from equation
[11.1] that F = {EA/Lix, 1e. bk = EA/L and therefore by eguarion

[11.3)
EAx?
Wo=ar (11.6]

(1) Equations [11.3] to [11.6] apply only as long as Hooke's law is obeyed. If the
extension is 2o great thar the limit of proportonality 15 exceeded or the wire
does not obey Hooke's law anyway, the work done can be found from a graph
of force against extension (Fig. 11.5). The strain energy per unit volume
is the area under a graph of stress against strain.

Farce {F)
i
fl = Filx
v
W = j: Fdx
R,
. : | Work dome in producing
EETRNEION & = AreA Ol

i | shaded regian
g
N
1 ¥
= # Extgnsion |
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EXAMPLE 17170

A steel wire, AB, of length 0.60m and cross-sectional area 1.5 » 10°*m® is
attached ar B 1o a copper wire, BC, of length 0.39 m and cross-sectional area
3.0 x 107" m*. The combination is suspended vertically from a fixed point at A,
and supports a weight of 250N at C. Find the extension of each section of the
wire. (Young's modulus of steel = 2.0 % 10" Pa, Young's modulus of
copper = 1.3 = 10" Pa.)

Solution

Each section of the wire is subject to the full force of 230 N. Letx; = extension of
AB; let x; = extension of BC.

g - Stres
Strain
Therefore for stecl
250/1.5 = 107" 1.0 = 10°
2.0 = 10" = -
" x.fﬂ.ﬁrﬂ Xy
1.00 = 10% "
I|=W=5.DI]'} m:ﬂ.ﬂﬂm
For copper
b 7
13 x 10" — 250/3.0 = 107 _ 3.25 = 10
Ig_,l'lﬂ'.jg X2
3.25 = 107 4

EXAMPLE 11.2 1 e

A steel rod of length 0.60 m and cross-sectional area 2.5 x 107*m? at 100°C is
clamped so that when it cools it is unable to contract. Find the tension in the rod
when it has cooled to 20 °C. (Young's modulus of steel = 2.0 x 10'! Pa, linear
expansivity of steel = 1.6 = 1077 °C4)

Solution

It follows from equation [9.4] that if the rod were allowed to contract, its length
would decrease by

0.60 % 1.6 % 1077 (100 - 20) = 7.68 x 10°%m
The extension of the clamped rod at 20 °C is therefore 7.68 = 10-%m.

E = S =
Strain
Stress
i _
20107 = T 1057060

i.e. Stress = 2.56 x 10° Pa
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. Tension
Srress = -
Cross-sectional area
Tension
286 = 10" = ——
25x10*%

i.e, Tension = 64N

QUESTIONS 11A

1. An aluminium wire of length 0.35 m and radius (b) Find the stress in the ware,
0.20mm iz sretched by LL4mm. Young's (c) Find the cross-sectional area of the wire.
modulus of aluminium is 7.0 = 10" Pa. (d} Find the tension in the wire,

{a) Find the strain in the wire.

11.6 BULK MODULUS AND SHEAR MODULUS

Fig. 11.6
Block subjected o a
shear stress

5o far we have been concerned only with stress which results in a change in length.
Two other types of stress will now be considered. The associated moduli of
elasticity are called the bulk modulus and the shear modulus. The latter 1s
sometimes referred 1o as the Agidity modulus,

Shear (Rigidity) Modulus

A shear stress 15 one which changes the shape of a body; the strain which results
15 called a shear strain, Fig, 11.6 illustrates a solid block WRYZ whose lower
face is fixed. A force F acts on the block tangential to its upper face. The force
provides a shear stress which distorts the block so that its new shape is WY 2.
The shear modulus (7 i5 defined by

E, Shear stress
r = -

L] [ . ' ] |! _ ,
~ Shear strain (Unit = Nm™ = Fa)

where
Shear siress = Tangential force per unit area = F/A
and
Shear strain = Tangent of angle of shear = tanx = Ax/y
, FiA
Le (i . 11.7
LEE (11.7]

{Note: pwisting a wire involves shear stress.)

Ares over which
. 1he force is
A appled A

-P.F

[Ep———
: ]

e
=
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Fig. 11.7
Sphere subjected to a
radial stress

MNote

MNotes

SECTION B: STRUCTLIRAL PROPERTIES OF MATTER

Bulk Modulus

This refers to situations in which the volume of a substance is changed by the
application of an external stress, Unlike the shear modulus and Young's
modulus, which refer to solids only, bulk moduli are possessed by solids, liquids
and gases.

In Fig. 11.7 the application of a force AF, which 15 everywhere normal to the
surface of a spherical body, has changed its volume by A . The bulk modulus K
is defined by

Bulk stress
K= —7— Unit = Nm™* = Pa
Bulk strain [ )
where
Bulk siress = Increased force per unmit area = AF/A
and
o s = Chaf:l.gtmwlum: = AV
Onginal volume I
; . FlA
(= = ﬂ.;‘rll'l"r
Change in

When AF s positive & Fis negative, and therefore it has been necessary to include
the minus sign in order 1o make K a positive constant,

AFA is the change in pressure Ap, and therefore

.

K= -arw
which in the limit as Ap — 0 becomes

_ _pdr

e dr

{i) The compressibility x of a substance is given by . = 1/K.

{iil  The three elastic moduli have the same order of magnitude for any one
material, and apply only in the region where the ratio of stress to strain is
constant,
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11.7 PLASTICITY

A perfectly plastic marerial is ene which shows no endency 1o retum 1o s
original size and shape when the load which has been deforming it is removed
(plasticine 15 a good example). In this sense a perfectly plastic matenal 15 the
opposite of an elastic material. The application of a load to a plastc material causes
dislocations (1.e. gaps in the crystal lattice - see section 11,120 to move, This
produces the same effect as planes of atoms shiding past each other.

11.8 ELASTIC HYSTERESIS

Fig. 11.8

The effect of loading and
unloading a sample of
rubher

Fig. 11.8 shows the force—extension curve of a sample of rubber for both loading
and unloading. The extension due to any given force is greater during unloading
than during loading, i< the unloading exwension lags behind the loading
extension, The effect 15 called elastic hysteresis, and the region enclosed by
the two curves is called a hysteresis loop. Metals also exhibit hysteresis, but to a
much smaller extent.
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Typically, axtersion 61
10 fimes tne natural kergsh of
thi sampls

When rubber is stretched it becomes warmer, When the siress is released is
temperature falls but 1t remains a little warmer than it was initially, The net
increase in the heat content of the sample during the cvele 15 equal to the area of the
hysteresis loop.

11.9 SOME PROPERTIES OF RUBBER

il Samples of some rypes of rubber can be stretched as much as 10 times their
natural lengths and stll regain their original sizes when the siresses ane
removed. A tvpical metal, on the other hand, can be subjected to only about
/10000 of this extension before its elastic limirt is exceeded.,

(i) Rubber does not obey Hooke's law, 1.¢. the value of the ratio stress/strain
depends on the particular stress at which it is measured - see Fig. 11.8. The
sample stretches easily at firse, but bas become very stiff (steep slope) by the
time the extension corresponding o point A has been reached. At A the
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Fig. 11.8

Stress-strain curves of
typical samples of

fa} copper, (bl glass,
(e} rulbsber

(i)

(iv)
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extension 15 such that the long-chain molecules of the rubber (see
‘Elastomers’ in section 9100 have become fully straightened out. Any
further extension can be achieved only by stretching the bonds between the
carbon atoms in the chains.

Some types of rubber have particularly large hysteresis loops, and so are
useful as vibration absorbers. If a block of such a rubber is placed between a
piece of vibrating machinery and the floor, much of the cnergy of the
mechanical vibration is converted 1o heat energy in the rubber, and 50 15 not
transmitted o the floor, The rubber used in the manufacture of tyres has a
small hysteresis loop, for it is clearly desirable that as little heat as possible is
generated in a yre.

Heating a siretched * rubber band causes it wo contract. The higher
remperature produces increased lateral bombardment of the long-chain
maolecules causing them to kink and so shorten.

& Tenslle sirossfa

iad

A 1 =
Elnstic lima

E = 13x107Pa

1 .
0 0.003 Tenaie strain

4 Tensile stressPa
it

[ Elastic limit. Arry furtbar
Incroease in SIress causes

the glass 1o break

E = 7T=10%Pa

o D -
.01 Tansile srain
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E — 10*Pa
I L
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*An unsiressed sample of abber, on the other hand, behaves quite nopmally and expands on hearing,
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(vi  Formost matenals the value of Young's modulus decreases with increasing
temperature, In the case of rubber, though, the ratio stress/strain increases
with increasing temperature. This 15 because the increased lareral
bombardment of the long-chain molecules which occurs ar higher
temperatures makes it more difficult to straighten them.

(vi) If a rubber band is stretched rapidly, its temperature increases. This
behaviour 1s opposite to that of metals and most othier matenals. Stretching
the rubber produces greater alignment of its long-chain molecules, This
increased amount of order 15 akin to crystallization in the sense that as a
result of it the rubber is in a lower energy state than previously. The energy
released in attaining this stare heats the sample,

The stress/strain curve for rubber is compared with those of copper and glass in
Fig. 11.9.

11.10 FATIGUE

11.11 CREEP

Ifa material is repearedly stressed and unstressed (or stressed first in one direction
and then in another), it becomes weaker, i.e. the strain produced by a given
amount of stress increases. If the repeated stressing i1s continued, the matenal may
fracture even though the maximum stress applied in any of the stress cycles could
have been sustained indefinitely if it had been apphied steadily. The failure of a
material under these circumstances is called fatigue failure or fatigue fracture.
It has been estmated that about 90% of the failures which occur in aircraft
components are due to fatgue.

Mild steel and many other ferrous metals can safely undergo an infinite number of
stress cycles, provided that the maximum stress 15 kept below a particular value
known as the fatigue Hmit. There is no such limit for non-ferrous materials, In
such cases the maximum loading 15 kept below that which would cause fallure
within the time for which the component is required 1o last,

Fatigue fractures usually start in the surface at points of high stress, e.g. at sharp
corners and around rivet holes. It is believed that each time the material is stressed
a small amount of plastic strain is produced. Since it is plastic strain, the effects of
repeated stressings are cumulative and eventually produce fracture.

The term creep is used 1w describe the gradual increase in strain which occurs
when a material is subjected to stress for a long period of time. Unlike fatigue it
occurs even when the stress is constant. [tis most marked at elevared temperatures
and may be so severe that the material evenrually fractures, The greater the stress,
the more guickly this happens. The wirbine blades in jet engines are particularly
susceptible to creep because thev are under high stress and are at high
temperatures, Soft metals (e.g. lead) and most plasucs show considerable creep
even at room temperature. Fig. 11.10 shows a tvpical creep curve, Note the
accelerated rate of creep just before fracture.
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Fig. 11,10
Typical creep curve
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11.12 DISLOCATIONS

Fig. 11.11
Sliding of crystal planas

The ductlity of metals (i.e. their ability to undergo plastic strain) might be thought
to be due to the various crystal planes which make up the structure slipping over
each other to take up new positions (Fig. 11.11). According to this idea every atom
ini plane X has had to break a bond with an atom in plane Y, and then form a new
one with a different arom in plane Y. However, calculations reveal thart this process

would require stresses which are about a hundred times greater than those which
are needed to produce plastic strain in practice. Thus real metals are not as strong
as this simple model would suggest. An explanaton was offered in 1934 by (5.1,
Taylor who put forward the idea of dislocations. One type, an edge dislocation,
is shown in Fig. 11.12. It takes the form of an incomplete plane of atoms (AB in
Fig. 11.12(a)). Forces applied in the manner shown move atoms B and N closer
rogether and eventually a bond forms berween them at the expense of that berween
M and N (Fig. 11.12(b)).

If the stress is maintained, M and Z bond together leaving plane XY incomplete
(Fig. 11.12(c)). In this way, then, the dislocation moves from left to rdght through
the crystal. The end result is the same as it would have been if rows | and 2 had
slipped over row 3. However, it has been achieved much more easily for only one
bond has been broken at a time, whereas the wholesale movement of the planes
would require a large number of bonds to be broken at the same time. The process
is commonly likened to the movement of a ruck in a carpet. A large force is
required to drag a heavy carpet over a floor. However, if there is a ruckin the carpet,
it can be moved by the almost effortless process of pushing the ruck from one side
to the other (Fig, 11.13).

11.12 THE STRENGTHENING OF METALS

It follows from what has been said in section 11.12 that metals can be made
stronger by impeding the movement of dislocations. This can be done in a number
of ways.
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Fig. 11.12
Movemeni of a
dislocation

Fig. 11.13

Sliding a carpet by
moving a ruck
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Increasing the number of dislocations, because the increased number makes
it more Hkely that the various dislocations will obstruct each other in a *log
jam’ effect. The number of dislocations can be increased by plastically
deforming the metal repeatedly - this 15 the process known as work
hardening.

Introducing foreign’ atoms (e.g. carbon atems in steel) into the structure,
These disturb the regularity of the lattice and by s0 doing hinder the
movement of dislocations.

Dislocations heve difficulty in moving across grain boundaries and therefore
samples in which the grain size is small (and which therefore have many
grain boundaries) tend o be strong.

A metal in which there were no dislocarions would, of course, be extremely strong.
To date, though, such perfect crystals have been made only on a very small scale,
They are known as “whiskers’ and are typically only a few micrometers thick,
though a few millimetres long.
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FLUID FLOW

12.1 TERMINOLOGY

Fluids
Both liquids and gases are fluids.

Viscosity

If a fluid is viscous then it offers a resistance o the motion through it of any solid
body — or what amounts o the same thing, to its own motion past a solid body. In
both these circumstances (except where the fluid is a gas of very low density) the
layer of fluid in immediate contact with the solid surface is stationary with respect
to that surface, and therefore the motion causcs adjacent lavers of fluid to move
past each other. There exists a kind of internal frcton which offers a resistance to
the motion of one layer of fluid past another, and it 15 this that is the orgin of the
visoous force. In liguids the internal fricoon is due w inermolecular forces of
attraction. In gases the viscous force arises as a result of the interchange of
molecules that takes place between the different lavers of the flowing gas. Thus,
whenever molecules move from a fast-flowing layer into 8 more slowly moving
laver, they increase the average speed of the molecules of thart layer. Itis as if the
faster layer is dragming the slower laver along with it. At the same time, the random
molecular moton means that molecules from the slower-moving layver move into
the faster-moving layer, and therefore the average molecular speed of the faster-
moving layver is reduced. Thus, the presence of an adjacent slow-moving layer
slows down the fast-moving layer.

Steady Flow

If the flow of a fluid is steady (also known as streamline flow, orderly flow and
uniform flow), then all the fuid particles that pass any given point follow the same
path at the same speed (i.e. they have the same velocity). Thus, in steady flow no
aspect of the flow pattern changes with time.

Turbulent Flow

This is also known as disorderly flow, In this tvpe of flow the speed and direction
of the fluid particles passing any point vary with ume,

Line of Flow
The path followed by a particle of the fluid is called the line of flow of the particle.

! b



FLLND FLOWY

Fig. 12.1
Streamlines of a liquid in
laminar flow

Fig. 122
To illustrate laminar flow

Streamline

A srreamline is a curve whose angent at any point is along the directon of the
velocity of the fluid particle at that point. Streamlines never cross.

For a fluid undergoing steady flow all the fluid particles thar pass any given point
follow the same path, i.e. all the particles passing any given point have the same ling

of flow, It follows that in steady flow the streamlines coincide with the lines of
flow.

Laminar Flows*

This is a special case of steady flow in which the velocities of all the particles on any
given streamline are the same, though the particles of different streamlines may
move at different speeds (Fig. 12.1). As an example of laminar flow, consider a
liquid flowing in an open channel of uniform cross-section. If the fluid is viscous, it
fows as a series of parallel lavers (laminae). The layver in contact with the base of
the channel is at rest, and the speed of each layer is greater than the speeds of those
below it. Ifthe channel 15 wide, the drag effects of the side walls can be ignored, and
therefore the velocites of all the paricles within each layer are the same (Fig. 12.2

10 L
Straamdines Welacities v, vy and

f::luz'r""d = —H—H— v,y are not
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As a second example, consider a viscous fluid flowing in a pipe of uniform circular
cross-section. In this case the fluid flows as a series of concentric cvlinders, All the
particles of fluid within such a cylinder flow at the same speed. The speed of the
cylinder adjacent to the wall of the pipe is zero, and the speeds increase towards the
centme.

Tube of Flow

This is a tubular region of a flowing fluid whose boundaries are defined by a set of
streamlines.

Incompressible Fluid

‘This is a fluid in which changes in pressure produce no change in the density of the
fuid. Liquids can be considered to be incompressible; gases subject only to small
pressure differences can also be taken to be incompressible.

*The term ‘laminar flow’ is often used loosely as being smonymous with the less restricting term
'steady fow”,
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12.2 THE EQUATION OF CONTINUITY

Fig. 12.3
Section of tube of flow

If a fluid is undergoing steady flow, then the mass of fluid which enters one end
of a ube of Dow must be equal o the mass that leaves at the other end during the
same nume, This must be so because in sready Aow no fluid can leave the mibe of
flow through the side walls of the tube (streamlines do not cross each other),
and therefore there would be a change in the mass within the tube if it were
not 50, A change in mass would mean a change in the number of luid particles
within the mbe, in which case there would exist fluid particles where none had
previously existed (or no particles where there had been some). This cannot
happen under conditons of steady flow because the velocity at any point has to be
UNVATYINE.

Consider a fluid undergoing steady flow, and consider a section XY of a tube of
flow within the fluid (Fig. 12.3), Let

Ay, and Ay be the cross-sectonal areas of the wube of flow at X and Y
respectively,

i and py be the densities of the fluid ar X and Y respectively,

uy and oy be the velocities of the fluid particles at X and Y respectively.

Slreambines
baunding the
Tkl af Naw

In a ome interval &¢ the fluid ar X wall move forward a distance o500 Therefore a
volume Ay oy Adwill enter the tube at X. The mass of fluid entering at X in time A¢
will therefore be

ey v AL

Similarly, the mass leaving at Y in the same tme will be
ety i

Since the mass entering at X 15 equal to the mass leaving at 'Y,

pudxvedr = ppdevy s

L.e. ppAgoe = pedyny f12.1]

Equation [12.1] 15 known as the equation of continuity. For an incompressible
fluid py = py, and therefore the equarion takes the form

Axty = Ayvy [12.2]

Ax vy 18 known as the Bow rate (or volume flux) of the fluid at X,
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12.3 BERNOULLI'S EQUATION

This states that for an incompressible, non-viscous fluid undergoing
steady flow, the pressure plus the kinetic energy per unit volume plus
the potential energy per unit volume is constant at all points on a
streamline.

ie. p+ipv’+pgh = A constant

where
p = the pressure within the fluid
p = the density of the fluid

v = the velocity of the fluid
g = the acceleration due to gravity, and
h = the height of the fluid (above some arbitrary reference line).

Proof Consider a wube of flow within a non-viscous, incompressible fluid undergoing

Fig. 12.4
Derivation of Bernoulli's
equation

steady flow (Fig. 12.4). Let
pxand py = pressuresatXand Y
vx and vy = velocitiesat X and Y
Ay and Ay = areas of cross-sectionat X and Y

hy and by = average heightsat X and Y.

1 Arbitrary 2ero of potential energy

Let X, be close to X so that each of the parameters listed above has the same value
at X, as at X. Let Y, be close to Y with a similar consequence. Since the fluid is
incompressible, the density will be the same at all points; let this be p.

Consider the section of fluid which is between X and Y, moving to occupy the
region between X, and Y. The fluid moves in this direction because the force Fy 15
greater than the force Fy. The force Fy moves a distance Ax, and the fluid movesa
distance Ay against the force Fy.

The net work done on the fluid is therefore given by
Work done on fluid = FyAx - F, Ay

Since the fluid is undergoing steady flow, the mass of fluid that was originally
between X and X, is equal to the mass which is now between Y and Y. Let this
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mass be m. Thus a mass m which originally had velocity vy and average height by
has been replaced by an equal mass with velocity vy and average height by,
Therefore,

Gain in kinetic energy = {mey? — lmo,?

Gain in potential energy = mghy — mghy

None of the work done on the fluid has been used to overcome internal friction
because the fluid is non-viscous, and therefore by the pnncple of conservaton of
CNETEY,

Work done = Gain in KE + Gain in PE
Fylx — Fydy = tmvy® - dnto® + mghy — mghy

Le. g Ax — pe Ay Ay = o — Imu? + mghy — mghy

But, AxAx = Volume between X and X, = m/p, and similarly A, Ay = m/p.
Therefore,

s I
Py ;’ = Py F = J;‘"ﬂe‘lrz— Jz'ﬂ‘“-':l-:! + mghy — mghy

Thus py —py = %I-'T-".'] = %lf-"f-'xz + pghy — pghy

Le. P+ %iﬁ-’:az +pghy = py+ %Pﬂ':'z + pghy

Since X and Y were arbitranly chosen points we may write
p+Lpv’ + pgh = A constant

In practice, Bernoulli's equation cannot apply exactly - real fluids are viscous and
gases are easily compressed, Mevertheless, as lopg as the equation is used with
care, it gives meaningful results and its qualitative implications are valid.

12.4 CONSEQUENCES OF BEERNOULLI'S EQUATION

It follows from Bernoulli’s equation that whenever a flowing fluid speeds up, there
i% a corresponding decrease in the pressure and or the potential energy of the flud.
If the flow is horizontal, the whole of the velocity increase is accounted for by a
decrease in pressure.

An aerofoil (e.g. an aircraft wing) is shaped so that air flows faster along the top of it
than the bottom. There is, therefore, a greater pressure below the acrofoil than
above it It is this difference in pressure that provides the lift. A spinning ball
experiences a similar effect. The spin drags air around with the ball (Fig. 12.5).
The ball therefore has a resultant force acting on it towards the top of the page.

In accordance with the equation of continuiry, fuids speed up at constrictions, and
therefore there is a decrease in pressure at constrictions. This effect is made use of
in such devices as filter pumps, Bunsen burners and carburettors.

The YVenturi meter (Fig. 12.6) 15 a device which introduces a constriction into a
pipe carrying a fluid, in order that the velocity of the fluid can be measured by
measurng the resulting drop in pressure.,
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Fig. 125
To illusirate the effect of

apin

Fig. 12.6
The Yenturi meter

EXAMPLE 12.1

Calculare the velocity with which a liquid emerges from a small hole in the side of a
tank of large cross-sectional area if the hole 15 0.2 m below the surface (Assume

g = 10ms )

Ayvy = Ay e, vy =

Solution

Befer to Fig. 12.7. We shall assume that we are dealing with a non-viscous,
incompressible liguid in steady flow, in which case we may apply Bemoulli's
equation to pomts X and Y on the streamline XY

InGraase air
spaid, thareiong
[ pressures

refative fo ball

Direction af air 3 5 Direction .
af ball O} sein

Decreasod air
sped, tharelore
Figgh D r e

Manomater to record oy

Manomaeter Lo recsid i,

Feawang fluid
af density

Consider the fuid to be non-viscous, incompressible (of density @) and in
horizontal steady flow. Let the pressure and velocity respectively be p and vy at X,
and be py and o at Y on the same streamline as X, Applving Bernoulli’s equation
ar X and Y gives

@ n
PuF AT = Py pyT

If the cross-sectional areas at X and Y arc Ay and A, then from the equation of
continuity

. A, ¥
Pyt ; Py =y b '}.f-' (—T—\)

Ay® .
Yy = J_;jil(ﬁ—:: _— I)‘I-':"
Thus by measuring the pressures pe and py and knowing g, Ay and A, it s
possible to find the velocity o, of the flud in the unconsericted (main) section of
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Fig. 12.7
Driagram for Example
121
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Thus, taking the pressure, height and velocity at X 1o be py, fy and o, and the
pressure, height and velocity at Y to be py, Ay and vy, we may put

Py + pghy + L poit = py + pghy + L pryt [12.3]
The pressure at both X and Y is atmospheric pressure g, and therefore

Px = Pr = P
Taking heights to be measured from the level of Y we have

hy = 02m Ay = 0

If we assume that the tank is wide enough for the rate at which the surface level falls
to be negligible, then

vy = 0 vy = u (the velocity of emergence)
Substituting in equation [12.13] gives

pHpx l0=0.240 =p+ﬂ+%fj;}
ie. ©v=VZxl0x02 =2ms’’

Ingeneralv = 1,.-’2_;'& and is equal 1o the velocity acquired by a body falling from
rest through a height & — a result which is known as Torricelli’s theorem. In
practice v would be less than 2ms ! because of viscous effects.

12.5 THE PITOT-STATIC TUBE

“The Pitot—static tube is a device used to measure the velocty of a moving fluid. It
consists of two manometer tubes - the Pitot tube and the statc tube. The Pitot
tube has its opening facing the fluid flow; the static tube has its opening at right
angles to this.

When the Pitot-static rube is used 1o measure the velocity of a flowing liquid, the
liquid itself can be used as the manometer liquid (Fig. 12.8). Providing the liquid
has reached its equilibrium level in the Pivor tube, the liquid at'Y will be stanonary
{i.e. Y is a stagnation point). Suppose that X is a point on the same streamline as
Y, but sufficiently distant from it for the liquid there to have its full velocity, v. Ifthe
liguid is in steady flow and can be considered non-viscous and incompressible, we
may apply Bernoulli's equation to X and Y. Bearing in mind that the flow is
horizontal, this gives

px+ipr’ = py [12.4]
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Fig. 12.8
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where py and py are the pressures in the liquid at X and Y respectively. Rearranging
equation [12.4] gives

2 T
o= 1|r|'_|;.p'| - Pyl _13-?
i"
or
— .'IE " Pressure at Pressure where 126
a 1I.I o [El,uyu.tiun point Huid velocity T-') S

The pressiere, Py, at'Y 15 equal vo the pressure exerted by the liquid in the Pitor tube
plus atmospheric pressure, p,. | herefore
Py = -h'r.F'.E' L

The pressure, py, at X 15 equal to the pressure exerted by the hguid in the statc tube
plus atmosphenc pressure, and therefore

Px = hypg + P
Therefore

Py —Px = Ry — iy
Therefore by equation [12.5]

v o= -.'.-’zg(hf = hy) |12.T]
Crases cannot be used as manomerer fluids, and therefore the type of Pitot-static
tube used to measure gas velocites has the form shown in Fig, 12.9. The head of
ligquid in the manometer measures the difference (fp,, £ berween the pressure at
the stagnation point, Y, and the pressure at X, where the gas has velocity o
Therefore by equation [12,6]

|2 )
U o= ||'||' E (hp, £

The terms: ‘static pressure’, ‘dynamic pressure” and ‘rotal pressure’ are often used
in connection with flowing fluids.

Static Pressure

The static pressure at a point in & flowing fluid 15 the actual pressure at that point.
As such, it is the pressure measured in such a way that the measurement docs not
affect, and is not affecred by, the velocity of the fluid. One way of achieving this is
with a manometer whose opening is parallel to the flow direction, (The static tube
in Fig. 12.8 measures the static pressure at X.)
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Fig. 129

Pitol—static tube to
maasure the velocity of a
gas
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Dynamic Pressure
For a fluid of density p, moving with velocity v, the dynamic pressure is % i,

Dyvnamic pressure is not a rue pressure — simply a quantity which has the same
dimensions (see Appendix 2) as pressure.

Total Pressure

The total pressure is the sum of the static and dynamic pressures. The pressure and
the total pressure are equal to each other at a stagnation point.

12.6 THE COEFFICIENT OF VISCOSITY (n)

The coefficient of vizcosity of a fluid is a measure of the degree o which the fluid
exhibits viscous effects. The higher the coefficient of viscosity, the more viscous
the fluid - the coefficient of viscosity of golden syrup at room temperature is about
10" times that of water at the same temperature. The coefficients of viscosity of
most fluids have a marked temperamre dependence; those of liquids decrease with
increasing  temperature, whereas those of gases increase with increasing
temperature,

Viscous effects are due to the frictional force which exists berween two adjacent
layers of fluid which are in relative motion. Consider a viscous fluid undergoing
laminar flow, and consider in particular vwo parallel lavers of area A separated
by a small distance &y and whose velocitics are v and v+ e (Fig. 12,10). It
was suggested by Mewton that the fnctonal force F between the layers is
proportional to A and to the selocity gradient dofdy, i.e.

e
FoxA—
ry

[This 15 the opposite of the situation with solids - the frictional force between the
surfaces of two solids is independent of the area of contact and of the relative
velocity., See section 2.12.) Introducing a constant of proportionality, 1, we have
Sy
dy
Equation [12.8] is sometimes called Newton's law of viscosity. It holds for all
gases and for many ligquids. Such liquids are called Newtonian Hguids; water

F = n4d 12.8
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Fig. 12.10
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is an example. For any given values of A and év/ dy, F islarge for those fluids which
have high values of i, and therefore i 15 a measure of the viscosity of the fluid, and
can meaningfully be called its coefficient of viscosity,

There are some liguids, called non-Newtonian lquids, for which & is not
proportional to 8o/ dv and which, therefore, do not have constant values of p - 1.e.
they do not have coefficients of viscosity in the normal sense. Oil-paint is an
example of a non-Newtonian Iiquid.

(i) Theunitsofpare Nsm * = kgm 's '

(i1} By rearranging equation [12.8] as
FiA

n =

' oy
and then comparing it with equartion [11.7] of section 11.6 we can draw an
analogy between i and the shear modulus Gofasolid. In ecach case F/ A 15 the
shear stress, In the case of a solid, though, the stress produces a fixed strain
(A x/v) proportional to the stress, whereas with a Newtonian fluid the stram

increases without limit as long as the stress is applied and it is the rate of
change of the strain {4/ dy) which is proportional to the stress.

12.7 POISEUILLE'S FORMULA

Consider a viscous liquid undergoing steady flow through a pipe of circular cross-
section. Because of viscous drag the velocity vanes from a maximum at the centre
of the pipe to zero at the walls, We shall use dimensional analysis (see Appendix 2)
o derive an expression for the volume F° of higuid passing any section of the pipe
in time .

It can reasonably be supposed that the rate of volume flow 1/ r depends on (i) the
coefficient of viscosity i of the hiquid, (i) the radiusg r of the pipe, and (i) the
pressure gradient p/l, where p is the pressure difference berween the ends of the
pipe and [ 15 its length. If we express the relatonship as

J'E = krfr-’(%}t

where & 15 a dimensionless constant and x, v and = are unknown indices, then since
each side of the equation must have the same dimensions,
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Vi = [n][r][(£/1)°]
LT = (ML'T'y(Ly" (ML T %)

i.e. L]T 1 M':r.'Lr & ET =28
Equating the indices of M, L and T on both sides gives
0D =x+z (for M)

3 =y-x-2z (forL)
-1l = —x—-2r (for T)
Solvinggives £ = L, x = —1,¥ = 4. The relationship is therefore
¥ roep
+ = #5(7)
The wvalue of & cannot be found by using dimensional analvsis, however,
mathematical analysis shows that its value 15 /8, and therefore

v _ arp [12.9]
I Bl
This 15 called Poiseuille*s formula in recognition of Poisewille who in 1844
made the first thorough experimental investigation of the steady fow of a liquid

{water) through a pipe. The formula applies only to Newtonian fluids (see
section 12.6) which are undergoing steady flow.

The speed of bulk flow 15 defined as the rate of volume flow divided by the cross-
sectional area of the pipe. Steady flow occurs only when the speed of bulk flow is
less than a certain critical value v.. Since Poiseuille’s formula applies only to steady

flow, it does not hold when the speed of bulk flow exceeds v.. Experiment shows
that for cylindrical pipes

11005
o

where p and n are the density and coefficient of viscosity of the fluid and ris the
radius of the pipe.

f==:

12.8 MEASUREMENT OF n» BY USING POISEUILLE’'S
FORMULA

The method makes use of the apparatus shown in Fig, 12.11 and is suitable for
liquids which flow easily (e.g. warer). (For high-viscosity hiquids see section
12.10.)

The liguid under test flows steadily through the capillary rube from a constant
head device and the volume F of higuid which emeérges in a known time ¢ 15
measured. The pressure difference between the ends of the capillary tube is hpg
(where p 15 the density of the ligquid and g is the acceleration due to gravity) and
therefore from equation [12.9]

Vo mrhpg

r Bl
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Poiseuille's formula applies only if the flow 1s steady. In order to check thar this is
the case the measurements are repeated for different values of & and a graph of
{¥/r) against h is plotted. The graph is linear providing & has been kept below the
value at which the rate of flow 1s so hagh that turbulence sets in. The gradient of the
graph is zr' pg/ (84! ). enabling i to be calculated once rand ! have been measured
(o and g are found from tables). The mean radius r of the tube can be found by
measuring the length and mass of a mercury thread introduced into the tube,

Notes (1) Great care is needed when measuring r because it appears in the calculaton
of y as ', This makes the percentage error in 4 due 1o an error in r four times
the percentage error in r,

(ii) A capillary tube is used because rneeds to be small so that his large enough to
be measured accurately,

129 STOKES' LAW AND TERMINAL VELOCITY

Derivation of Stokes’ Laww

Consider a sphere of radius r moving with velocity v through a fluid whose
coefficient of viscosity i . The sphere expeniences a viscous force Fwhich acts in
the opposite direction to that in which the sphere is moving. We shall use
dimensional analysis (see Appendix 2) to obtain an expression for F.

It can reasonably be supposed that F depends only on r, iy and ©. (Though the
mass of the sphere and the density of the fluid have a bearing on how the velocity

varies under the effect of an applied force, they have no direct influence on the drag
force.) If we express the relatonship as

F = krinp*v®
where k is a dimensionless constant and x, v and z are unknown indices, then since
each side of the equanon must have the same dimensions

IFl = [r]ln*][v]
MLT? = (LY{(ML-'T-"»(LT ")
ie. MLT? = MYL™srT v
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Fig. 12.12
Sphere falling through a
viscous fluid

SELTION B: STRUCTURAL PROPERTIES OF MATTER

Equating the indices of M, L and T on both sides gives
Il =¥ (for M)
1

x+z—-3y (for L)
=2 = =y=F ifor T)

Solving givesv = 1,2 = |,x = L. The relationship is therefore
F = krmu

A full mathematical analysis reveals that & = 6, and therefore

F = 6xrnuv [12.10]

Equation [12.10] was first derived by Stokes and 15 known as Stokes* law,

(11 Stricty the law applies only to a fluid of infinite extent.

(ii) Stokes’ law does not hold if the sphere is moving so fast thar conditions are
fol streamline.

Terminal Velocity

Consider a sphere falling from rest through a viscous fluid, The forces acting
on the sphere are its weight W, the upthrust U7 due 1o the displaced flwd, and the
viscous drag F (see Fig. 12.12). Initially the downward force Wis greater than the
upward force, U+ F, and the sphere accelerates downwards. As the velocity of the
sphere increases so too does the viscous drag, and eventually U+ Fis equal 1o W
The sphere continues o move downwards but, because there is now no net force
acting on it, its velocity has a constant maximum value known as its terminal
velocity v,

Upthrust (L1 +
viscous deag |F)

s /Olw

through a
VissauE
Flud

'W-uigl'rl W

If ppand p, are the densities of the fluid and the sphere respectively, then
W = :- nrp, g

and
0 = t nrpe g

At the terminal velocity

U+F =W [12.11]
and

F = barngwm
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where i is the coefficient of viscosity of the fluid. Subsurunng for IF, Mand Fin
equation [12.10] gives

%ﬂr}pr IE' - Elﬂii'rji'l = '% #F:IF?,_#'
i.e. brRrpT, = +arp, — phE

27 g, — g
O 1

i.e. o =

12.12]

12.10 MEASUREMENT OF 5 BY USING STOKES' LAW

Fig. 12.13
Apparatus for measuring
n using Stoke's law

The method is suitable for liquids of high viscositv such as glycerine and treacle,
and makes use of equation [12.12]. (For low-viscosity liquids see section 12.8.)
The liquid whose coefficient of viscosity # is being determined is contained in a
large measuring cylinder (Fig. 12.13). A small ball-beaning of radius r is dropped
gently into the liquid. The ome taken for the ball to fall from mark A 1o mark B is
determined. Providing A is sufficientlv far below the surface, the bearing will have
reached its terminal velocity ¢, before reaching A, in which case v, = AB/r. If o,
and p, are the densities of the liguid and the sphere respectvely, then from
eguation [12.12]

AB  2r%(p, — ple

s Qo

Large . e Small bl -Dnarimg
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A -

) ————

] VisCOuE
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A micrometer can be used o measure r; @, and gy are found from tables or are
determined in additional experiments; hence i can be deduced.

(i}  Stokes law applics strictly only when the fluid is of infinite extent. The error
due o the impossibility of fulfilling this condition is reduced by using a
measuring cylinder which is wide compared with the diameter of the ball-
bearing, and by having B well away from the bottom.

(ii) If the velocity of the bearing is so large that it produces turbulence, Stokes’
law does not hold and equation {12.12] is not applicable. Using a highly
viscous liquid and a small ball-bearing avoids this problem and also makes
large enough 1o be measured accurately.
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SECTION B: STRUCTLRAL PROPERTIES OF MATTER

QUESTIONS ON SECTION B

SOLIDS AND LIQUIDS
{(Chapter 9)

B1 The graph shows the potential energy of a pair

of atoms at different distances apart.

&
Pabartial
onergy

Distanon bobwinen
W abarms

{a) What distance represents the equilibrium
geparation of the atoms?

(b} What is the physical significance of the
quantity represented by XRE?

{c) Idenrify the region of the curve in which
there is a net attractive force between the
aloms.

{d} What is the physical significance of the
gradient of the tangent to this curve?

(1, "92]

B2 A certain molecule consists of rwo identical

atoms, each of mass 1.7 % 10 kg, The

equilibrium separation of the atoms in the

maolecule 15 x5, The figure above shows the way

in which the force F of repulsion between the

atoms varies with their scparation x.

{a) Account for the general shape of the graph
and use it to find x;.

(b} Sketch a graph of the potential energy ol
the molecule as a function of x, marking
the position of x, on the x-axis. How s 7
related to F?

B3

10ms * = 10Nkg ' unless otherwise stated.
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For very small displacements from x,, the force

F i1z given by the approximate relapon

F = —kix — xg).

(c) Find the value of & in this equarion.

(d) Describe the motion of the atoms i the
molecule when moving freely under the
action of this force. By derving the
equation of motion of one of the atoms,
or otherwise, find the frequency of the

MO0, [

The very simplified curves {p. 209 represent,
for two adpacent atoms or molecules, the varia-
tion with the separation r berween their centres
of the potential energy V, due to the interaction
berween them, and the force F, between them.
(a) Explain the general relation berween the
Frocurve and the V) curve, and the
significance of the broken lines A and B.
(b) With reference to the Fycurve (a), explain
how:

(i) the lower part 15 consistent with
molecules in a solid oscillating
about a mean position,

(i1} the effect of a rise In temperature
could be represented,
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(iii) the thermal expansion of a solid on
heating 13 accounted for,

(iv) the latent heat of vaporization (or
sublimation) per atom can be esti-
mated.

{c) With reference to the F, curve (b}, explain
how:

{i} the property of clasticity is repre-
sented,

(ii) Hooke's law is accounted for.

(dy How can it be forecast thar a solid wall
rupture under a large enough stress, and
will melt at a high enough emperanire?

(03]

The specific latent heat of vaporization of a
particular liquid is 2.0 = 10° Jkg~', its relative
molecular mass is 30 and its coordination
number is 10. On the basis of this data, and
given that the Avogadro constant = 6 =
10" mol~!, obtain a value for the binding
cnergy of a pair of (adjacent) molecules of the
liguad.

On freesdng, the coordination number in-
creases o 12, Estimare the specific latent
heat of fusion.

B5 (a) Calculate the potential energy, in ¢V, per

pair of atoms of a solid for which the latent
heat of sublimaton is 1.3 = 10* Jmol
and the number of neighbours per atom is

B7

205

#. The Avogadro constant, Ny = 6.0x
10 mol ! and 1eV = 1.6 = 10 '"].

(b} For a pair of atoms, sketch a graph
showing how the potental energy per
atom  pair varies with the distance
between the atoms, Show on vour graph
{i) the equilibrium separacon, ry, (i) the
value of the energy calculated in (a).

(e} Mark on your sketch graph a point P
corresponding to a separation ofher than
the equidibrinm value and explain how you
would determine, from the graph, the
force berween the avoms at P, Indicate
whether vou consider the force at P o be
attractive or repulsive. m

The latent heat of vaporization of water 15
4 % 10* mol " at the boiling point, and ach
water molecule has, on average, 10 near
neighbours, Estimate the binding energy for
a pair of water molecules.

Ignore the work done in expansion in your
calculation, but explain whether this assump-
tnon leads o an oversstimate or an under-
estimate of the binding energy.

(The Avopadro constant N, = 6 =
10% mal 1) %

Calculate the average volume occupied by a
single molecule of a solid whose density s
1.2 = 10" kgm~* and whose relative molecu-
lar mass 15 90, (The Avogadro
constant = 6 = 107 mol ')

Hence, stating any assumprion that vou make,
estimate the distance between the centres of
two adjacent molecules of the solid.

(a) Estmate the diameter of a water molecule
given that the relative molecular mass of
water is 18 and its density is 1000 kg m—*.

(b} Uszing the value obrained in part (a),
estimate the hinding energy of water
maolecules, given that the surface tension
of water i3 0.072Nm ™' and that the
number of near neighbours in the water

is 10,

(Assume that 7 = N, z5/4. Take N, =
B0 % 10°" mol ™) [W, "o1])
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An alloy contains two metals, X and Y, of den-
sities 3.0 = 107kgm ™ and 5.0 = 10" kgm ™’
respectively. Calculate the density of the alloy
(a) if the volame of X 15 twice that of Y, and
(b} if the mass of X is twice that of Y.

An allov of two metals, X and Y, has a volume
of 5.0=10%m" and a density of
S.b Iﬂ"kgm ' The densities of X and Y
are B0 x 10°kgm ' and 40 x 107 kgm*
respectively. Find the mass of X and the mass
of Y.

FLUIDS AT REST (Chapter 10)

B1

An open U-stube manometer containing
mercury 15 used to measure the pressure of a
gas. The mercury level in the open tube is
B00 mm higher than that in the limbwhich s n
contact with the gas. Whar is the pressure (in
pascals) of the gas?

(Density of mercury = 1.36 x 10%kgm 7,
atmospheric pressure = 1.01 = 10° Pa, ¢ =
0.8l ms “.)

B12 The diagram shows a mercury manometer

B13

recording a pressure of 150kPa. The atmo-
spheric pressure 15 100 kPa,
{Take the density of mercury as 13600 kgm *.)

What is the height difference & of the mercury
surfaces? [y, "a1*]

150 kFs

=/

A bodw hias aweight of 160 N when weighed in
air and a weight of 120N when totally
immersed in a liguid of relative density 0.8,
What 15 the relative density of the body?

B14

B15

B16

B17

B18

B19

SECTION 8: STRUCTLRAL PROPERTIES OF MATTER

An object 15 suspended from a force meter

{epring balance”) capable of reading forces to

within 4 0.001 N, The object is found to have a

weight of 492N in air and 387N when

immersed in water.

(a) Calculare the density of the material from
which the object &5 made,

(b} Discusz the reading which could be
obtained if the object were suspended
from the force merer within an evacuared
enclosure.

1.3 kgm 7, density of water

5]

(Drenzity of air
= 1.0 = 100 kgm )

A tank contains a liquid of density 1.2 = 107
kgm . A body of volume 5.0 = 10 *m" and
density 9.0 = 10°kgm ™ is wotally immersed
in the liquid and is atached by a thread o the
bottom of the tank. What is the tension in the

thread?

A ball with a volume of 32 cm* floats on water
with exactly half of the ball below the surface,
What is the mass of the ball? (Density of water
= 10=10"kgm %)

An object floats in a liguid of density
1.2 = llf]:']-:gm Y with onc guarter of irs
volume above the Liquad surface. What is the
density of the object?

A hot-air balloon has a volume of 500 m”. The

balloon moves upwards at a coensran? speed in

air of density 1.2kgm * when the density of

the hot air inside it is 0.80 kgm .

{a) What is the combined mass of the balloon
amd the air inside it

(b} What 1= the upward acceleraton of the
balloon when the wemperature of the air
inside it has been increased so that ns
density is 0.Tkgm *?

An object with a volume of 1.0 = 10 m* and

density 4.0 = 107 kgm * floats on water in a

tank of cross-sectional area 1.0 = 10 m”.

(a) By how much does the water level drop
when the object is removed?

(b) Show that this decrease inm water level
reduces the force on the base of the tank
by an amount cgual o the weight of the
object.

(Density of water = 1.0 = 107 kg m ")
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B20 Derive, explaining the meaning of the terms

on the right-hand side, the approximate
relaponship

o == ;l.r,-']'q,

where « is the work done in isothermally
creating unit surface area of a liquid. Explain
why the relationship is approximare.

Show that 7, the work done in isothermally
creating unit surface area of a liquid, 15 equal to
%, the force perunit length acuing in the surface
of the liquid at nght-angles to one side of an
imaginary line drawn in the surface.

The specific latent heat of vaporization and the
surface tension of a particular higuid are
75 % 10" kg ' and 4.0 x 10 * N m ! respec-
tively. The relatve molecular mass of the
liquid is 40. Estmarte the number of mole-
cules in 1cm® of the liguid surface. (The
Avogadro constant 6o 10 mol 1)

B23 Explain briefly, with the aid of a diagram, what

vou would expect w happen tw a nearly
spherical water droplet resting on a clean
horzontal surface if a vny amount of deter-
gent were added to i,

How do you account for the change that might
aocur? {L]

B24 The velocity v of surface waves on a liquid may

be related to their wavelength 4, the surface
tension of the liquid « and its density g by the
following equation

v = kifalp’
where k15 a dimensionless constant.

Find values for &, § and ¢ by a dimensional
argument. %]

A spherical drop of mercury of radius 2 mm
falls o the ground and breaks inve 10 smaller
drops of equal size. Calculate the amount of
work that has 1o be done, (Surface tension of
mercury = 4.72 = 10 'Nm ')

What is the minimum speed with which the
original drop could have hit the ground?
{Density of mercury = 136 = 10%kgm *.)

Two soap bubbles have radii of 3 cm and 4 cm.
The bubbles arc in a3 vacuum and they
combine to form a single larger bubble.

Calculare the radius of this bubble. You
may assume that the surface tension of soap
suiuii.un is constant I]'Lrl.'ruﬁ]'l-l.‘rLll!.:l

A glass barometer tube has an internal radius
of 3mm. Calculate the actual atmospheric
pressure on a day when the height of the
mercury column is 760.2mm. (Surface ten-
sion of mercury 4.72 % 10 "Nm ', angle
of contact of mercury with glass = 137,
density of mercury = 1.36 = 10" kgm °, ac-

celeration due to gravity = 9.81ms )

A zoap bubble whose radius is 12 mm becomes
attached to one of radius 20mm. Calculate
the radius of curvarure of the common inter-
face.

Define the terms surface lfemsion, angle of
conast.

The end of a clean glass capillary tube, having
mternal diameter 0.6 mm, 15 dipped inte a
beaker coptaining water, which rises up the
tube to a vertical height of 5.0cm above the
water surface in the beaker, Calculate the
surface tension  of water. (Density  of
water 1000 kgm *.)

What would be the difference if the ube were
not perfectly clean, so that the water did not
wet it, but had an angle of contact of 30 with
the tube surface? [5]

Diefine surface renston. Give a conclse explana-
ton of the origin of surface tension In terms of
inteemalecular forces.

“The pressure difference on the two sides of a
sphenical liquid-gas interface 15 2/ K what do
w and & representy { You may use this expression
ant (a) i vend 50wz, bt you are advised ro wse it m
parts (b} and (c).)

{a) Derve an expression for the height of the
liguid column in a wvertical, uniform
capillary mube. (Meglect any correction
for the mass of the meniscus and assume
that the angle of contact is zere, ) Describe
the experimental determination of the
surface rension of water by the capillary
rise method giving with reasons, asultahle
value for the radius of the be,

(b} The two vertical arms of a manometer,
containing water, have different internal
radii of 10 *m and 2 = 10 *m respec-
tvely, Determine the difference in height
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of the two liquid levels when the arms are
open to the atmosphere.

({¢) Explain why the pressure difference is not
constant across the menmiscus of the hquid
column in a capillary tube, and discuss the
general shape of the meniscus,

The surface tension and density of water
are 7= 10*Nm' and 107kgm?
respectively. W]

By considering the work done per umit area in
increasing the surface area of a bubble blown
in a liguid, or otherwise, derive an expression
for the excess pressure p inside a bubble of
radius r,

1 1 | Density af
ir lgusd = p
=
AN
[
i I i 1

L] ik

The diagrams above represent glass capillary
tubes dipping into a hgud. Explain why the
situation represented by (i) is unstable while
thar in (i) 15 stable.

Use the data given in diagram (it} to derive an
expression for the height & o which the liguid
riscs, given that the angle of contact between
the liguid and glass 15 zero.

By considering intermolecular forces explain
why the surface of a liquid is different from the
bulk of the Liguid.

Suggest why there might be a connection
between the surface energies (surface ten-
sions) of liquids and their normal boiling
points. (L]

B32 The pressure difference p across a spherical

surface of radius r between air and a hquid,
where v is the surface tension of the liquid, is
given by

SECTION B: STRUCTURAL PROFPEARTIES OF MATTER

(a) Show that this expression 1s consistent
with y being measured in W m ', It can be
shown that 7 is also equal w the energy
stored per unit area in the surface. Show
that this is also consistent with 7 being
measured in Nm ',

(b} Dezcribe a method for measuring © which
15 based on measuring the excess pressure
in a bubble,

(e} Using the energy defininion of + given
above calculare the energy stored in the
surface of a soap bubble 2.0 cm in radius if
its surface tension is 4.5 = 10 *Nm ' If
the thickness of the surface is
6.0 % 1077 m and the density of the soap
solution is 1000kgm *, calculate the
speed with which the hiquid fragments
will fly apart when the bubble is burst,
What assumprions have you made in your
calculation? [L]

B33 (a) Draw and label a diagram of apparatus

suitable for measuring the surface tension
of water by Jaeger's method.

Assume that the pressure p within the
apparatus when if &5 assembled equals the
pressure pq of the atmosphere ourside.
Skerch a graph which shows how the
pressure difference p — py changes with
time from the instant p begins to Increase
until the moment a bubble i1s about o
break away from the bottom of the
capillary for the third time.

How are the pressure differences shown
in the graph related to (i) the position of
the liquid meniscus in the capillary and
(ii} the radius of the bubble formed at the
bottom of the capillary?

State which quantities you would mea-
sure if vou were using this apparams o
determine the surface tension of water and
describe how you would measure them.
{b) The diagram, {p. 213} which 1= not to
scale, shows two capillary ubes of uni-
form bore fitting tightly into a short length
of rubber tubing. AB and CD are mwo
threads of water. The capillary tube
containing T 15 kept horzontal while
that containing AB is raised through an
angle i until the water surface at D is both
flat and vertical.
(i) Calculate the surface tension of water
given that & is 10.5°, AB is 11.4cm,
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Capilkary tube

thie radius of the capillary tube at C s
0.72mm and the density of warer is
1.0 = I.ﬂ"kgm ¥ 'The angle of con-
tact between water and glass 1s zero.
Mou may assume the relation &p =
2+fr,and that g = 9.8ms %)

(i1} Suggest an experimental procedure
to derermine when the water surface
at I is flat. [L]

ELASTICITY (Chapter 11)

B34 Diefine teonnle SPress, petiinle .:!rn:rfr:, ﬁ?:.r.d.p;".!

B35

Ba7

rodulis,

A mass of 11 kg is suspended from the ceiling
by an aluminium wire of length 2m and
diameter 2 mm. What is:

{a) the extension produced,

(b) the elastic energy stored in the wire?

The Young's modulus of aluminium s
7 = 10" Pa (Nm ). [5]

The maximum upward acceleration of a lift of
total mass 2500kg is 0.5ms ®. The lift is
supported by a steel cable, which has a
maximum  safe  working  stress of
1.0 = 10" Pa. What minimum area of cross-
section of cable should be used? [Ci0]

An elastic string of cross-sectional arca 4 mm :
requires a force of 2.8 W to increase its length
by one tenth. Find Young's modulus for the
string. If the original length of the stning was
1 m, find the energy stored in the string when it
is so extended. (W)

(a) For an elastc wire under tension there is,
under certain conditions, a simple rela-
tion between the applied simess and the
siraim produced. Explain the meaning of
the terms in italics, state the relation and
indicate the condidons that must be
fulfilled.

213

(b) A long thin vertical steel wire is fixed at the
upper end. Describe, piving reasons for
the design of the apparatus used, how you
would measure the extensions caused by
the additon of various loads at the lower
end.

(c) A massive stone pillar 20 m high and of
uniform cross-scction rests on oa ngd
base and supports a vertical load of
5.0 x 10° N at its upper end. State, with
reasons, where in the pillar the maximum
compressive stress ocours. If the com-
pressive stress in the pillar is not o exceed
1.6 = 10" N m 7, what is the minimum
cross-sectional area of the pallar?

Density ofthestone = 2.5 = 10°kgm %
[1]

B3B8 A cvlindrcal copper wire and a cylindrical

steel wire, each of length 1.000m and having
coual dismeters are joined at one end o forma
compaosite wire 2,000 m long. This composite
wire 15 subjected to a tensile stress untl its
length becomes 2,002 m. Calculare the tensile
stress applied to the wire.

(The Young modulus for copper =
1.2 % 10" Paand for steel = 2.0 = 10" Pa)

[W, "91]

{a) Ahecavyrigid bar is supported horizontally
from a fxed support by two vertical wires,
A and B, of the same mirial length and
which expenience the same extension. I
the ratio of the diamerer of Arotharof Bis
2 and the ratio of Young's modulus of A
to that of B is 2, calculate the ratio of the
rension in A o that in B,

{b) If the distance between the wires 15 D,
calculare the distance of wire A from the
centre of gravity of the bar. N

{a) Define srress, sreaint and the Yo modenlis,

() (i) Describe an experiment to deter-
mine the Young modulus for a
material in the form of a wire.

(ii) Which measurement requires parti-
cular care, from the point of view of
accuracy, and why?

Drerve an expression for the poten-

tial energy stored in a stretched wire.

(ii) A sreel wire of diameter 1 mem and
length 1.5 mis stretched by a force of

(e} (i)



50N, Calculate the potential energy
stored in the wire.
Young modulus  of steel = 2
w 10" Pa.

(ifi) The wire is further stretched w
brealang. Where does the stored

energy go? [W, 90]

B41 Define Young's modulus and describe a

method to measure its value for a uniform
elastic wire, Stare the precautions necessany o
ensure an accurate result.

The ends of a umiform wire of cross-secuonal
area 10" m” and negligible mass are artached
to fixed poines A and B which are | m apart in
the same horizontal plane. The wire is initally
straight and unstretched. A mass of 0.5kg 15
attached to the mid-point of the wire and
hangs in equilibrivm with the mid-point at a
distance 10 mm below AB. Calculate the value
of Young's modulus for the wire, [y & C]

B4Z (a) Dlescribe an experiment using two long,

parallel, identical wires to determine the
Young moedulus for steel, Explain why itis
necessary to use two such wires. Indicate
what quantities you would measure and
what measuring instrument vou would
use in each case. State what graph you
would plo, and show how it is used wo
calculate the Young modulus,

AT

Dleal Brass
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(b} A light rigid bar is suspended horizontally
from two vertical wires, one of steel and
one of brass, as shown in the diagram.
Each wire is 2.00 m long. The diamerer of
the steel wire 15 0.60 mm and the length of
the bar AB is 0.20m. When a mass of
10,0 kg is suspended from the centre of
AR the bar remains horzontal.

Struss/10° Pa

SECTION B: ETRUCTURAL PROPERTIES OF MATTER

(1)  What is the tension in each wire?
{(ii) Calculate the extension of the steel
wire and the energy stored in i,

(i1i) Calculate the diamerter of the brass
wire.,

(iv) If the brass wire were replaced by
gnother brass wire of diameter
1.00mm, where should the mass
be suspended so thar AB would
remain horzontal?

(The Young modulus for smeel =
2.0 = 10" Pa, the Young modulus
for brass = 1.0 = 10" Pa.} ], '91]

(a) For moderate loads, most metals are
elastic. What is meant by the term elastic?
{b) The graph shows a stress—strain diagram

for a steel wire, of cross-section area
080 = 10 "m~, that 15 stretched to its
elastic limie L.

T3
12k

181 ey PR e e

OB

0.6

0.4 sl upuiiy |

F] S

i}

Sarain /10 ?

Use this graph to estimate:

(1) the Young modulus of steel;

(ii} the tension in the wire at its elastic
lirmut L;

(i) the maximum elastic sirain energy
that can be stored I unit volume

{1L.0m™) of steel, [0, "91]

Ba4 Define streis, stram, and Youwng s modulus of an

elastic matemnal.

Describe an experiment for measuring the
Young's modulus of a materal in the formofa
wire,

A rubber cord has a diameter of 53.0mm, and
an unstretched length of 1.0m. One end of the
cord i attached o o hxed support A, When a
mass of 1.0kg is attached to the other end of
the cord, so as to hang vertically below A, the
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cord iz observed o elongare by 100 mm.
Caleulate the Young's modulus of mubbee.

If the 1 kg mass is now pulled down a further
short distance and then meleased, whar is the
period of the resulting oscillations? [5]

Explain the verm Young s modhelus,

A nylon guitar string 62.8 cm long and | mm
diameter 15 mwned by strerching it 2.0cm.
Calculate (&) the tension, (b) the elastic
energy stored in the string.

Young's modulus of nylon = 2 = 107 Pa.
(3]

B46 Two copperwires A and B, of the same known

B47

arcas of cross-section, are subjected to mea-
sured stretching forces and the corresponding
extensions are measured. The results, on a
force-extension graph, are shown i the
dizgram below.

FaremiM A

Extangianicm

Explain what deduction you could make about
the difference berween the two wires.

Drefine the quantites which you would plot 1o
get the same graph for both wires, How would
vou use this second graph to evaluate an
important physical constant of copper? L]

A submernged wreck is lifted from a dock basin
by means of a crane to which is artached a Fm:c!
cable 10m long of cross-sectional area 5 cm™
and Young's modulus 5 = 10" Nm 2, The
material being lifted has a mass 10t kg and
mean density 8000 kg m . Find the change in
extension of the cable as the load 15 hfted clear
of the warer.

Assume that at all omes the wension 1o the
cable is the same throughour its length.

Density of water = 1000kgm ', [J]
A copper wire LM is fused at one end, M, to an

iron wire MM, The copper wire has length
0.900m and cross-section 0.90 = 10 *m?.

The iron wire has length 1.400m and cross-
section 1.30 = 10 *m”. The compound wire
is stretched: its toral length increases by
00 ] W

L .500 m (¥ . 400 m M
T .
Coppar Iroen
080 = 13 *m* .30 = 10 "
Caleulare:

(a) the ratio of the extensions of the two wires,

(b} the extension of each wire,

(c) the tension applied 1o the compound wire,

Young's modulus for copper = 1.30 =

10" Nm % Young's modulus for iron
210 = 10" Nm L) [L]

Explain the terms tensile siress and tensile
stram as applied to a specimen of material and
cxplain the meaning of the word ressile,

A car breaks down and the driver asks a fnend

Lo tow 1t using a prece of nvlon rope which s

10,00 m long and has a diamerer of 10,0 mm.

The rope obeys Hooke's law and has a Young

modulus of 3.0 « 10" N m *. The mass of the

car and driver s 750 kg,

(a) When towing on a level road at a constant
specd, it 15 found that the rope extends by
0,025 m. Calculate the tension in the rope
and hence the net resistive force acnng on
the towed car.

(b} The two cars now ascend a slope which
rises 1.0m wvertically for every 15.0m
travelled on the road. They maintain the
same specd as inpart (a), What s the new
length of the towrope?

{c) How much elastic energy 15 stored in the
rope while the cars are climbing?

(d) A srrerched rowrope must be regarded as
dangerous because of the energy released
should 1t break or become detached. Thas
danger can be reduced by careful choice
of towrope.

By comparison with the original rope in
each case, state and explain how the
energy stored in the rope could be
reduced by using a rope with a different
(1) Young modulus,

{ii) area of cross-secnion, (O & 2, "9

BS50 The graph (p. 216) represents the tension-—

extension graph for a copper wire of length
1.2m and cross-sectional area 1.5 = 107" m"™.
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B51

The tension is gradually increased from zero to
a maximum value, and then reduced back to
ZETD,

1.2
Targicn kN '
1.0F—
ol
LR o

0.4

0.3 fo-it

o 1 2 3 4 &5 B 7 IIS

Extension/10 *m

(a) Use the region OL of the graph to find the

Young modulus for the material of the

Wite.

(b) Why is the unloading curve displaced
from the loading curve?

(c) Shade the area of the graph which

represents the energy lost as heat during
the loading-unloading cvcle, [0, "92%]

A 20m length of continuous steel railway line
of cross-sectional area 8.0 x 10'm® is
welded into place after heating to a uniform
remperature of 4070,

iTake Young's modulus for steel to be
20x 10" Pa, its linear expansivity to be
12 = 10" K ', its density to be 7800 kgm °,
and its specific heat capacity to be 500
Thg ' K1)

Calculare, for normal operating conditions at
15 °C.

(a) the tensile strain,

(b) the tensile stress,

{¢) the elastc strain energy in the rail.

How much heat would be required to return
the rail to 40 C? Explain briefly why your

answer 15 not the same as that of (). [3*]

The diagrams show an apparatus designed to
demonstrate the resistance to shear of a new
material.

One end X of the steel bar is fined. The other
end has a hole of diameter 6 mm drilled i at.
When the room temperature is 20°C, the
distance berween the fixed end of the bar

SECTMON B STRUCTLARAL PROPERTIES OF MATTER

Pl 8.0 mm

D diamater

[ X Stead bar

L 2.0m
I -
AQRAraTUE vigwad froem above ;::‘::‘?"mr“'"'nﬂ
Fig. 1
. Pin msda of
Fig. 2 maiarial under test

and the nearer edge of the hole i3 2.0m as
shown in Fig. 1. At this temperature half of
the hole protrudes beyond the restraining
pillars.

The bar is heated in a constant emperature

enclosure until the hole just clears the

restraining pillars. A pin, which just fits the
hole and made of the material under test, is
then inserted through the hole as shown in

Fig. 2.

{a) Calculate the temperature of the enclo-
Sune.

(b} Given that the bar does not extend
bevond its limit of proportionalicy, calcu-
late the tensile stress in the steel bar when
the temperatre returmnms oo 20 “C,

(Young modulus for steel = 1.2 = 10! Pa,

lincar expansivityofsteel = 1.5 = 100° K1)

[AER, "90]

(a) Givethe meanings of the terms rensale stress
and Young s woding, Define the quanony
which relates these terms.

(b} When measuring Young's modulus of a
matenal it 15 common o use & Specimen
which is (1) verv long, and (i) very thin.
Grive the reasons for this,

Drescribe how yvou would measure accu-
rately the extension of such a wire under
an applied load.

(€} The graph {p. 217) shows how the
extension of a wire varies with the load
applied to it. The wire used has a length
3.00m and a diameter 5.0 = 10 *m.

(i) Calculate the tensile stress pro-
duced by a load of 50 M.

(if) Find the energy stored in the wire
when this load 15 acting.
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(ili) Calculate the reduction in gravita-
tonal potential energy of a 5.0kg
mass used o provide the load.

(iv) Suggest why the answers to (i) and
(ini) above are different.

{(v) Calculate Young's modulus for the
metal of the wire. (5]

B54 The skerch shows, approximately, how the
resultant force between adjacent atoms in a
solid depends on r, their distance apart,

Farce &

{a) Which distance on the graph represents
the equilibrum separation of the atoms?
Briefly justify your answer.

(b} What is the significance of the shaded area?

(c) Use the graph to explain why vou would
expect the solid to obey Hooke's Law for
small extensions and compressions.

W, "92]

BSS (a) The graphs represent stress—strain curves
for two different materials, A and B. Fj,
and Fy are the respective points at which
each material fractures.

217

M sterial
]

= SIFAIN

Srare, giving vour reasons, which marerial,

AorB,
(i) obeys Hooke's law up to the point of
fracture,

(ii) is the weaker,
(iii) has the greater value of Young's
madulus,

(b) A thin steel wire initially 1.5 m long and of
diamerer 0.50mm is suspended from a
rigid support. Calculate (i) the final
extension and (ii) the energy stored in
the wire when a mass of 3.0 kg 1s attached
to the lower end. Assume that the material

obeys Hooke's law,
(Young's modulus for sweel = 2.0 =
10" Nm ) n

B56 In the model of a crystalline solid the particles
are assumed to exert both awractive and
repulsive forces on ecach other. Sketch a
graph of the potental energy between two
particles as a function of the separation of the
particles. Explain how the shape of the graph is
related o the assumed properties of the

particles.
Z 200
A
.
==
300 |
200+—H ,
| 1
100
{
{
o 2 H B B 1@

Extensicnmm
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The force F, in N, of attraction between two
particles in a given solid varies with their
separanon 4, inm, according to the relation

78=x10" 30x10%™

F = 42 410

State, giving a reason, the resultant force
berween the two particles at their equilibrium
separation. Calculate a value for this equili-
brium scparation.

The graph (p. 217} displavs a load against
extension plot for a metal wire of diameter
1.5mm and original length 1.0m. When the
load reached the value at A the wire broke.
From the graph deduce values of

(a) the stress in the wire when it broke,

(b} the work done in breaking the wire,

(cy the Young modulus for the metal of the
Define elasre deformanon. A wire of the same
mctal as the above 15 required to support a load
of 1.0 EMN without exceeding its elastic limit.
Calculate the minimum diameter of such a
wire, [0 &C]

B57 (a) (i) Define stress and strain as related to

the extension of a wire.,

(i} A rubber cord and a sweel wire are
each subjected o linear stress. Draw
sketch graphs showing how the
resultant  stran of each sample
depends on the applied stress, and
point out any important differences
berween the graphs,

(iii} Forsome materials, the strain—stress
curve obrained when the tension
applied w the specimen 15 being
increased may differ sigmificantly
from that when the wension is being
decreased, even though no perma-
nent extension has been caused.
How may this phenomenon be
interpreted?

{b) (i) Describe the important features of
the structure of a polymeric solid,
such as rubber.

(ii) Making reference w the curve you
have drawn for rubber in {a){i)
above, account for the behaviour of
rubber under linear stress in terms of
changes which may occur in the
internal structure of the polymer.

[1*]

SECTIONW B: STRUCTURAL PROPERTIES OF MATTER

B58 The end X of a uniform cylindncal rod XY s

clamped in a fixed horizontal position. The
free end Y is depressed under the acrion of the
weight of the rod by a small amount d. The rod
projects a distance / from the point of clamping
X. The depression 4 is found to be directly
proportional to the ratio g/A where g is the
acceleration due o gravity and A the cross-
sectional area of the rod. Also, d depends on !
and the density p and the Young modulus E of
the material of the rod. Use the method of
dimensions to determine how d might depend
on /, p and E.

How would you show expenmentally the way
in which d varies with the length and radius of
the rod? [O & C*]

{a) In order o determine Yourng s modulus for
the material of a wire in a school
laboratory, 1t 1s usual to apply a tensile
seress to the wire and to measure the rensile
sirain produced. Explain the meanings of
the terms in italics and state the relation-
ship between them.

(b) Addiitonal Scale
load)/ kg readireg ' mm
o . 2.8
2.0 L.
4.0 4.5
i, 0 5.1
8.0 5.7
10.0 6.3
12.0 6.
14.0 7.5
16.0 8.1

The table shows readings obtained when
stretching a wire supported at its upper
end by suspending masses from ins lower
end. The unsrrerched length of the wire
was 2.23m and its diamerer 0.71 mm.
Using a graphical method, determine a
value for Young's modulus for the mate-
rial of the wire.

(e} Describe suitable apparatus for obtaining
the readings shown and explain the
important features of the design.
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(d)y A student noticed that when a mass of
10,0 kg suspended from a wire identical to
that described above was pushed down-
wards and released, it executed vertical
oscillations of small amplitude. Use the
graph to explain briefly why you would
expect the oscillations to be simple
harmonic. (1

BE60 (a) “When materials are stretched their beha-

viour may be either elastic or plastec.

DMstinguish  carefully between  these

terms.

(b) Whilst sererching a length of thin copper
wire it is notced that

(i} at first a fairly strong pull s needed
o stretch it by a small amount and
that it stretches uniformly,

(ii) bevonmd a certain point the wire
extends by a wvery much larger
amount for no further increase in
the pull,

(iii) finally the wire breaks.

Sketch a force-extension graph to illus-

trate the behaviour of this wire, Mark on it

the region where the behaviour 1s elastic

and the region where it is plastc, [L]

BB1 The force constant k of a spring 1s the constant of

proportionality in the Hooke's law relation
T = kebetween tension T and extension e.

A B
06N

GMm™" INm!

A spring A of force constant 6Nm ™' is
connected in series with a spong B of force
constant 3N m ™', as shown in the diagram.
One end of the combination is securely
anchored and a force of 06N is applied 1w
the other end.
{a} By how much does each spring extend?
(b) What is the force constant of the combi-
nation? [C]

B62 (a) (i) Distinguish between elasne and

plazric deformation of a matenal.

(i) Sketch a graph to show how the
extension x of a copper wire varies
with F, the applied load. Mark on
vour sketch the region where the wire
obeys Hooke's law,

-

(b) (i} A force is required 10 cause an
extension of a spring. Explain why
this causes energy to be stored in the
spring.

(i) A spring of spring constant & under-
goes an clastic change resulting in an
extension x. Deduce thar W, its strain
energy, is given by

w:-;ju:f

(c) Auroyrrain, mass s, travels along a track ar
speed v and is brought to rest by wo
spring buffers which are shown below.

Each buffer has spring constant k&,

(i} By considering the energy transfer,
derive an expression o show how the
maximum compression of the buffers
varies with the initial speed of the
train.

(i1} Calculate the maximum compres-
sion of the buffers for a train of mass
m = 1.2kg travelling with an inital
speed v o= 045ms ' when the
spring constant k of each buffer is
48 % 10°Nm '

State and explain a reason why, in
practice, sprng buffers of this design
are not used. [, "a2]

FLUID FLOW (Chapter 12)

B63 (a) Explain the terms fines of flow and stream-

fimes when applied o flud flow and
deduce the relatdonship between them in
laminar flow.

(b} Stare Bermnoulli’s equation, defne the
physical quantities which appear in it
and the condiions required for its
validiry.

(€} Thedeptholwarer in a tank of large cross-
seciional area is maintained at 20 cm and
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WILET SIMErZes N 4 Continuous stream out

of a hole Smm in diameter in the base.

Calculate:

(i} the speed of efflux of water from the
hole,

(ii) therate of mass flow ofwater from the
hole.

Density of water = 1.00 = 10°kgm *.

L1}

B64 (a) Distnguish berween stanc pressure, dy-

namic pressure and fofal pressure when
applied 1o streamline (laminar) fuid Aow
and write down expressions for these
three pressures at a point in the fluid in
terms of the flow velocity v, the fluid
density p, pressure p, and the height &, of
the point with respect to a datam.

(b} Describe, with the aid of a labelled
diagram, the Pitor-static tube and ex-
plain how it may be used to determine the
flow velocity of an incompressible, non-
viscous fuid.

{c) The statc pressure in a horizontal pipe-
line is 4.3 = 10* Pa, the wotal pressure is
4.7 « 10" Pa, and the area of cross-section
is 20 cm®, The fluid may be considered 1o
be mcompressible and non-viscous and
has a density of 107 kgm™*. Calculare:
(i) the flow velocity in the pipeline,

(ii} the volume flow rate in the pipeline.

[

B65 Air flows over the upper surfaces of the wings

of an aeroplane at a speed of 120.0ms ', and
past the lower surfoces of the wings at
110.0ms"". Calculate the ‘lift' force on the
aeroplane if it has a total wing area of 20.0m?.

(Density of air = 1.20kgm*.)

A large tank contains water to a depth of

1.0m. Water emerges from a small hole in the

side of the tank 20 cm below the level of the
surface. Calculare:

(a) thespeed atwhich the water emerges from
the hole,

(b) the distance from the baze of the tank at
which the water strikes the floor on which
the tank is standing.

If a second hole were to be drilled in the wall of

the tank vertically below the first hole, at what

height above the base of the tank would this
second hole have to be if the water issuing from

SECTION B: STRUCTURAL PROFEARTIES OF MATTER

it were to hit the floor at the same point as thar

from the first hole?

B67 (a) By considening the flow of an incompres-

sible fluid along a horzontal pipe as
shown im Fig. 1, derive Bemoulli’s
equation using the conservation of
energy principle.

N
foy \
Direcsian .' i A
offlow T | % -
!
Wy v /
Ay ,,,f Fig. 1
A,

(b} The water aspirater is a laboratory device
used for the partial evacuation of air from
avessel. A jet of running water from a pipe
constricted at X, as shown in Fig. 2, is
directed into the expanded opening of a
funncl at Y and passes out into the drain,

qut:r in

A Trr |1

ueml"E "l|" ra

Fag. 2 l

Ta tha
draén

(i) Bvconsidering the effect of the water
jet on the air in the region of the jet,
explain why this is a practical exam-
ple of the Bernoulli effect.

(ii}) Calculate the maximum reduction in
pressure that could be achieved using
this pump if the jet diameter is
2.0mm and volume rate of flow of
wateris 1.3 = 107 m™s "'

{Density of air = 1.3kgm™.)  [J, "91]



QUESTIONS ON SECTION &

BE8 (a)

(b)

(<)

(d)

B63 (a)

State the equation of continuity for a
contpressible fluid Bowing through a pipe.

A horizontal pipe of diameter 36.0cm
tapers to a diameter of 18.0cm at P. An
ideal gas ar a pressure of 2.00 = 10" Pa is
moving along the wider part of the pipe at
a speed of 30.0ms ', The pressure of the
gas at P is 1.B0 x 10" Pa. Assuming that
the temperature of the gas remains con-
stant calculate the speed of the gas at I,
State Bernoulli’s equation for an incom-
pressible fluid, giving the meanings of the
symbols in the equation.

For the gas in (a) recalculare the speed at
P on the assumption that it can be treated
as  an gmcompressible  fluid, and  use
Bemoulli’s equation to calculate the
corresponding value for the pressurce ar
P. Assume that in the wider part of the
pipe the gas speed is sill 30.0ms °, the
pressure 15 sull 2,00 = 10° Pa and at this
pressure  the density of the gas s
2.60 kgm

Diraw a labelled diagram to show how you
would use the change in pressure dis-
cussed in (c), reating the gas as an
incompressible fluid, to obtain a value
for the speed of the gas in the pipe. Show
how the pesuln is caloulated, 11

A cyvhinder of large cross-sectional area,
containing water, stands on a horizontal
bench. The water surface 15 at a heighe b
above the bench, Warer emerges horizon-
tally from a hole in the side of the cylinder,
at a height v above the bench.

i
— §F ——
i [

{i} Use Bernoulli's eguation 1o denve
expressions for the speed at which the
water emerges from the hole, and the
speed at which it hits the bench.

(b)

B70 (a)

(b}

(<)

B71 (a)
(b)
(c)

(d)

B72 (a)
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(i) Derive expressions for the tme for
thie water to travel from the hole 1o the
bench, and for x, the honzontal
distanice the water travels fromn the
cylinder,

Draw a disgram of a Pitot-stave tube,

and with reference 1o Bernoulli’s equa-

tion explain how the tube may be used to
mgasure the speed of a boat in sea water,

[1]

Derve  Bernoulli®s  eguation for an
incompressible fluid,

State what vou understand by srarc
pressure and dymamie pressure and  stave
how they are related 1o rerms which
appear in Bernoulli's equation.

(i) Mon viscous ol flows from the
bottom of a tank in a honzontal
pipe. State how vou would measure
the static pressure and the dynamic
pressure of the oil in the pipe.

If the density of the oil is ¢ and it is
mowing at a speed ¢ in the pipe at a
depth o Below the surface of the oil in
the tank derive from Bernoulli's
equation an expression showing how
the static pressure as measured in (i)
is related to the atmospheric pres-
sure, py, acting on the surface of the
il in the tank. (You may neglect any
moton of the oil in the tank.]  []]

(i)

What do vou understand by the eguarton of
contimty as applied vo a fluid in motionr
Derive Bernoulli’s eguaton for an
incompressible Auid,

A simple garden syringe used to produce a
et of water consists of a piston of area
4.00cm” which moves in a horizontal
cvlinder which has a small hole of area
400 mm” at its end. If the force on the
piston is 500N calculate a value for the
speed at which the water is forced out of
the small hole, assuming the speed of the
piston 15 neghgible,

The density of wareris 1.00 = 10 kgm
Explain why the speed of the piston may
be ignored. (1]

Explain the meaning of the term famerar
Moy, Describe how, tor a ligueid flowing in
g honzontal pipe, it can be shown whether
or not laminar flow occurs,



(b) (i)

B73 (a) (i)

State both the equation of continuity

and Bernoulli's equation for incom-

pressible fluids.

(i) Diraw and label a diagram of a
Wenturi meter suitable for measur-
ing the velocity of flow of a liquid in a
horizontal pipe. Use the eguations
of (i) vo oblain an expression from
which the welocity of flow of the
liquid in the Venturi meter can be
calculared. What measurements
must be made when the Venturi
meter 15 used?

(iii} Explain how assumptions made in

vour derivation in (i) could limit

the usefulness of 3 Ventun meter.

[J]

The Pitot tube shown in the fgure
below iz used o measure the speed
of flow of a gas in a pipe.

Ligguakd in
manomator

_— Ehowing levels
when flow in the
i IS TR0

e

Nt/

Redraw the diagram showing the
direcoon of fow of the gas and the
corresponding levels of liguid in the
fafomeLer.,

(H) By copsidering Bernoulli’s equation
show that the difference & in the
levels of the liquid in the manometer
15 given by

pv’

2p.E

where p is the density of the gas, g is

the density of the liquid in the

manometer, v 15 the speed of the gas
along the pipe, g is the acceleraton
due ro gravim.

h =

(b} The figure below shows a vanation of the

Pitot tube used to indicate the speed of
aircraft.
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(c)

al Naw

B74 (a)

(b)

(1) Stave one factor thar would have 1o be
taken into  consideraton  when
choosing where to position the Pitot
twbe head on the extenor of an
aircraft if the true airspeed is to be
indicated.

(it} Would warer be a suitable liguid for
the manometer if airspeeds of up to
600 km h~' are 1o be indicated in the
cockpit of an atrcraft? Justfy your
ANSWET,

The figure below shows 2 Ventur meter

used w indicate the speed of flow of a

bguid through a pipe.

g I I

(i} Redraw the diagram and show on it
the levels of liguid in the three
vertical tubes, assuming the pipe w
be horizental and the liquid to be
mncompressible and non-viscous,

(ii) How would your answer to (1) be
different if the viscosity of the liguid
was significant? Explain vour answer.

[1, "92]

Crive an account of an experiment which
makes wuse of Poiseuille’s formula w
measure the viscosity of water,

An empty vessel which 1= open at the top
has a horizontal capillary wube of length
20cm and miernal radius 1.0mm pro-
truding from one of its side walls iImme-
diately above the base. Water fows into
the vessel ata constant rate of 1,.5¢cm” s,
At what depth does the water level stop
Fizing?

(You may assume that the fow 15 steady.
Coefficient of viscosity of warter = 1.0 x
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B75

B76

B77

10 *MNsm %, density of water = 1.0 =
10°kgm %, acceleration due
gravity = 10mas %)

A liquid flows steadily through two pipes, A
and B, which are joined end 1o end and whose
invernal radii are rand 2r respectively. IfB is B
tmes longer than A and the pressure differ-
cnce between the ends of the composite pipe 15
G000 N m ¢, whart is the pressure difference
across A

(a) Define coefficient of wviscosity, ¢, and
show that its dimensions in M, L and T
are ML ' T ', What is meant by laminar
Mow?

Foisewille's formula for the wvolume of
hquid ¥ flowing im time ¢ through a
uniform capillary of radius r under
laminar conditions 15

(b}

o ar'tp

£ Bl
where p/l is the pressure gradient along
the tube,

(i} Show that this equation 15 dimen-
sionally consistent.

(ii} Lrescnbe how you would apply the
cquation to measure  for water ar
rOOMm temperature,

(ili} Laminar conditions should obrain
provided that the value of

1
U
L = 1150,
i A
where p is the density of the liguid.
Taking # w be 1.2x 10 'Pas

(Nsm *) and p to be 100 kgm

for warer, estimate the grearest head

of water under which laminar flow

should hold for a capillary of length

0.2 m and radius 0.7 mm, (O]
(a) When a sphere of radius a moves slowly
with a speed o through a Duid of viscosity
i, Stokes’ law tells us that the force F on
the sphere due w viscous drag is given by
the expression F = Gmane. Show that
this expression is dimensionally correct.
In an experiment o compare the
viscosities of two oils, small spheres are
allowed to fall through long columns
of the liguids. What conditions are
necessary in order that Stokes' law may
be applied?

(b}

B7B

B79

State what measurements are necessary to
find the rermeinal speed of the spheres.

[L*]

Frctional forces and viscous drag both oppose
relative motion, Suggest some similarities and
differences between them.

Explain why a small sphere, falling through
higuid in a deep tank, eventually moves with a
constant speed (the terminal velocity). Sketch
a graph showing how the acceleration of the
sphere vares with tme after its release at the
surface of the liquid.

Lescribe how you would measure such a
terminal velocity, explaining how vou would
use your measurements to énsure that your
result was the true rerminal velociny, [C*]

The viscous force on a sphere, of radius r,
moving through a fluid with velocity ¢ can be
expressed as 6ayry, where 5 15 the coeficient
of viscosity of the fluid. Whart s the limitaton
on the use of this expression? [L]

(a) Stokes’ law mav be represented by the
equation shown below.
F = émpov

(i) State the phyzical quantitics repre-
sented by the symbols F, g, r and ¢
and the conditions under which the
relationship is valid,

(i1} Tiny spherical particles of alumina,
having o wide range of radi, are
stirred wp in a beaker of water
8.0cm deep. Draw a diagram show-
ing the forces acting on ore such
particle, including the force of up-
thrust (equal 1o the weight of water
displaced by the partcle), shortly
after stirring has ceased and the
warter has achieved a still conditon.
Hence determine the radius of the
largest particle to remain 0 suspen-
sion after 24 hours, You may assume
that the particles fall through the
water with rerminal velocity,

(Density  of  warer = 1.0 = 10°
kg m |, density of alumina 2.7 =
10" kgm °, {coefficient of viscosity of
water 1O« 10 *Nsm .}

State Bernowlli’s equation for an
incompressible fluid.

(b} (i)
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(ii) Sketch a secton through an aircraft
wing and explain how the move-
ment of such a wing through the air
results in an upward force (lift) on
the wing,

(iii) A particular sircraft design calls fora
lift of about 1.2 = 10'N on each
square metre of the wing when the
speed of the aircraft through the air
is 100ms ', Assuming that the air
flows past the wing with streamline
flow and the flow past the lower
surface 15 equal to the speed of the
mircraft, whar is the required speed
of the air over the upper surface of
the wing? (Density of air =
1.3kgm ) [T, "20]

BB1 The siress o berween two planes of molecules

in a moving liguid 1s given by
i
x
where v 15 the difference in the velocities of the
planes, x their distance apart and n a constant
for the liquid.
() Show that the dimensions of n are
ML 'T1.
(b} The force F acting on a sphere moving
through a liquid is known to depend upon
(i} the radius r of the sphere,
(ii) the speed u of the sphere,
(iii) the constant § for the liquid.
Find how F depends on r, & and 5.
W, "o1]

T =

A body moving through air at a high speed o
experiences a retarding force F given by

F = kApv*
where A 15 the surface area of the body, pis the

density of the air and k15 a numencal constant.
Deduce the value of =

A sphere of radius 30mm and mass 1.0kg
falling wvertically through air of density
1.2kgm™" amains a steady velocity of
11.0ms~', If the above equation then applies
to its fall what is the value of k in this instance?

[L]

The drag force Fexerted on a vehicle due to s
motion through still air is given by
pDv*

2

F =

SECTION 8; STRUCTLIRAL PROPERTIES OF MATTER

where pis the density of air, vis the speed of the

car and I is the drag factor.

(a) Wnte down the units of F, g and v and
hence derermine the wnit of .

(b} The magnitude of the drag factor of a
particular car is (.33, Calculate the speed
when the rate at which energy is dissipated
in overcoming air resistance 1s 3.0 kKW,
{The density of air = 1.3kgm™.)

(c) Stare what happens to the cnergy
dissipated in overcoming air resistance.

(d) Some cars are streamlined like the one in
the diagram.

Srare and explain the effect of the shape of
the car on the vertical forces acting on the
vehicle when it starts from rest and

accelerates, [AEB, "91]

B84 When a sphere of radius a and density d, falls

through oil contained in a tank, it descends
with uniform velocity . The relation berween
oy ay and d1s

v/a® = Ad~B
where 4 and B are constants.

Iwia’wom "s?
1: L..-""r
&0
T
il
0

v 3 4 5 B 7V B
digem 1

The above graph shows the resulis of some
experiments. Determine from the graph the
numerical values of A4 and B. What is the
radius of a steel sphere of density 7.5gem*
which falls through the ol with wvelocity
3.9cms 7 5]

B85 (a) Draw diagrams o show the forces actung

on an object falling through a viscous
liquid




QUESTICNS ON SECTION 5

(i)

at the instant of release,

{ii}) when it has reached its terminal

velocity.

Write down an eguation for the forces
acting on the object in (i1). Describe and
explain the motion of an object projecied
downwards through a viscous medium,
assuming that the projection velocity of

the

object is greater than s terminal

velocity.

(b} (i)

(ii)

BBE (a) (i)

(i)

Diescribe how the terminal velocioy of
a small sphere falling through motor
oil could be measured.

In an experiment to determine the
coefficient of viscosity of motor oil
the following measurements were
made.

Mass of glass

sphiere 1.2 = 10 kg

Diameter of

sphere 4.0 = 1077 m

Terminal

velocity of

sphere 54 % 10 °ms"!

Density of oil 860 kg m—*
Calculate the coefficient of viscosity
of the oil. n

State Newton's law of viscosity and
hence deduce the dimensions of the
coefficient of viscosity. 41

The rate of volume fow, rre of

liquid of viscosity i, through a pipe of
internal radius rand length /, is given
by the equation

dlf ] :"'.'p!""

dr Bl
where p is the pressure difference
berween the ends of the pipe. Show
that this equation 15 dimensionally
COITECE,

(b)Y The figure shows a tank containing a light
lubricating oil. The oil flows out of the
tank through a horzontal pipe of length
0. 10m and internal diamerter 4.0 mm,

| & D cnenrminl

| A diprmetar

(i)

(i)

I,‘.I1I:Im|

Calculare the volume of oil which
flows through the pipe in one minute
when the level of oil in the tank is
1.2m above the pipe and does not
significantly alter during this time.

Density of oil = 9.2 = 10°kgm ™’
Coefficient of viscosity of oil
84 10°*Nsm™?

It is found thar the volume flow
15 greater at higher temperatures.
Assuming that density changes can
be ignored, suggest an explanation
for this effect in terms of the nature of
the viscous force.

() Discuss how the lubricating propermies of
an oil are affecred by:

(i)
(i)

the coefficient of viscosity of the oil,
its variaton with emperature.  []]
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THERMOMETRY AND
CALORIMETRY

13.1 TEMPERATURE

The remperature of a body is it degree of homess (or coldness). Thus,
temperature 15 8 measure of how hot {or cold) a body is, and should not be
confused with the amount of heat it contams.

13.2 TEMPERATURE SCALES

There are many types of thermometer, but each makes use of a particular
thermometric property (i.e. a property whose value changes with temperature) of a
particular thermometric substance. For example: a mercury-in-glass thermo-
meter makes use of the change in length of a column of mercury confined in a
capillary tube of uniform bore; a platinum resistance thermometer makes use of
the increase in the electrical resistance of platinum with increasing temperature.

In order o establish a temperature scale itis necessary to make use of fixed points:
A fixed point is the single temperatare at which it can confidently be expected that
a particular physical event (e.g. the melting of ice under specific conditions) always
takes place. Three such points are defined below.,

The ice point is the remperature at which pure ice can exist in equiliboum
with water at standard atmospheric pressure (j.¢, at a
pressure of 760 mm of mercury).

The steam point is the temperature at which pure water can exist in
equilibrium with its wvapour at standard atmospheric
pressure,

The triple point  of water is that unigue temperature at which pure ice, pure
water and pure water vapour can exist together in equilibium.

The miple point is particulary useful, since there 15 only one pressure at which all
three phases (solid, liquid and gas) can be in equilibrium with each other.

The 51 unit of remperatare is the kelvin (K). An interval of one kelvin is
defined as being 1,/273.16 of the temperature of the triple point of water as
measured on the thermodynamic scale of temperature (see later in this

225
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section and in section 16.6). The tnple point of water 15 the fixed point of the scale
and is assigned the value of 273, 16 K. On this basiz absolute zero is 0 K, the ice
point is 273.15 K, and the steam point is 373.15 K.

Another unit, the degree Celsius ("C), 15 often used and 15 defined by
()

T <273.15 [13.1]

where
fi = wemperature in 'C, and
T = wemperature in K.

The Celsius scale was originally defined by using the ice and steam points as fixed
points of the scale, and designating them as 0 °C and 100 C respectively. Bearing
in mind that these temperatures are respectively 27315 K and 373,15 K, we can
casily see that the more recent definition {equation [13.1]) is consistent with thas. [t
algo follows from equaton [13, 1] that a temperature change of 1 K is exactly
equal to a temperature change of 1 "C.

A mercury-in-glass thermometer could be calibrated by marking the positions of
the mercury when the thermometer is at the ice point and the steam point, and then
dividing the interval between these two marks (designated 0 C and 100 C
respectively) into a hundred equal divisions, If this procedure were to be adopred,
the Celsius temperature ! corresponding to a length  of the mercury column

would be given by
tg — da
R L SR [13.2]
fio0 — {o

where [, and [y are the lengths of the mercury column at 0 C and [00 O
respectively. Such a calibration regards equal increases in the length of the
mercury column as being due to equal increases in temperature. There 15 of course
no valid reason for making this assumprion, and soif such a thermometer is used, it
is important to stress that the measured temperatures are according o the
mercury-in-glass scale of temperature. Ifa platinum resistance thermometer were
to be calibrated by making an equivalent assumprion, i.e. that equal increnses in
temperature produce equal increases n the resistance of plabnum, then
temperatures measured by this thermometer would be according to the platinum
resistance scale. These two scales coincide only at the fixed points (0 C and
1007 C), because, as might be expected, the volume of mercury and the resistance
of platinum do not vary in the same way.

The thermodynamic scale of temperature 15 totally independent of the
properties of any particular substance and is therefore an absolute scale of
temperature, Although this scale is theoretical, it can be shown [(see section 16.6)
that it is identical with the scale based on the pressure variation of an ideal gas (see
Chapter 14) at constant volume. The fixed point of both scales is the triple point of
water (273.16 K) and the kelvin temperature T on both the ideal gas scale
and the thermodynamic scale can be found from

Prvi 213116 [13.3]

B

v

where p; 15 the pressure of an ideal gas at temperature T, and p, is the pressure of
the same volume of the gas at the triple point of water. Ideal gases do not exist, but
real gases at low pressures are a good approximation to them. This means that



230

SECTILN L THERMAL FROFERTIES OF MATIERA

results obtained using copstant-volume gas thermometers incorporating real
gases can be adjusted to coincide exactly with the theoretically correct
temperatures of the thermodynamic scale. (The unknown temperature is
estimated on the basis of equation [13.3] at a number of different (low)
pressures, | he results are then extrapolated to what would be obtained at zero
pressure if such a measurement were possible, because at zero pressure a real gas
would behave like an ideal gas.) In pracnce, therefore, the various tvpes of
thermometer are calibrated in terms of the constant-volume gas thermometer, As
a result, the measured value of any particular temperature is the same (within the
limits of accuracy of the instrument being used) no matter what tvpe of
thermometer 15 used (o measure it,

13.3 LIQUID-IN-GLASS THERMOMETERS

These are simple 1o use and cheap 1o buy, but cannot be wsed for accurare work
because:

(1) parallax errors prevent the scale being read to better than about 0.1 " C;
(i) non-uniform bore limits the accuracy to about 0.1 "C;

(iii) the glass expands and contracts and can take many hours to reach its correct
size, and therefore spoils the calibration;

(i)  the accuracy of the calibration depends on whether or not the thermometer
15 upright, and on how much of the stem 15 exposed.

This type of thermometer 15 ecasily adjusted to the constant-volume gas
thermometer scale by suitably spacing the degree markings on the glass, Liguid-
in-glass thermometers have relatively large heat (thermal) capacities, and this
limits their use in bwo distinet ways:

(i)  they cannot be used to follow rapidly changing temperatures; and

(1) they can considerably affect the temperature of the body whose temperature
they are being used 1o measure.

The majority of hquid-in-glass thermometers use mercury as the thermometer
higquid. This is because:

(1)  mercury 15 opaque and therefore easily seen;

(i) mercury is a good conductor of hear and therefore can rapidly take up the
remperature of its surroundings;

(1)  mercury does not wet {1.e. stick to) the glass,

The range of such a thermomerer is from =39 °C (the freesing point of mercury) o
something below its normal boiling point of 357 "C. This upper limit can,
however, be extended by filling the thermometerwith an inert gas such as nitrogen;
this increases the pressure on the mercury o that its boiling point can be increased
to about B00 'C. Ordinary soda-lime glass or Pyrex would sofien at such a
temperature, and therefore the thermometer would probably be made from fused
quartz. If the mercury is replaced by ethyl alcohol, remperatures as low as

114.9 °C {the freeming point of alcohol) can be measured. Alcohol 15 also more
gensitive o remperature change than mercury but its expansion is very non-linear.
The use of liquid pentane can reduce the lower limit even more, to about — 200 °C.
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EXAMPLE 13.1

A particular resistance thermometer has a resistance of 30,0082 at the ice point,
41,5841 at the speam point and 34,590 when immersed in a boiling ]i:l'uld-
A constant-volume gas thermometer gives readings of 1333 = 107 Pa,
1.821 = 10°Pa and 1.528 = 10" Pa at the same three temperatures. Calculate
the temperamure at which the liquid is boiling: (a) on the scale of the gas
thermometer, (B) on the scale of the resistance thermometer.

Solution
The Celsius temperature i, according to the gas thermometer scale, is given by
Po— Pa w 100
Froa — Po
where py 15 the gas pressure at the temperature of the boilhing hquid and py and p s
are the gas pressures at 0 O and 100 O respectively. Thus

1.528 = 107 — 1.333 » 10
il = —_— i]
T TRl <1 — 13 1w W
0195
kA
0 488

3996 C

(NI

The Celsius temperature 0, according to the resistance scale 15 given by
- _R':_— Ko
’ Ripo — Ry
where R, is the resistance at the remperature of the boiling liquid and R, and K| .,
are the resistance values at 0 'C and 100 C respectively. Thus
5 _ 34593000
T 41.58 - 30.00
450
1158
1064 °C

= 100

= 1)

= L0

EXAMPLE 13.2

The resistance By of a particular resistance thermometer at a Celsius temperature
il as measured by a constant-volume gas thermometer 15 given by
Ry = 50,00+ 017008 + 3.00 « 10 *#*

Calculate the temperature as measured on the scale of the resistance thermometer
which corresponds to a temperature of 60 C on the gas thermometer.

Solution
A resistance Ry corresponds to a temperature i, on the scale of the resismance
thermometer which is given by

Rl. - R|I

w LM
Koo — Ha

i
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where B; and Byg0 are the resistances at 0°C and 100 °C respectively. It follows
that the resistance temperature which corresponds 1o a temperature of 60 °C on
the gas thermometer scale is given by

Rw—-R
B, = ﬁ % 100
where Mg, is the resistance at 60 "C on the gas thermometer scale,
Rg = 50,00+ 0.17000 + 3.00 = 1070*
Ry = 50,000

and Re = 500041020+ 1.08 = 61.2802

and Rioo = 50,00+ 17.00 + 3.00 = 70.0002
I'herefore
61.28 — 50.00
U = 7500 —5000 * '
11.28
= 20.00 w 1OM
= 56.40°C

EXAMPLE 13.3

Derive equation [13.2].

Solution

]fmqual increases in the length of 2 mercury column are regarded as being due to
equal increases in temperature, then a graph of length of column against
temperature 15 a straight line (Fig. 13.1).

Fig. 13.1
Length of mercury

column against
temparature measured
on the mencury-in-glass
scale

i 1
# Tarngedaiure "G
i [ 100

Since AABC and AADE are similar,

AB _ BC
AD  DE
=10 _ fog =l

100=0  lgo—1o
I —Ip

= 100
oo = lo

1.e. 0=
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QUESTIONS 13A

1.

A resistance thermometer has a resistance of
21.420 at the ice point, 29,108} at the steam
point and 25,11 £3 at some unknown emperature
i, Calculate (' on the scale of this thermometer.

A particular constant-volume gas thermomener
registers a pressure of 1.937 = 10%Pa at the
triple point of water and 2.618 = 10" Pa at the
boiling point of a liquid, What is the boiling
point of the liquid according to this thermo-

3.

A

The emperature measurement described in
question 2 was repeated using the same
thermometer but with a different quantity of
{the same) gas. The readings on this occasion
were 4.068 » 10" Pa at the triple point of water
and 5.503% = 10" Pa at the boiling point of the
liquid. {a) What is the boiling point of the hquid
according vo this measurement? (b) Which of
the pwo values is the betier approximation 1o the
ideal gas emperature, and why? (¢} Estimate

meter?

the ideal gas remperarure.

12.4 THERMOCOUFPLES

Fig. 13.2
Simple thermocouple

Whenever two dissimilar metals are in contact an EMF is ser up at the point of
contact, The magnitude of this EMF depends on the temperature at the junction
of the two metals, and therefore the effect (known as the thermoelectric or
Seebeck effect) can be used in thermometry. The devices which are used in this
way are called thermocouples, and at thetr simplest consist of two wires of different
merals joined to each other and o a high-resistance millivelumerer as shown in
Fig. 13.2. The reading on the milliveltmeter increases as the temperature of the
junction increases, due w the increased EMF at the juncton.

High-resistance
O milsrealeFmarar

WWire o
mmeetal A

Wire od
rmastal B

Thiormaocoiwsple
JurtEeA

This simple arrangement has a serious disadvantage. Suppose metal A is chromel
and metal B is alumel (these two alloys are commonly used in the manufacoure of
thermocouples), and that the terminal posts of the meter are brass, At X then, there
is an EMF due to a chromel /brass thermocouple, and a1 Y there is a different EMF
due to a brass/alumel thermocouple. The meter reading will be the algebeaic sum
of the three EMFz, and not the EMF of the actual chromel /alumel thermocouple
which is required.

This difficulty can be overcome by using a second junction as shown in Fig, 13.3.
With this arrangement, the EMFs produced at the meter terminals are equal and
opposite, and thercfore cancel cach other. The extra junction that has been
intreduced, the so-called ‘cold’ junction, acts as a reference junction. The hot
jupction acts as the temperature measuring junction. The cold junction is
normally placed in crushed ice and water so that it 1s abways at 0°C. The EMF at
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Fig. 13.3
Thermocauple with
refarence junction

Fig. 13.4
Thermocouple EMF a5 &
function of tamperature
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High-regigtanss
milllvaltmeter

Chromal Chramel

‘Hat® ‘Cald’
junction junction

the cold juncticn is therefore always the same, and s0 it i5 a simple matter to adjust
the meter reading to allow for this EMF. (Note. The use of the terms "hot junction”
and ‘cold junction’ anses because thermocouples are normally vsed to measure
temperatures above 0 °C, in which case the reference junction is the colder of the
Wi, )

Thermocouples have very small heat capacities, and 50 have very little effect on the
temperature of the body whose temperature they are measuring, and can measure
rapidly fluctuating temperarures, In both these respects thermocouples are
superior to other types of thermometer. In addition, they are cheap and easy to
use, and are ideal for use with a pen-recorder.

The thermoelectric EMF: of many pairs of metals have been measured as a
function of the hot junction temperarure  as measured by a constant-volume gas
thermometer and expressed in degrees Celsius, In every case if the cold junction 15

maintained at 0 “C, i is found that to a good approximation the EMF Eis given by
E = aft 4 i@ 113.4]

where the values of x and f depend on the particular pair of metals concerned. This
relationship is, of course, parabolic and therefore there exists a value of , known as
the neutral temperature, I, for which dE,/dif = 0 [Fig. 13.4]), Itis clearly not
desirable to use a thermocouple to measure temperatures close to its neutral
remperature, because the variaton of EMF with temperature 15 small and the
thermomerer is therefore insensitive in this region.

The particular pair of metals used depends on the temperature range for which the
thermocouple 13 mtended. Chromel falumel thermocouples are normally used up
o abour 1100 °C, and produce a thermoelectric EMFE of aboutr 4 mV for every
100 °C difference in temperature between the hot and cold unctions. Above
1100 °C and up to abowut 1700 "C platinum / platinum-rhodium is used on account
of the high melting points of platinum and platinum-rhodium. All these metals,
particularly platinum and platinum-rhodium alloy, are readily available in states

of high purity and %0 can be used o make thermocouples which give highly

E:.lul (s niint

(dEx o) Q

I
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reproducible results, The disadvantage of platnum/ platinum-rhodium is s
relatively low thermoelectrie EME, abowt | mV per 100

For the most accurate work the millivolumeter is replaced by a potentiometer (sce
Chapter 38). The use of a potentiometer, however, prevents the thermocouple
being used to measure rapidly changing temperatures.

The values of x and f of equation [13.4] which are relevant e the commonly used
thermocouple materials can be obtained from wables, and can be used in equarion
[153.4] to determuine § once E has been measured. Alternatvely, calibration charts
(plors of E against ) are available.

13.5 RESISTANCE THERMOMETERS

Besistance thermometers rely on the fact thar the resistances of metals are
temperature-dependent, and therefore a measurement of resistance can be used as
a measurement of temperature, They are usually made of platinum because of 1ts
high temperamre coefficient of resistance and high melung point (1773 C);
fratures which make platinum resistance thermometers both sensiove and usehul
over large ranges of temperature. Also, platnum s readily available in a state of
high purity, 5o that the measurements made with one particular platnum
resistance thermometer are Iikely o match those made with another. The
platinum is in the form of wire coiled on a suitable insulator such as mica or
alumina. In use, the thermometer forms one arm of 3 Wheatstone bndge (see
Chapter 37), This arrangement allows very shight changes in resistance, and
therefore in temperature, to be measured. Platinum resistance thermometers are
extremely accurate from —200 C up to 1200 °C, The main disadvantage of
thermometers of this type is that they have relatively large hear capacities, This
means that they take a considerable time o come into thermal cqguilibrium with
their surroundings, and therefore prevents them following rapidly changing
temperarures, This is precluded anyway because a Wheatstone bridge has 1o be
used,

When calibrated agamst constant-volume gas thermometers the resistance B of
platinum is found o vary with Celsius temperature I according 1o

B = Ryl + =i+ fiF) [13.5]
where K is the resistance of the plannum at 0 O and 2 and [§ are constans. The
values of Bg, 2 and [ pertaining to any particular thermometer are found by
micasurng its resistance at the ice point, the steam point and at the melting pointof
sulphur (444.6 "C), and inserting the three pairs of values of K and (1 in cguation
[13.5]). Once Ry, x and § have been found equaton [13.5] can be used o
derermine ¢ for any measured value of B,

13.6 THERMISTORS

These devices, like resistance thermometers, rely on their change of electrical
resistance with temperature as a means of measuring wmperature, Unlike
resistance thermometers, however, they have negative temperature coefficients
of resistance; their resistance decreasing approximately exponentally  with
increasing temperature, Thermistors are semiconducting devices cheaply
manufactured out of several different mixtures of semiconducting oxide powders
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(Fei0y+ MgCr; 0y 15 a common mixture)., They are very robust. When a
Wheatstone bridge circuit is used to measure their resistance they are about twenty
lmes as sensitve as resistance thermometers. The resistance of the connectung
wires is of no significance, since the devices themselves tvpically have a resistance
of 1 kY. Thermistors have very small thermal capacities, and therefore respond
quickly and have little effect on the temperature they are measuring. The range is
rypically =707 C o 300 "C, They are less stable than resistance thermomerers, and
therefore less accurate.

13.7 THE CONSTANT-VOLUME GAS THERMOMETER

A simple constant-volume gas thermometer is shown in Fig, 13.5. When the
thermometer is in use the bulb is placed inside the enclosure whose temperature is
required. The gas in the bulb (air in the simplest versions) expands and forces
mercury up the movable tube, The height of this tube is then adjusted w bring the
mercury in the left-hand tube back to its onginal position at a fixed mark A. The gas
now has its original volume. At this stage the head of mercury i is measured and the
pressure py of the gas is calculaved from po = ps + b where p, is the prevailing
atmospheric pressure expressed in mm of mercury.

If py and p o are the pressures at 0 °C and 100 °C respectively, the temperature of

the enclosure can be found from
R
= Po=Pa . 100
Puoo — Po
where 1 is the desired temperature in “C according to the constant-volume gas
scale.
Fig. 13.5 Capillary tubsing
Constant-volume gas RN e the
thermometer 9 Quismtity of & not
at the temperature
baing mapsuned Movatle tube
= 10
Atmosphzne

171

]

R I S

p——— Mlarcury

Maciic
Tubnng

There are a number of sources of error:

{i)  the bulb expands;

(i) air is not an ideal gas;

{(iii) the air in the capillary tube is not at the temperature being measured.
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13.8 HEAT CAPACITY

MNotes

The temperature rise produced by the addition of any given amount of heat o a
body is determined by the mass of the body and the substance(s) of which it is
composed.

The heat capacity™ (C7) of a body is defined as being the heat required to
produce unit tEmperature rise.

It follows that if the temperature of a body whose heat capacity 15 C nises by Al
when an amount of heat AQ is added vo i1, then

AQ = CA#
Unit of heat capacity = JK™' = J"'C! (see note {ii)).

[13.6]

The term specific heat capacity refers to the heat capacity of unit mass of a
substance,

The specific heat capacity (¢} of a.substance is the heat required to
produce unit temperature rise in unit mass of the substance.,

It follows thart if the temperature of a body of mass m and specific heat capacity ¢
riscs by Al when an amount of heat AQ 15 added to it, then

A0 = mcdd

Unit of specific heat capacity =

[13.7]
Thg "K' = Tkg ' C! (see noe (ii)).

(1)  Thewvalue of c depends on the temperature at which it 1s measured. However,
over moderate changes in temperature, the variation is slight {excepr at low
temperatures) and is normally ignored at this level.

(ii} Equations [13.6] and [13.7] involve only changes in temperature and so the
numerical values of C and ¢ when expressed mI C~'and Jkg™' “C~ ! are the
same as those expressed in JE ! and Jkg ' K respectively.

QUESTIONS 13B

1. Calculare the quantty of heat required to raise

4. A metal block of heat capacity 36.0]°C™! at

the temperature of a metal block with a heat
capacity of 23.1J°C ! by 30.0°C.

An elecrrical heater supplies 500 | of heat energy
e a copper cylinder of mass 32.4g. Find the
increase in temperature of the cylinder.
(Specific heat capacity of copper =

385 kg " °CL)

. How much heat must be removed from an

ohject with a heat capacity of 150] “C " in order
to reduce its temperature from B0.0°C 1o
20.0°C?

*Sometmes called thermal capacity.

70°C iz plunged into an insulated beaker
containing 200 g of water at 18 “C. The block
and the water evenmually reach a common
temperature of #°C. (a) Write down expres-
sions in terms of 0 for (i) the decrease in
temperature of the block, (if) the increase in
temperature of the water. (b} Find in terms of 1,
(i) the hear lost by the block, (if) the heat
gained by the water. () Assuming that no heat
is used 1o heat the beaker and that no hear is lost
to the surroundings, find the value of 7,
{Specific heat capacity of water =
42x=10°Tkg ' C ')
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139 THE COOLING CORRECTION

Fig. 13.6

Temperature against
tirme with and without
coaling

Experimental determinations of specific heat capacities usually involve some loss
of heat to the surroundings. Losses due to conduction and convection can be
reduced by lagging, or by surrounding the apparatus with a laver of stll air, or by
evacuating the region around the substance under test, Losses due to radiation are
significant at high temperatures and can be reduced by using polished surfaces.
One way of reducing the effect of the heat losses which remain 15 to apply a cooling
COTTECTion.

Suppose that in some expeniment the temperature 15 recorded both duning heating
and after heating has been discontinued, and that the temperarure is found o vary
with time as shown by the solid curve in Fig. 13.6. If there had been no heat loss,
the maximum temperature would have been I, + Al It can be shown that

A
All = = Al [13.8]
Measunng A0 and the areas A and A" enables the correction (A0) to be found.

Fiaam
ERITHHETATLI Fl |y

Theory of the Cooling Correction

The cooling correction is based on Newton’s law of cooling (section 13.15). The
reader should be familiar with this before proceseding,

If Mewton's law of cooling applies, the rate of loss of heat to the surroundings,
dQ/ds, both during heating and during cooling is given by

d—? = k(i) — 0y) 13.9]

where k is a constant of proportionality. The toral loss of hear, {0, in the interval
between ¢ = 0 and r = 1, is given by

_ ['d¢
{'._II_J:Edr

Therefore by equation [13.9]

]
0 = k] (= 05 )de
a
ie. 2 = k= Aread
Similarly, the loss of heat, Q', betweens = 1, andr = 1, is given by
Q' = kx Area A
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Therefore
Q@ Aread
Q" - .ﬁ..l‘l:ﬂ.."l"
But @ = CAlMand Q' = CAV where £ is the heat capacity of the body, and
therefore
a4
A A
A
1.e. All = — Al
i€ 7

Calorimetry experiments are usually carried out in still air and it may seem
surprising therefore that Newton’s law of cooling (which applies 1o condirions of
forced convection) is the basis of the cooling correction. It 15 used because it
simplifies the theory, and is justified because the error it introduces is an error only
in a correction term and i3 therefore of linde significance overall,

13.10 ELECTRICAL METHODS OF MEASURING
SPECIFIC HEAT CAPACITIES

Fig. 13.7

Apparatus for
determining the specific
haat capacity of a liguid

Specific Heat Capacity of a Liquid

The apparatus 15 shown in Fig. 13.7. The rheostat should be adjusted to give a
suitable current through the heatng coil. The inner calorimeter contains a known
mass of the liquid under test. The temperature ) of the liquid is recorded. The
switch is closed and the heater current and PD are recorded. The liquid is strred
continuowsly and its temperature is measued at one-minute intervals. Heating 15
continued until the temperature has risen by about 50 C. The current and PD
change slightly due vo the increased resistance of the heating coil ar higher
temperatures, and their values should be recorded immediately before switching
off the heater. The heater is switched off and the temperature is recorded until it
has fallen to about 10 °C below its masximuam value d,,.

o~

o

.
- Rhensoat

Thermomaeter

—_———— amai

Inner calorimetes
locked an to lid

Slill air reduces
—p——————— haal losdes by
conduction and
cOrvRCEiomn

Liggusd
under
st

L o

If the specific heat capacity of the liguid and the heat capacity of the inner
calofimeter are ¢ and O respectively, and Af is the cooling correction found from
equation [13.8], then

Fit = [(me+ Ol < A0 = 0,)

where Fand [ are the average heater PD and current and r is the time for which
heating 15 carried out; hence ¢.
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Fig. 13.8
Apparatus for

determining the specific
heat capacity of a solid

Fig. 13.9
Mernst's apparatus

SECTION C: THERMAL FROFERTIES OF MATTER

Specific Heat Capacity of a Solid

The apparatus 15 shown in Fig. 13.8. The material under test ts in the form of a
sohd cylinder of mass m, into which two holes have been drlled o accommodate a

heater and a thermometer. The procedure is basically the same as that for a liquid.
The specific heat capacity ¢ 15 caloulated from

Vit = melfy + Al — fly)

Haater
Lagging B Giyoaring b
miprowe thesrmal
—l COTaCE
Salid
unglior
Lasgl
e r

MNernst’s Method for a Solid

The apparatus is shown in Fig. 13.9. A platinum heating codl is wound on paraffin-
waxed paper around a cylindrical plug X of the metal under west. The paper
insulates the coil from X so that its turns are not shorted out. The plug and coil are
inserted into a cylindrical block Y of the same metal as X. A laver of paraffin wax
around the coil insulates it from Y. The leads to the heating coil are used to

Leads to
| A cul
Glass |
vissal
e Heating

=
Constant
AT EE TALLTE —— x
anclpaure

WaCLLm

b

—

&T{r pump
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suspend the metal inside a glass vessel which can be evacuated. The apparatus is
surrounded by a constant-temperature enclosure, the temperature of which is the
temperature at which the specific heat measurement is required. ( The specific heat
capacity of a substance depends on the temperature at which it is measured.) The
apparatus is left until the meral acgquires this temperamure and then the glass vessel
i5 evacuated. Since the metal 15 in a vacuum and 15 at the temperature of its
surroundings, heat losses are almost entirely eliminated.

The electrical energy used in a measured time ¢ to rase the temperature of the
specimen by a small amount A is determined by measuring the current [ through
the coil and the PD Iacross it. The temperature nse is found by using the coil as a
platinum resistance thermometer. In order to do this the resistance of the coil 1s
measured immediarely before the heater current is switched on, and immediately
after it has been switched off. Temperature rises of as little as 107 % K can be used.

13.11 THE CONTINUOUS FLOW METHOD FOR THE
SPECIFIC HEAT CAPACITY OF A LIQUID

Fig. 13.10

Callander and Barnes’
continuous flow
calorimeter

The method is due to Callendar and Barnes (1899),

Liquid is passed through the continuous flow calorimeter (Fig. 13.10) at a
constant rate until all conditions are steady. At this stage the temperatures (b and
iy at X and Y, and the mass m; of liquid flowing through the calorimeter in time ¢
are measured, together with the current [, through the heating coil and the PD 1
across it. Under steady conditions none of the electnical energy which is being
supplied is being used to heat the calorimeter, and therefore

Filit = myeithy —tx) + Q) [13.10)
where {J is the heat lost 1o the surroundings in time 7,

Heais
Aesistance ﬂ: e

Eharmometer Vacuum

=

Liquid flawing S

‘::' constant II-I.;:M out

A to measuring
cylingar

The rate of flow is altered so that the mass of liquid flowing in tme fis my. The
current and PD are adjusted (to [; and V) to bring the temperamure at Y back o its
original value fy. The temperature at X is that of the tank supplying the liquid and
15 constant at (. Since all temperatures are the same as they were with the inital
flow rate, the heat lost in time ris again Q. Therefore

alap = mz#[{’f—ﬂx:l-l‘ﬂ [13.11]
Subtracting equation [13.10] from equation [13.11] gives
(Vals = Vi)t = (my = my ey = Oy

Hence c.
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Advantages

(1)  The presence of the vacuum prevents heat losses by convection, and the
effect of losses due to conduction and radiation is eliminated.

(ii) The remperatures which are measured are steady and therefore can be
determined accurately by using platinum resistance thermometers. This
allows small temperature rises o be used (oypically 2 °C) and the method is
therefore suitable for derermining the manner in which the specific heat
capacity changes with temperature.

(iii) The calculation does not involve the heat capacities of the various parts of
the apparatus and so there 15 no need to know their values,

Disadvantage
A large quantity of hquid s required.

Further Points

(17 The percentage error is least when the difference between the two Bow-rates
is large.

1) Contnuous Jow methods can also be used for gases.

13.12 LATENT HEAT

It is necessary to supply energy Theat) 1o a solid in order 1o meltit, even ifthe solid is
already at its melting point. This energy is called latent heat. Itis distinet from any
hear that might have been used to bring the solid up to its melting point in the first
place, and from that which might be used to raise the temperature of the liquid
once the sobd has meled.

The energy is used o provide the increased molecular potential energy of the
liguid phase and, when the phase change results in expansion, to do external work
int pushing back the atmosphere. The energy used to do external work is wsually
much less than that used to increase the potential energy of the molecules, and in
the case of ice, which contracts on melting, 1s negative.

The conversion of a liquid to a vapour (vaporization) and the direct conversion of a
salid wo a vapour (sublimation) also require latent heat to be supplied. These two
processes usually involve large changes in volume, and the proportion of the latent
heat which 15 used to do external work is greater than in melting.

In terms of the first law of thermodynamics (section 14.15) melung (i.e. fusion),
vaporization and sublimation are represented by

where
L = the latent hear supplied in order vo cause the phase change

ALl = the increase in internal potential energy which accompanies the
phase change. ( There is no change in temperature and therefore
no change in kinetic energy.)

L = C CEICImal wWor OC a5 3 eI O TN pnasc Changc, 15 [CTIm
AW = theest I kd It of the ph h Th
is positive for expansion and negative for contraction.
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The specific latent heat () of fusion (or vaporization or sublimation) of a
substance is defined as the energy required o cause unit mass of the
substance to change from solid to hiquid (or liquid to vapour, or solid to
vapour) without temperature change. (Unit = Jkg ')

MNote The value of ldepends on the temperature (and therefore the pressure) ar which i
is measured.

It follows thar the hear, A0, which must be added o change the phase of a mass, s,
of substance is given by

AQ = mi

where [is the specific latent hear of fusion, vaporization or sublimation according
to the particular phase change which 1s taking place. For the reverse processes
{liguid to solid, vapour to liquid, and vapour to solid) AQ represents the amount
of heat that must be removed from the substance.

EXAMPLE 13.4

A calorimeter with a heat capacity of 80] 'C ! contains 50 g of water at 40 (.,
What mass of ice at 0 'C needs to be added in order to reduce the temperature to
10°C? Assume no heat is lost 1o the surroundings. (Specific heat capacity of
water = 4.2 = 10" Jkg ' "C ', specific latent heat of ice = 3.4 % 107 Jkg ')

Solution
Hear lost by calorimeter cooling o 10 C
= BO(40 - 10) = 2400]
Hear lost by water cooling to 10 C
= S0 = 107" x 4.2 x 10°(40 — 10} = 6300]
Total heat lost 2400 + 6300 = BT0O]
Letmass ofice = m
Hear used 1o melticeat 0 C
= mx34x10° = 34x10"m
Hear used o increase temperature of melted 1ce to 10 O
= mx42x 1010-0) = 42 10'm
Total heat used = 3.4 = 100 m + 4.2 = 10" m 182 = 10%m
Since no heat is lost to the surroundings,
382x 10°m = R700
m = 0.0228kg
1.8, Mass of ice required = 23g
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QUESTIONS 13C

1.

Calculare the heat required to melt 200 g of ice
ar 0°C,
(Specific latent heatofice = 3.4 = 10°Tkg L.

Calculare the heat required to turn 500 g of ice
at 0 °C into water at 100 °C,

(Specific latent heat of ice = 3.4 = 10° kg !,
specific  heat  capacity of warer = 4.2 x
10%]kg ' °C ')

SECTION C THERMAL PROBERTIES OF MATTER

Calculare the heat given out when 600 g of
steam at 100 "C condenses to water at 20 'C.
(Specific latent heat of steam = 2.26 x
10" kg ", specific heat capacity of water =
4.2 x 10 kg ' C )

12.13 EXPERIMENTAL DETERMINATION OF THE
SPECIFIC LATENT HEAT OF VAPORIZATION OF

A LIQUID

The method about to be described is a continuous low method and makes use of a

self-jacketing vaporizer.

The apparatus is shown in Fig. 13.11. The liguid under investigation is heated to
boiling point and the vapour which is produced passes o the condenser by way of
holes (H) in the inner wall of the vessel. Boiling is continued, and evenmially the
temperatures of all parts of the apparatus become steady. At this stage the
condensed vapour is collected, over a measured time f, and its mass wyg

Fig. 13.11

Apparatus for detarmin-
ing the specific latent
haat of vaparization of a
licuid

Vapoiur
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HBCkEt

Haating
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LCrndansar

o
L

Condarsasd
SApur




THERNMOME THY AND CALORIETHY e

Mote

determined. If I, and [, are the heater PI) and current, then the electrical energy
supplied in time ¢ 15 Vf . Since the temperatures are steady, this energy is used
only o vaporize the liquid and 1o offser heat losses, and therefore

tr"r|I|I = IﬂL.E+Q |l312

where [ is the specific latent beat of vaporization of the liguid and 0 135 the heat lost
to the surroundings in time &,

The heater PDY and current are now changed to Vs and [ and the new mass m. of
vapour which condenses in the same tme I is measured.

Each part of the apparatusis at the same temperature as it was with the imtial rate of
heating and the energy lost in time ¢ is again . Therefore.

Valat = migd + Q) 13.13
Subtracting equation [13.12] from equation [13.13] gives

(S0 = Vi e = (my =)
from which [ can be determined.

‘The liquid which is being vaporized is surrounded by its vapour (hence self-
jacketing vaporizer). Any heat lost by the vapour causes it to condense, not to cool,
and therefore the liguid is surrounded by a constant temperature enclosure which
is at its own temperature; this considerably reduces heat losses from the liguid.

13.14 EXPERIMENTAL DETERMINATION OF THE
SPECIFIC LATENT HEAT OF FUSION OF ICE BY
THE METHOD OF MIXTURES

A calonimerer of mass mi, is about two-thirds filled with warer of mass m,. which is
about 5°C above room temperature. The water and the calorimeter are left for a
shor time unl they reach the same temperature as each other. This temperature
() s measured using a sensitive ':|JT:- ) thermometer.

A lump of melting ice (ie. ice at 0'C) is then dried with blotring paper and
immediately added to the water. The mixrmare is then stirred gently until the lump
has melted. This procedure is repeated with further lumps until the temperature of
the mixture is approximately as far below room temperature as 1, was above, The
lowest temperature attained () is recorded.

The calorimeter and its contents are weighed to determine the mass (o, ) of the ice,

Heat lost b Heat u to
Heat lost by , 4 Heat used INCTEasE
. calonmeter .
water cooling | 4 cooling from | = to melt ice | + | temperature
from ) to f, 2 1o ”E at 0°C of melved ice
! : from 0°C wo i,
Therefore

Mgl g = O3] = mrc (0 = 03] = myl 4+ oo,y = 0)

from which the specific latent heart of fusion of ice () can be found, providing the
specific heat capacities, ¢, and ¢, of water and of the calorimeter material
respectively, are known.
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MNotes (1) Ivisvery important that the 1oe 15 dry whenoit s added to the warer. If it s not,

the mass of ice that is melted is less than ;e

(1) Mo coohng correction is applied because (7 is as far above room temperature
as (- is below it, and therefore, to a reasonahle approximation, the mixiure
gains as much heat from the surroundings whilst it is below room
temperature as it loses to them whilst it is above room emperature.

13.15 COOLING LAWS

MNewton's Law of Cooling

This applies when a bedy is cooling under conditions of forced convection (1.e.
when it is in a steady draught). It states thar the rare of loss of hear of a body is
proportional o the difference in temperature between the body and 5ts
surroundings, i.e.

( Fate of loss of ) : ( Excess )

heat o surroundings lempérature

0r

Flare of losd of .
7 = R{ll — Oy)
hest o surroundings
where
il

iy

remperature of body

remperature of surroundings

k& = a constant of proportionality whose value depends on both the
nature and the ares of the body’s surface.

The law can be wken o be a good approximaton for cooling under conditions of
namral convection (a body cooling in siill air for example) provided the excess
temperature 1s not greater than about 30 "C. For higher excess temperatures than
this the fve-fourths power law should be used.

The Five-Fourths Power Law

This applies when a body 15 cooling under conditions of natural corwection. It can
be stated as

( Rate of loss of = k(D — 8}

hest o sumoundings

Experimental Investigation of Newton’'s Law of
Cooling

The rate ar which a body loses heat is proportional to the rate at which its
temperature falls provided thar its heat capacity does not vary with temperamure
(since &AQ = CAM, where © heat capacity). Therefore for a body cooling
under conditions where Newton's law of cooling applies
dif
d-;: —_ —Kl:_l'? = m:-:'
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Fig. 13.12
Plot of (a] termpearature
against tme during

cooling, (b} rate of fall of

temperature against
excess temperatura

where di?/dr is (minus) the rate of fall of temperature of the body and K is a
constant of proportionality whose value depends on the nature and the area of the
body’s surface, and on the heat capacity of the body. [(Since the temperature 15
falling, the presence of the minus sign makes K a positive constant.) It follows that
Mewton's law of cooling can be verified by verifying this equation.

Method

A calorimeter containing hot water and standing on an insulating surface (e.g. a
wooden block) is placed in the stream of air from an clectric fan or an open
window, The temperature of the water 15 measured at one-minute intervals
using a fg“ﬂ thermometer, "The water should be strred gently prior 1o each
temperature measurcment. A graph of temperature (f) versus tme (1) is ploned
(Fig. 13.12(a)). The gradient of this graph at anv temperature 0 is the rate of
fall of temperamure at that value of . The gradients are measured (by constructing
tangents to the curve) at various values of ! and are then ploted against the
corresponding excess temperature {0 — ;) as in Fig. 13.12{b). If this plot 15 a
straight line through the origin, Newton's law of cooling has been verified.

Tempoeraiure [#
tal o

Gradisnt ~ {minws) rate of
fall of temparature a1 8 &
and af gxcess {Emperobuns

il — )

Q Tirms i
Aate of fall of temparagure
i= iminusl gradient of graph
in Fug. 1312181
i} 1
*
o Excras tamparature (s fyl

If Newton's law of cooling applies, the graph of temperature against time is
exponential. This is easily proved:

dit
5 = —K(0-0)

d.ﬂ i
J:. ioa) - K L"‘

where #; is the inital wemperature,
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i p
llog, (0 — o) |3 = —K[t];

i —
]u&(hl --_f_i':) — —K.I'

(0 =) = (i — Ba)e K"

o () - (e
CONSOLIDATION

The temperature of a body 15 a measure of how hot it 15, not how much heat 1t
COnNtains.

Celsius temperature, I, based on some thermometric property, X%, (e.g. the
length of a column of mercury) is given by

X — Xo
‘Thermometers calibrated on the basis of this equation necessarily agree with each
other only at the fixed points, They may agree at other temperatures too.

Kelvin temperature, T, on the thermodynamic scale and on the ideal gas scale is
given by

T = P 27318
I'e
where pp and gy, are the pressures of a fiked volume of an ideal gas at temperalure
T and the triple point of water respectively.

The thermodynamic scale and the ideal gas scale are absolute scales, 1.e. they
do not depend on the properties of any partncular substance.

An interval of one kelvin is defined as 1 /273,16 of the temperature of the triple
point of water.

Celsius temperature, 0, 1s defined by
i T =273.15
where T is the corresponding temperature in kelvins,

Heat capacity (C) is a property of a body. Itis the heat required to produce unit
temperature rise in the body. (Unit = J C lorJK 1)

Specific heat capacity (c) is a property of a substance. It is the heat required to
produce unit temperature rise in unit mass of the substance, (Unit = Jkg ' "C!
or Jkg 'K L)

For a change of temperature AQ = CAF MO = mcAl

For a change of phase AQ = ml
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GASES

14.1 THE GAS LAWS

The expenimental relationships between the pressures, volumes and temperatires
of gases were investigated by various workers in the seventeenth and eighteenth

centurics. These carly experiments resulted in three laws - the so-called gas
laws.

Boyle's Law

For a fisxed mass of gas at constant temperature, the product of pressure and
volume is consant,

On the basis of the other two laws the Kelvin scale of temperature was introduced,
and these laws are stated below in terms of that scale.

Charles” Law

For a fixed mass of gas at constant pressure, the volume is directly
proportional to the temperature measured in kelvins.

The Pressure Law

For a fixed mass of gas at constant volume, the pressure is directly
proportional to the temperature measured in kelvins,

Representing pressure, volume, and temperature in kebvins by p, Vand T
respectively, we can formulare the three laws as:

At constant T p¥ = aconstant or pxlf¥
At constant p /T = aconstant or VT
At constant ¢ p/T = aconstant or px T

It should be noted that the three laws are not independent; any one of them can be
derived from the other two, The experimental investigation of the gas laws is dealt
with in sections 14,9 to 14.11.

M5
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14.2 CONCEPT OF AN IDEAL GAS AND THE IDEAL GAS
EQUATION

Note

Mo gas obeys the gas laws exactly. Nevertheless they provide a fairly accurate
description of the way gases behave when thev are at low pressures and are at
temperatures which are well above those at which they liquefy, A uscful concept is
that of an ideal {or perfect) gas - a gas which obeys the gas laws exactly. The
behaviour of such a gas can be accounted for by

PV = nRT [14.1]

2

p = the pressure of the gas (Nm™ = pascals, Pa)
I

the volume of the gas (m”)

# = the number of moles (see section 14.3) of gas (mol)
R = the universal molar gas constant (= 8.31JK ' mol")
T = the temperature of the gas in kelvins,

Equation [14.1] is known as the equation of state of an ideal gas {or simply as the
ideal gas equation); it embodies the three gas laws and Avogadro’s law (section
I4.6). It can be shown thar a gas which obeys this equation exactly must be subject
to the assumptons inherent in the kinetic theory of gases (section 14.4). In
particular, there would be no forces berween the molecules of such a gas and
therefore the internal energy (i.e. the energy of the molecules) of such a gas
would be entirely kinetic and would depend only on its temperature.

Summary

fi) An ideal gas obeys the gas laws and pi° = nRT cxactly. Wo such gas
Exists.

(ii}y  The internal energy of an ideal gas is entirely kinetic and depends only
on itS emperature,

(1) The behaviour of real gases and unsaturated vapours (see Chapter 15)

can be described E?EI«’ = T il they are at low pressures and are at
temperatures which are well above those at which they liquefy.

For a gas at pressure py, volume V' and iemperature T equation [14.1] gives
PtI"'j = HRT| i.e, il F]J"Tl = nR

If the same sample of gas is at pressure ps, volume 5 and temperature T2
ra I:"r; = nRT; B8, P2 Fz,u"Tl = nR

{"The number of moles is the same in each case (n) because we are dealing with the
same sample of gas, 1.e. with a fixed mass of gas and therefore with a fixed number
of moles.) Combining these equations gives

p,_l'. = P:_Fz for a Axed mass of gas

T, Ty

Any unit of pressure can be wsed for py providing the same unit is used for ps.
Similarly, any unit of volume can be used for V) as long as the same unit is used for
V5, but both T, and T; must be expressed in kelvins.,
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EXAMPLE 141 i

A gas (which can be considered ideal) has a volume of 100 cm” ar 2.00 = 10" Pa
and 27 “C. What is its volume at 5.00 = 10° Pa and 60 "C?

Solution
P o= 2.00= 10°Pa pr = 5.00x 10°Pa
¥; = 100cm’ V; = W
T, = 27°C = 300K T: = 60"C = 333K
Vi _ L
T T
200 % 10° x 100 5.00 x 10° x V)
300 a 333
200 = 10° = 100 = 333
Vy = T X7 44dem?

300 = 5.00 = 10°

Mote that ¥, was expressed in cm’ and therefore Vais inem’.

EXAMPLE 14.2

Fig. 14.1
Diagram for Example
14.2

Refer to Fig 14.1. Initally A contains 3.00 m” of an ideal gas at a temperarure of
250 K and a pressure of 5.00 x 10" Pa, whilst B contains 7.20 m” of the same gas at
400K and 2.00 x 10" Pa. Find the pressure after the connecting tap has been
opened and the system has reached equilibrium, assuming that A is keprat 250 K
and B is kept at 400 K.

Connecting tap

Solution

On opening the tap some gas moves from A to B, reducing the pressure in A and
increasing itin B, This continues until, at equilibrium, the pressure in A is equal to
that in B. Let this final pressure be p. The "trick’ is to recognize that the total mass of
gas, and therefore the total number of moles, is the same after the tap 15 opened as it
was before.
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Therefore, for 1 mole of gas ar TP

(1MB.31273)

1] kY
v 1013« 107 cedx 10 m
QUESTIONS 14A
1. What is the temperature of 19.0m " of an ideal ecular mass of hydrogen 2, R
gas at a pressure of 600 mmHg if the same gas E31TK " mol ' and the Avogadro constant,
occupies 12.0m” at 760 mmHg and 27 C? Ny = 6.02 = 107 ' mol '. Calculate:
{a) the number of moles of hydrogen in the
2. A gas has a volume of 60.0¢cm” at 20 C and cylinder,
900 mmHg., What would its volume be at 5TP, (b} the number of molecules ofhydrogen in the
e at 273 K and 760 mmBHg? cylinder,
(c) the mass of the hydrogen,
3. Acylinder contains 2.40 = 10 *m’ofhvdrogen (d} the density of hydrogen under these con-
at 17 'C and 2.32 = 10° Pa. The relative mol- ditions.

14.4 THE KINETIC THEORY OF GASES (DERIVATION
OF p = Jpc?)

This is an attempt 1o cxplain the experimentally observed propertics of gases by
considerning the motion of the molecules {or atoms) of which they are composed. A
number of assumptions are made,

(i
(e

(i)

()

v
{vi}

The molecules of a particular gas are identical.

Collisions berween the molecules and with the container are (pertectly)
elasie (see sectuon 2.8

The molecules exert no forces on each other except during impacts (which
are assumed o have negligible duration anyway) and the effect of gravity is
ignored so that:

(o) berween collizions the molecules move in steaight lines ar constant
speed, and

(b} the motion s random.

There 15 a sufficiently large number of molecules for statistics to be

meaningfully applied.
The size of the molecules is negligible compared to their separation.

The laws of Mewtonian mechanics apply.

Some of these assumprions run through the entire analvsis; others are used more
specifically.

Consider a gas enclosed in a cubical container of side L (Fig. 14.2). Let each
maolecule of the gas have mass s (assumption (1)), Consider, initally, 2 single
molecule which 1s moving towards wall X, and suppose that 1ts x-component of
velocity is &y This molecule will have an x-component of momentum sy owards
the wall. The molecule will eventually reverse the direction of 1ts momentum by
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Fig. 14.2
Darivation of p = *,.:-F
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Wall Y . l. Wilall X

.-"L------

%
s J

colliding with the wall. Since the collision will be elastic (assumption (i)}, it will
rebound with the same speed so that s momentum will now be —mu . The change
in the x-component of momentum is therefore 2m;.

The molecule has to travel a distance 2L (from X to Y and back 1o X)) before it next
collides with wall X. The time forsuch a trip is 21/, and therefore this molecule’s
rate of change of momentum due to collision with X will be

2y iy

2L/ u, L
By Mewton's second law, rate of change of momentum is equal to force, and
therefore mulll.".l'. is the force exerted on the molecule by the wall. By Mewton's

third law, the molecule exerts an equal but oppositely direcred force on the wall,
and therefore

Force on X = muy /L

Therefore
/L X
Force per unit area on X = &iﬁ_"f-— (since area of X = L7)
Therefore
Hiby
Pressure on X = i

If there are & molecules im the container and their x-components of velocity are uy ,
Ry - - - 5 lpy, the total pressure, p, on wall X will be given by

nro F 3 %,
-EI — Fl_lﬂ +u3 4 v o u.... |
Therefore
i —
p = I-:Nu’ 14.2]

whers

#* is the mean square velocity in the x-direction.

Since mN is the total mass of gas in the container, s,/ L” is the densiry, p, of the
gas and therefore, by equation [14.2],

p = pd [14.3]

If
¢ = the resultant velocity of a molecule whose x-, v and z-components of
velocity are &, ¢ and w respectively, then

&=+
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Therefore

=+ +ul (14.4]
where

¢ is the mean square velocity of the molecules

o2 is the mean square velocity in the y-direction

@? is the mean square velocity in the z-direction.

Since there is a large number of molecules and they are moving randomly
(assumptions (iv) and (11)b)

F-F-w
Therefore, from equation [14.4],
@ =13

Therefore, from equation [14.3)

145 RELATIONSHIP BETWEEN MOLECULAR KINETIC

ENERGY AND TEMPERATURE

On the basis of the kinetic theory of gases,

p=1pd
Therefore, for any volume I of gas,

pV = tpvé
Therefore,

pV = 1M2 14.6]
where

M = the mass of volume V of the gas.
Equation [14.6] may be rewritten as

pV = iN(imé) 14.7]
where

N = the total number of molecules in volume V, and

m = the mass of one molecule.
The ideal gas equation for n moles of a gas of volume V and pressure p is

pV = nRT [14.8]
where

R = the universal molar gas constant, and

T = the temperature in kelvins,
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Thus the predictions of the kinetic theory of gases (represented by equation
[14.7]}) are in agreement with idealized experimental observation {represented by
equation [14.8]) if

IN(Ame) = nRT

, —~  3IaR
e, m& = 207
— 3R

ie. 1med =—T
? A

(since N/mis the number of molecules per mole, i.e. Ny, the Avogadro constant).
Both R and N, are universal constanes, and therefore so also is BN ; it 15 called
Boltzmann's constant, k& (= 1.38 = 107" JK™!) and is the gas constant per
molecule. The left-hand term is the average translational® kinetic energy of a single
molecule, and therefore

3R
Average transladonal KE of a molecule = %t]" e EE":T [14.9]

Thus, in order o make the kinetic theory consistent with the ideal gas equation we
need to accept the validity of equation [14.9], i.e. in addition to assumptions (i) to
(vi) of section 14.4, we need o make the further assumption that the average
translational kinetic energy of a molecule is equal to (3/2) &T. Such an
assumption is reasonable, since putting heat energy into a gas increases its
temperature and must also increase the kinenc energy of its molecules becuase
there is no other way that the energy can be absorbed. (An ideal gas can have no
potential energy because it has no intermolecular forces, and there is nothing other
than molecules present.)

MNote Thethreegaslaws (section 14.1) can be combined as pl o¢ T, In order to make the
kinctic theory consistent with this expression, rather than with the more
demanding pl7 = aRT, we need only make the assumption that Jz-mF 15
proportonal wo T, for it then follows from equation [14.7) that pl-oc T,

QUESTIONS 14B sl S i s Sl sl & e
1. Bywhat factor does (a) the mean square speed, 3. Find the value of the rario

{b) the root mean square speed of the maole- Root mean square speed of bydrogen molecules
cules of a gas increase when its temperarire is Root mean square speed of oxygen molecules
doubled?

(a) when the two gases are ar the same
temperature, (b} when the oxygen is at 100°C

2. The temperature of a gas 15 increased in such a and the hydrogen is at 30 °C.
way that its volume doubles and itz pressure {Relative molecular mass of hydrogen = 2,
quadruples. [f the root mean square speed of the relative molecular mass of oxygen = 32.)
molecules was orginally 250m s ', what is it at
the higher temperature?

*In section 14. 146 diatomic and polyatomic moelecules are considered. These have bath translational
and rotational kinetic energies.,
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14.6 AVOGADRO’'S LAW

Equal volumes of all gases at the same temperanire and pressure contain the
same number of molecules.

The law was announced by Avogadro in 1811 and was well-established before the
kinetic theory was developed. It is embodied in the ideal gas equation,
pV = nRT. In order to illustrate this we shall consider two gases distinguished
by the subscripts ; and 5. Applving the ideal gas equation gives

P] :"?l = H'|_RT'| EII.'I:I P;I"rz —_ i‘lzR T:
For equal volumes at the same pressure oV, = po V5, and therefore

I'TL.RTl = T I-.].‘i-. lnl
If the gases are at the same wemperature, 1; = T3, and therefore from equation
[14.10]

My = H3

Thus equal volumes of two gases which are at the same temperature and pressure
contain the same number of moles. It follows from the definitdon of the mole
{section 14.3) that the gases also contain the same number of molecules. Thus,
under the conditions to which Avogadro’s law relates, the number of molecules in
each gas is the same, i.e. Avogadro’s law is embodied in pl" = nRT,

MNote Awvogadro's law can be applied to real gases which are ar low pressures and are at
remperatures well above those at which they liquefy.

14.7 DALTON'S LAW OF PARTIAL PRESSURES

The total pressure of a mixrure of gases, which do not interact chemically, is
equal to the sum of the partial pressures, 1.€. 1o the sum of the pressures thar
each gas would exert if it alone occupied the volume containing the mixmre.

Suppose that a volume Foontains ny; moles of a gas whose partial pressure is gy and
rix moles of a gas whose partial pressure is pa. If the temperature of the gases is T,
then by equation [14.1]

MV = mRT and 1 = maRT
Dividing gives
no_m
b Ky
From Dralton's law, the total pressure pis given by
P=prp
Substtuting for ps from equation [14.11] gives

- ()
M= H|+nz'p

and substitutdng for p; gives

- (5%
P = 1'i||_+|‘l_zp

[14.11]
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Mote Dalton's law still applies if one or more of the components of the mixture is a

vapour (saturated or unsaturaved) ~ see Example 15.1.

14.8 THE MAXWELLIAN DISTRIBUTION OF
MOLECULAR SPEEDS

Fig. 14.3

Masxowllian distribution

of molacular speeds

It cam be shown, on the basis of statistical mechanics, that the speeds of gas
molecules are distributed as illustrated in Fig. 14.3. The curve, which is known as
the Maxwellian distribution of molecular speeds, agrees well with that obtained by
experiment. The quantity N{c) is such that N{c)éc is the number of molecules
whose speeds are in the narrow range ¢ to ¢ + dc. Theoretically

G.J:E:x-'"{czz = 1:1.13:1.23
where

&
Il

most probable speed

!
Il

mean spesd

V& = root mean square speed.

& e

= Higher temperatuns

Lenwsr teamparaiura

14.9 EXPERIMENTAL INVESTIGATION OF BOYLE'S

LAW

The apparatus is shown in Fig. 14.4. The gas under investigation is the air rapped
above the oil in the glass tube, The volume, F, of the air is read directly from the
scale. Itis compressed by using a foor pump o increase the pressure above the oil
in the reservoir. The pressure, p, of the trapped air 1s the same as that of the air in
the oil reservoir. (Whether or not this can be read directy from the Bourdon gauge
depends on the particular type of gauge being used - see section 10.7.) The
pressure is increased in stages, allowing a number of pairs of values of pand Frobe
taken, Compressing the air warms it slightly — it should be allowed to cool to room
temperature (indicated by a steady volume reading) before cach measurement is
made.

A graph of Fagainst 1/pis plotmed, If dhe graph is a straight line through the origin,
Boyle's law has been verified for the particular temperature and range of pressures
investigated.,
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Bovle’s law apparatus
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14.10 EXPERIMENTAL INVESTIGATION OF CHARLES’

LAW

Fig. 14.5
Charles’ law apparatus

The apparatus is shown in Fig, 14.5. A column of air is rapped inside a capillary
tubs by a short thread of concentrated sulphuric acid. The reason for using the acid
(rather than mercury, say) is that it abgorbs any water thar might be in the air and so
allows meaningful results 10 be obmined. The rube haz a uniform bore and
therefore the volume of the trapped air is proportional to the length of the air
column. The water is heated and the length, [, of the air column 15 measured fora
number of different temperatures, . The water should be heated slowly, and
stirred before each reading, to allow the air to reach the temperature of the water,
The pressure of the air throughout the experiment is constant (equal to
atmospheric pressure plus the pressure exerted by the acid thread).

Capillary tulbe of

wniform bore —— ]
11.5mm diameaterk Tharmomeies
Shoat 01 )
thresd of
concantrated S
sulphuric acid
Fized mass
of dry @ir

A graph of [ againar Celsius temperature, 8, is plotted. The graph will be a straight
line (Fig. 14.6(a)) showing that (for the particular pressure and range of
remperatures investigared) the volume of a fixed mass of dry air at a constant
pressure increases uniformly with temperature. This is one form of Charles” law,

Alrernatively, a graph of ! against Kelvin temperature, T, where T =0+ 273,
could be plotted { Fig. 14.6(b)). This graph passes through the origin and therefore
verifies that the volume of a fixed mass of gas (dry air} at constant pressure is

directly proportional to the temperature measured in Kelvins, This is the form of
Charles’ law given in section 14.1.
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Fig. 14.6
Graphs for Charles” law
investigation
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Small values of [ should be avoided; otherwise the rounded end of the capillary
tube introduces a significant error inwo the assumprion that the volume of the
trapped air 15 proportional to [

14.11 EXPERIMENTAL INVESTIGATION OF THE
PRESSURE LAW

Fig. 14.7
Pressure law apparatus

The apparatus is shown in Fig. 14.7.* It enables the pressure varaton with
temperature of a fixed mass of dryv air at constant volume o be investigated.

— Bourdon gaugs

Shart plagisg
ks
Thermometier - .

Capillary tubirg

_ Fiaed mass of
iy AiF

WAt ——_

. Bound-bottomied
sk {500 ey

Tttt

HEAT

The water 15 heated, and the pressure, p, of the air in the flask is recorded
for a number of different temperatures, #. (Whether or not the pressure can
be read directly from the Bourdon gauge depends on the particular rype of gauge
being used—see section 10.7.) The water should be heated slowly, and stirred
before each reading, to allow the air in the flask to reach the temperature of the
water,

The air in the Bourdon gauge and connecting tube is not at the same temperature
as that in the flask. Using a large flask and capillary tubing reduces the significance
of the error that this causes.

*An aleermative form of apparsarss is shown in Fig. 13.5.
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Fig. 14.8

FET

A graph of p against Celsius temperature, [, 1s plotted. The graph will be a straight
line (Fig. 14.8(a)) showing that (for the particular volume and range of
temperatures investigated) the pressure of a fixed mass of dry air ar constant
volume increases uniformly with temperature. This 1s one form of the pressure
law.

lal Ll

Grapha for pressure law o i

investigation

i
L
=
L
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Alternatively, a graph of p against Kelvin temperature, T, where T = i/ + 273,
could be plotted (Fig. 14.8(b)). This graph passes through the ongin and therefore
verifies that the pressure of a fixed mass of gas {dry air) at consant volume is
directly proportional 1o the remperature measured in Kelvins, This 15 the form of
the pressure law given in section 14,1,

14.12 VOLUME AND PRESSURE COEFFICIENTS OF

GASES
The expansivity of a gas at constant pressure (or volume cocfficient) x, 15
defined by
% ¥ % V=iVl +a,0)
= LiE. =
¥ Vi P
where

Vi = volume of gas at 0°C
V' = volume of gas at Celsius temperature (F,

It follows from equation [14.1] that for an 1deal gas at a constant pressure p

¥V

aR(273+0)/p and VP, = nR(273)/p

[nR(273 + 0)/p| - [nR(273)/p]
[nR(273)/p 0

Epy =

1€, 2, = 1/2T3K™ (or"C™")

The coefficient of pressure increase at constant volume (or pressure
coefficient) x, is defined by

o P;nxf e po= pallagd)
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where

o = pressure of gas at 0°C

f = pressure of gas at Celsius temperature .
It can be shown (by the method used for o) that

@, = 1/2T3K"' (or"C™1)

14.13 REVERSIBLE PROCESSES

If, at every stage, a process can be made to go in the reverse directon by an
infinitesimal change in the conditions which are causing it to take place, it is
said to be a reversible process.

It follows that when the state of a syvstem is changed reversibly:

(1) the system 15 in thermodynamic equilibrium (i.e. all parts of the system
are at the same temperature and pressure) at every instant, and

(i) at the completion of the process the system could be returned to its initial
state by passing through the intermediate states in reverse order, and without
there being any net change in the rest of the Universe.

In practice, it is impossible to produce a perfect reversible change. However,
processes which take place very slowly and which do not involve friction are often
good approximations o reversible changes, The slow compression of a gas by the
movement of a light, frictionless piston in a non-conducting cylinder is an example
of an approximately reversible process, because a slight decrease in the force on the
piston would allow the gas to expand and no energy will have been dissipated as
heat, Other examples include the changes of pressure, volume and temperature
which are associated with the passage of a sound wave through air, and the
movement of a pendulum about a frictionless support in a vacuum.

14.174 EXTERNAL WORK DONE BY AN EXPANDING
GAS

Consider a gas enclosed i a cvlinder by a frictionless piston of cross-sectional area
A (Fig. 14.9). Suppose that the piston is in equilibrium under the action of the
force pd exerted by the gas and an external force F. Suppose now, that the gas

Fig. 14.9
GGas expanding in a i
[ ~ofbe

il
fix

expands and moves the piston outwards through a distance dx, where dx is so small
that p can be considered to be constant. The external work done 80 by the

expansion is given, by equartion [5.1], as
AW = iﬂl,.-"l i

L&, oW = polV [14.12]
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Fig. 14.10
Indicator diagram for a
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where & F is the small increase in volume of the gas. The woral work done B by the
gas if its volume changes by a finite amount from 1 1o 1. is therefore given by
Vi
W — J pdV (14.13]

¥

Equation [14.13] holds no martter what the relatonship between p and . For the
pardcular case of an isobaric process (1.¢. one in which g 1s constant)

¥ V;
W = J pdlV = pf dV
¥ ¥
Le. W = p(V; - V) 14.14

In the general case, if a plot of p against 115 available (known as an indicator
diagram), the work done can be obtained graphically. Suppose that the pressure
of a gas varies with volume as shown in Fig. 14,10, The work done W by the gas as
its volume changes from V) o V5 is given by

I-"J
W = ] pdlV = Area of shaded region
Fi

D
r

B v, ¥, v

Notes (i) Equaton [14.13] also applies when a gas 1s compressed, in which case work

is being done on the gas.

(ii)  Serictly, equation [14.13] can be applied only if the change takes place
reversibly = if it does not, the values of pressure and temperature ar any
instant will be different in different regons of the gas.

(iii) Equartion [14.13] also applies o solids and liquids. In these cases, though,
the increases in volume are small and therefore the amounts of external work
done are small compared with increases in internal energy.

14.15 THE FIRST LAW OF THERMODYNAMICS

Thermodynamics is the study of the relationship between heat and other forms of

energy. When the principle of conservation of energy is stated with reference 1o
heat and work it 1s known as the first law of thermodynamics.

The heat energy (AQ) supplied to 3 system is equal to the increase in the

interpal energy (A L) of the system plus the work done (A W) by the system
on its surroundings.

ie.  AQ = AU+AW [14.15]
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The internal energy of a svstem is the sum of the kinetic and potential energies of
the molecules of the system. It follows from equaton [14.15] that it may be

increased by:

(i) puiting heat energy into the system, andor
() doing work on the system.

When the internal energy of a system changes the change depends only on
the initial and final states of the system, and not on how the change was
brought about. This is equivalent to saying that the internal energy of a system
depends only on the state that it 15 in, and not on how it reached that state. (Mote, a

system is said to have changed “stare’ if some observable property of the system,
€., its temperature, pressure, or phase, has changed.)

It is not possible to determine the absolute value of the internal energy of a real
system™*. This is no real problem, though, because we are always concerned with
d‘mnE in internal energy, and these Eb’:dﬂlﬂmintd- To do so we make use of
equation [14.15] - either directly or indirectly. Either we find the values of AQ and
&0 and use them (directly) in equation [14.153] 1o calculate ALY or we use the
measured values of the quantities in an equation which is based on equation
[14.15] = eguation [14.16] for example.

An isolated system is one which is cut off from any form of external influence. In
particular, no work can be done onitorby it (e, AW = 0), and no heat can enter
it or leave it (i.e. AQ = 0). It follows from equation [14.15] that AL" = 0, and
therefore that the internal energy of an isolated system is constant.

When a system undergoes an adiabatic process (see section 14.21) AQ = O,
and equation [14.15) reduces w AL = —AW. Bearnng in mind thar AW
represents work done by the system, {— AW) represents work done on the systemn.
Thus, when a system undergoes an adiabatic process the increase in
intermal energy of the system is equal to the work done on it

(i}  We stated immediately after equation [14.15] that the internal energy
of a system is the sum of the kinetic and potential energies of the
molecules of the system. This should not be taken to imply that we are
defining internal energy in this way. Absolute values of internal energy are
not defined at all for real systems; changes in internal energy are defined by
equation [14.15].

(i) The internal energy of an ideal gas is due entirely o the kinetic energy of
the molecules. It therefore follows from equation [14.9] that the internal
energy, L, of one mole of an ideal monatomic gas at kelvin temperature T is

given by

The increase in internal energy, AU, due to an increase in temperature, AT,
is given by

AU = 2RAT

"It E possible for an ideal gas = see Mote (in).
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14.16 THE PRINCIPAL MOLAR HEAT CAPACITIES OF A

GAS

Mote

The molar heat capacity of a substance 15 the heat required 1o produce unit
temperature rise in one mole of the substance.

A change in temperature involves a change in pressure and /or volume. With solids
and liguids such changes are small and are normally ignored. Large changes occur
with gases, and in order to define the heat capacity of a gas it 1s necessary to specify
the particular conditions of pressure and volume. Two cases are of special interest:
(i) when the pressure is constant, (i) when the volume is constant. The heat
capacities measured under these conditions are called the principal heat
capacities.

The molar heat capacity of a gas at constant pressure () is the heat
required to produce unit temperature rse in one mole of the gas when the pressure
remains constant.

The molar heat capacity of a gas at constant volume () is the heat required
to produce unit temperature rise inone mole of the gas when the volume remains
constant.

When a gas is heated at constant pressure it expands, and therefore some of the
heat which is supplied to the gas is used:

(i}  to do external work, and (in the case of a real gas)
(ii) to increase the potential energy of its molecules.

When a gas is heated at constant volume, on the other hand, all of the heat which is
supplied to it is used to increase the temperature. It follows that the amount of heat
required to raise the temperarure of a gas at constant pressure is greater than that
required to raise its temperature by the same amount at constant volume. In
particular, C,, is greater than C,..

The principal heat capacities for unit mass of gas are called the principal specific

heat capacities at constant pressure and constant volume and are denoted by ¢, and
&, respectively.

14.17 TO SHOW THAT C, — C, = R FOR AN IDEAL GAS

Suppose that one mole of an ideal gas 1s heated so that its temperature increases by
AT ar constant volume. It follows from the definition of O, that the heat supplied

A0 is given by
AQD = C AT

Since there is no change in volume, the external work done A Wis zero. From the
first law of thermodynamics (equation [14.15])

AQ = AU 4+ AW

where AL is the increase in internal energy of the gas. It is important to note that
the internal energy of an ideal gas depends only on its temperature, and therefore
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equation [14.16] holds whenever the temperature of one mole of an ideal gas
increases by AT, it is not restricted to situations in which the temperature increase
occurs at constant volume.

Suppose now that one mole of the same gas is heated so that its temperature
increases by the same amount AT at constant pressure. It follows from the
definition of €, that the hear supplied &Q is given by

AQ = G,AT
The external work done AW by the gas is given (by equation [14.14]) as
AW = pAV

where & Fis the (non-zero) change involume and pis the constant pressure, From
the first law of thermodynamics

AQ = AU+ AW
C. AT = AU+ pAV
Substituting for AL from equation [14.16] gives
C, AT = C,AT +pAV [14.17]

If the initial volume and emperarure of the gas are Fand T respectively, then since
we are concerned with one mole of an ideal gas

p¥ = RT
and

plV+AV) = RT+AT)
Subtracting gives

pAl = RAT
Substituting for p AV in equation [14.17] gives

Co AT = CLAT + RAT

ie. G—-GC, =R [14.18]

14.18 CALCULATION OF C,/C, FOR AN IDEAL
MONATOMIC GAS

The internal energy of an ideal gas is entirely kinetic. The moment of inertia of a
monatomic molecule can be considered o be zero and therefore the kinetic energy
of such a molecule is associated with its translational motion only®*. It follows that
the average total kinetic energy of a monatomic molecule is given by equation
[14.9], and that the internal energy L of one mole of such a gas is given by

U = INukT

ie. U =2RT

If the temperature changes by AT, the corresponding change in internal cnergy
AT s given by

AU = }RAT

“1f the moment of inertia were not 2ero, the molecule would have additional kinetic energy due to its
rotational motion,
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By equation [14.16]
AU = CAT

C,AT = 3RAT

i.e. Oy = %.ﬂ'

By equartion [14.18]
G-G _ R

Gy R

. c, 3

i C. | =4

: c

i.2. E: = 3= 1.67

14.19 C,/C, FOR DIATOMIC AND POLYATOMIC GASES

Molecules which contain more than one atom have non-negligible moments of
inertia and therefore possess rotational kinetic energy in addition to ranslatonal
kinetic energy. When this is taken into account it can be shown that

G, o

1 =

C. 5 1.40 for a diatomic gas, and
i,

C—* = 4 = 1.33 for a polyatomic gas.
3

The ratio C,/C, is denoted by y, and therefore:

¥ = 167 for a monatomic gas
¥y = L40 for a diatomic gas

v = 1.33 for a polvatomic gas

Mote C, - C, = R holds no matter what the atomicity of the gas.

14.20 ISOTHERMAL PROCESSES

An isothermal process is a process which takes place at constant temperarure.

It follows from the ideal gas equation thar when a gas expands or contracts
isothermally

PV = a constant [14.19]

The internal energy of an ideal gas depends only on its temperature and therefore,
for an ideal gas which is involved in an isothermal process, AL = 0 and the first
law of thermodynamics reduces to AQ = AW. Thus if the gas expands and does
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external work AW, an amount of heat AQ has to be supplied to the gas in order to
maitain its temperature, Conversely, if the gas contracts, work is being done on it
and an amount of heat AQ has o be allowed to leave the gas.

Any atempt o produce an isothermal change requires that the gas is contained in a
vessel which has thin, good-conducting walls and which is surrounded by a
constant temperature reservoir. In addition, the expansion or contraction must
take place slowly, Ifthese conditions are not fulfilled when, say, a gas expands, then
the energy used by the gas in doing external work has 1o be provided art the expense
of the kinetic energy of its molecules, and the temperature of the gas falls.

Equation [14.19] can be expressed as
nvy = pVs

where py and V', are the initial pressure and volume of the gas, and p. and V5 are the
pressure and volume after the isothermal change has taken place.

14.21 ADIABATIC PROCESSES

Motes

An adiabatic process 15 one which takes place in such a way that no heat enters
or leaves the system during the process.

It can be shown that when an ideal gas undergoes a reversible adiabatic expansion
OF contraction

[14.20]
where 7 is the ratio of the principal heat capacities of the gas.

Since AQ = 0, the first law of thermodynamics reduces 1o AU = - AW, Thus
if the gas expands and does external work, its temperature falls. Conversely, an
adiabatic compression causes the temperature of the gas 1o nse.

A truly adiabatic process 15 an ideal which cannot be realized. However, when a gas
expands rapidly, the expansion is nearly adiabatic, particularly if the gas is
contained in a vessel which has thick, badly conducting walls. T'wo examples of
approximately adiabatic processes are;

{i)  the rapid escape of air from a burst tyre,

(it} the rapid expansions and contactions of air through which a sound wave is
passing.

{iy Egquaton [14.20] can also be expressed in the form

Llear 8 e

where p) and V¥, are the inital pressure and volume of the gas, and ps and 15
are the pressure and volume after the adiabatic change has taken place,
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(i)

i
pV = nRT applies to any change of the state of an ideal gas and can be
expressed as

V) _ pa Vs
T: T2

[14.22]
Dividing equation [14.21] by equation [14.22] gives
T] .[Il,.l 1= 1 ~ Tz .[Il,.z 3=11

from which the final temperature 7 can be calculated.

14.22 ISOTHERMAL AND ADIABATIC PROCESSES
COMPARED

Fig. 14.11 illuscrates isothermal and adiabatic expansions of an ideal gas which is
initially at a pressure p; and volume ). The temperarure fall which accompanies
the adiabatic expansion results in a lower final pressure than that produced by the
isothermal expansion. Mote that the area under the isothermal 15 greater than that
under the adiabatic, i.c. more work is done by the isothermal expansion than by the
adiabatic expansion. Mote also that the adiabatic through any point is steeper than
the isothermal through that point.

Fig. 14.11
=V curves for isothermal
and adiabatic expangions
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Fig. 14.12 illustrates the p— I curves of a gas which is expanded adiabatically from a
volume I to a volume V5, and is then compressed isothermally to its original
volume.

Fig. 14.12

p=V curves for adiabatic
expansion followed by
isothermal compression
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Work done by gas in expanding = Arca Vyp 0oV
Work done on gas in contracting = Area Vypapals
Net work done by gas = Area pypa

14.23 MEASUREMENT OF y FOR AIR BY CLEMENT
AND DESORMES” METHOD

The apparatus is shown in Fig. 14,13, The principal component is a vessel of large
volume (~10 litres) containing air and a little phosphorus pentoxide to deoy it

FIg. 14.13 To bicyele Huing
Clément and Désormes” pump
BHIIEITEII..IE.

Walwa
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pemCnice ==
H"‘“ \\\ Mass of air of volume

Vs webiich rarmaing in
ihe vessol afior the
aapansion

Procedure

{1 Air is pumped into the vessel until the pressure inside it is a little above
atmospheric. The air is then allowed o cool to room remperature and the
(now steady) manomerter reading ki is recorded,

(ii) The bung is removed for about one second allowing the air to undergo an
(approximately) reversible adiabatic expansion. The pressure falls o
atmospheric and the air cools,

{(iii} The air is now left 1o regain room remperature and the new (steady)
manometer reading &5 is recorded.

Theory
Suppose that the air which remains in the vessel initially occupied a volume 1 ata
pressure ;. Immediately after the expansion this same mass of air is at

armospheric pressure p and now occupies the whole of the vessel 2o thar its
volume 15 V5. Since the expansion 1s adiabatic

m¥y = ply’ [14.23]

Suppose that - 15 the pressure of the air when i1t has regained room temperature.
Thus, a mass of air which initally had volume 1} and pressure p, at room
temperature, now has volume V5 and pressure g2, also at room temperature, and

therefore
v, = g5 [14.24]
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An increase in pressure or a decrease in temperature clearly reduces the validity of
assumption (ii). Assumption (1) also becomes less valid because there is ample
evidence (see Chapter 9) that the closely packed molecules of solids and liquids do
exert forces on each other.

The extent of the departure from ideal gas behaviour varies from gas to gas, but of
the common gases carbon dioxide shows considerable non-ideal characreristics.

14.25 ANDREWS’ EXPERIMENTS ON CARBON
DIOXIDE

Fig. 14.14
Andrews' apparatus

The apparatus which Andrews used to investigate the behaviour of carbon dioxide
is shown, schematically, in Fig. 14.14. By ughtening the screws, Andrews was able
to force water into the glass tubes and so increase the pressures and decrease the
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volumes of the gases trapped in the upper portions of the tubes, These bes had
been calibrated beforehand, so thar it was a simple matter for Andrews to read off
the volumes of the trapped gases by noting the positions of the tops of the mercury
columns. By assuming that the nitrogen obeyed Boyle's law (a reasonable
assumption at the pressures and temperatures involved as Andrews knew), he was
able to calculate the pressure of the nitrogen once he had measured its volume.
Since both gases were at the same pressure, this gave him the pressure of the
carbon dioxide as desired. The capillary tubes were surrounded by a warter bath,
the purpose of which was to maintain the gases at a constant temperature. In this
way then, Andrews measured the volume of the carbon dioxide as a funcuon of its
pressure at a fixed temperature. Altering the water bath temperarure allowed him
to obtain this information for a number of different temperatures. He presented his
results as a series of isothermals {i.¢, a serics of plots of pressure against volume,
each at a fixed temperature), Some of these curves are shown in Fig. 14.15.
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Fig. 14.15

Andrews” isothermals
(p-V curves| for a fixed
mass of carbon dioxida
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The diagram shows the critical nature of the 31.1 °C isothermal. Above 31,1 °C
the carbon dioxide exists as a gas no matter how high the pressure, and the curves
are approximately hyperbolic (the shape they would be if the carbon dioxide were
an ideal gas). Below 31.1 "C the carbon dioxide can exist in both the gaseous state
{as avapour) and the liquid stave. Consider the carbon dioxide to be in the state of
pressure, volume and wemperature that is represented by the point A on the
21.53°C isothermal. In this state the carbon dioxide 1s an unsaturated vapour (sce
section 15.2), and if it 1s compressed, the p~1" curve is very nearly hyperbolic unnl
the pressure reaches that represented by B, At B the carbon dioxide begins wo
liquefy. Between B and C the volume decreases as the screws are murned in, but
there 15 no increase in pressure. The decrease in volume 15 due to the fact that in
moving from B 1o C more and more liquid forms, so that at C the carbon dioxide is
entirely liguid. From C o D and beyond, large increases in pressure produce very
little decrease in volume - as might be expected, since liguds are wvirtwally
incompressible,

14.26 TERMINOLOGY

It is now possible o define some useful terms.

Critical temperature (T.) 15 the temperature above which a gas cannot be
liquefied, no marter how great the pressure, (7. = 31.1°C for carbon dioxide.)

Critical pressure ( p_) is the minimum pressure thar will cause liquefaction of a
gas at its critical temperature. {(p. = T3 ammn for carbon dicside.)
Specific eritical volume (17, ) 15 the volume occupied by 1 kg of a gas at its critical
temperature and critical pressure,

Gas is the term applied 1o a substance which is in the gaseous phase and is above its
critical temperature,

Vapour 15 the term applied to a substance which is in the gascous phase and s
below its critical temperamnire.

Thus, & vapour can be liquefied simply by increasing the pressure on it; a gas
cannot.
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MNotes

(i)

(ii)
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Ohxygen, nitrogen and hydrogen are traditionally called permanent gases,
since it was originally thought that they could not be liguefied. This
misconception arose because the early workers had no knowledge of the
necessity for a gas to be below its critical temperamure, and each of these gases
has a critical temperature which is well below room temperature (-118°C,
=146°C and =240°C respectively).

It can be seen from the p=17 curves of carbon dioxade (Fig. 14.15), for
example, that whemn a liquid at its critical temperature (and critical pressure)
becomes gaseous, then it does so without any change of volume. Under these
conditions then, the hquid and its saturared vapour have the same densicy.
Therefore, if a lquid and its saturated vapour are in equilibrium at their
critical temperature, there is no meniscus, i,¢. no distinction between liguid
and vapour,

14.27 CURVES OF pV AGAINST p

Fig. 14.16
Plots of pV against p for a
typical real gas

A convenient way o show the departure from ideal gas behaviour at some
temperature, is to plot p 1" against p at that temperature. For an ideal gas such a plot
is, of course, a straight line parallel vo the p axis, but for a fixed mass of real gas the
curves rypically have the form shown in Fig. 14.16.
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VAPOURS

The distinction between a gas and a vapour 15 given in section 14.26.

15.1 EVAPORATION

Evaporation is the process by which a liquid™ becomes a vapour. It can take place at
all temperatures, but occurs at the greatest rate when the liquid is at its boiling
poine.

The kinetic theory supposes that the molecules of liguids are in continual motion
and make frequent collisions with each other. Although the average kinetic energy
of a molecule is constant at any particular temperature, it may gain kinetic energy
as a result of collisions with other molecules, If a molecule which is near the surface
and is moving towards the surface gains enough energy wo overcome the atractuve
forces of the molecules behind i, it escapes from the surface. It follows that the rate
of evaporation can be increassed by

() increasing the area of the liquid surface;

(i)  increasing the temperature of the iquid (since this increases the average
kinetic energy of all the molecules withowt increasing the strength of the
intermolecular forces of attraction);

(i) causing a draught to remove the vapour molecules before they have a
chance 1o return to the liquid;

vy reducing the air pressure above the liquid (since this decreases the
possibility of a vapour molecule rebounding off an air molecule).

When a liquid evaporates it loses those of its molecules which have the greatest
kinetic energies, and therefore when a liguid evaporates it cools.

15.2 SATURATED AND UNSATURATED VAPOURS

Suppose that a container s partly filled with a liguid and then sealed. Some
molecules escape from the liquid by the process of evaporation and exist as a
vapour in the region above, The vapour molecules move about ot random, and
some of them return to the liquid. The rate of condensation (i.e, the rate at which
molecules return to the lguid) is determined by the number of molecules in the
vapour phase. Initally this is low, and the rate of evaporation exceeds the rate of
condensation. There is, therefore, a net gain of molecules by the vapour, and
eventually a dvnamic equilibrium iz established in which the rate at which

*Solids evaporate bug the rate of evaporation of & solid is negligible unlbess i ds close 1o s meling
point
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Fig. 15.1
p=V curve far vapour in &
saalad containar

Fig. 15.2
p—t curve for vapour in a
sealed container
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molecules enter the vapour is equal w the rate at which they reourn o the iquid,
The region above the iquid is said to be saturated with vapour, for it now contains
the maximum possible number of molecules which the conditions will allow. (If
the pumber of vapour molecules were o increase by some means, the rate of
condensation would become greater than the rate of evaporadon and the
equilibrium would be re-established.) The pressure exerted by a saturated
vapour is called the saturated vapour pressure (5VI) and its value depends
only on temperature.

If the volume of the space above the liguid is increased, there is a momentary
decrease in the density of the vapour, in particular, immediately above the liguid
surface, This decreases the rate of condensation and restores the pressure to its
previous value, i.e. SVP is independent of volume. If the increase in volume is
continued, more and more bguid evaporates and eventually there 1s none left, Any
further increase in volume causes the vapour 1o become unsaturated, Once this
happens the pressure varies with volume in a8 manner which is approximanely
consistent with Bovle's law. A plot of pressure against volume at a fixed
temperature 15 shown m Fig. 15.1. (Nowe that Andrews’ ssothermals in
Fig. 14.15 for carbon dioxide ar temperatures below its cnbcal temperature are
also of this form.}

" Saturated vapaur,
L 2 @ indepandant of v

£

SVP
Unaaturabed vapour,
noE U

] W

It follows from what has been said so far that a saturated vapour can be defined
as being a vapour which is in equilibrium with its own Hguid. If the
temperature of such a system 15 increased there are two distinet consequences.

(i)  The kinetc energy of the vapour molecules increases.

(i) The rate of evaporation increases and therefore there i3 an increase in the
number of molecules in the vapour phase.

If the volume of the system is constant, each of these effects produces an increase in
pressure. The effect of (1) alone would be to give a pressure increase of the form
predicted by the pressure law (approximately); the additional effect of (11) means
that the increase in pressure with increasing temperature is much more rapid than
this (see Fig. 15.2).

If the remperanire 15 increased at constant pressure, the volume increases, but
becauwse of (i) it increases much more rapidly than required by Charles” law.

Unsaturated
o vApOUT Chaying
& pressure low

Saturated

/ Wl o

o b




280 SECTION € THERMAL PROPERTIES OF MATTER
Summary

{i) A saturated vapour is a vapour which is in equilibrium with its own
liguid.

{if) The gas lows refer to Axed masses of gases. Changing the state of a
sarurated vapour involves condensation or evaporation and therefore
changes its mass, [t follows that sanurated vapours do not obey the gas
laws. In particular SV depends only on temperature.

i) Unsaturated vapours, like real gases, obey the gas laws approximately,
In carrying out calculations art this level unsamrated vapours can be
taken to obev the gas laws exacthv.

15.3 MIXTURES OF GASES AND SATURATED
VAPOURS

Dralton's law of partial pressure applies. The total pressure 15 that of the gas plus
that of the vapour. It must be borne in mind that the gas obeys the gas laws, the
samurated vapour does not (see Example 15.1).

15.4 SUPERSATURATED VAPOURS

If the temperature of a saturated vapour is reduced suddenly, there is a brief
period® during which the vapour contains more molecules than it should at the
new temperature. Such a vapour is called a supersaturated vapour and it is not in
equilibrivum with s liguid.

15.5 BOILING

A liquid boils when its temperature is such that bubbles of vapour form throughout
its volume. The pressure inside these bubbles 15 the SVP of the liquid at the
temperature concerned, and must be at least as big as the pressure outside the
bubbles otherwise they would collapse. Thus:

The boiling point of a liquid is that temperature at which its SVP is egqual to
the external pressure.

The external pressure is equal to

(i) the pressure of the atmosphere above the liguid, plus

(1) the hvdrostatc pressure due to the liquid iself, plus

(iii)  the pressure due to surface tension effects.

“The last two of these are normally ignored but, in particular, (i) accounts for the
lower part of a boiling liquid being hotter than the upper part.

*If there are no nucleating sites present {e.g. dust}, the vapour may remain supemsanarated for o long
Tme,
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Fig. 15.3

Variation of saturated
vapour prassure of water
with temperatung
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If the pressure above a boiling liguid is increased, it stops boiling because the
external pressure 15 now greater than the SVP. If the temperature of the hiquid s
increased, its SWVP rises and evenmally becomes egual 1o the new exrernal
pressure, Thus the boiling point of a liquid increases with pressure and a plot of
external pressure against boiling point 15 identical o a plot of SV against
temperature. The SYVP of warer is shown as a function of temperature in Fig, 15.3.

VP of watermm Hy
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Boiling differs from evaporation in thar:

(i) boiling occurs throughout the volume of a hquid, whereas evaporation
occurs only at the surface, and

(i) for any given external pressure a liquid boils at a single temperature
only, whereas evaporation takes place at all temperatures.

15.6 EXPERIMENTAL DETERMINATION OF SVP BY
THE DYNAMIC METHOD

The apparatus 15 shown in Fig. 15.4. The pressure above the liguid is reduced to
some desired value below atmospheric pressure by means of the vacuum pump.
The liquid is then heated gently and it starts to boil at a temperarure which is
derermined by the pressure inside the apparatus. The vapour is condensed and
returned to the round-bottomed flask, thereby preventing a pressure build-up
within the apparatus. The thermometer registers the temperature of the saturated
vapour. The pressure p above the liguid is given by p = (p, — hpg) where p, is
armospheric pressure and p 15 the density of the mercury. Since a liquid boils when
its temperature is such that its SVP is equal to the external pressure, p is the SVP of
the liquid at the temperature registered by the thermomerer.

Replacing the vacuum pump by a bicyle pump allows SVPs above atmospheric
pressure 1o be determined.
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Fig. 15.4

Apparatus for the
determination of SVP by
the dynamic method
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EXAMPLE 15.1

A closed wessel containg air saturated with water vapour at 77 °C, The total
pressure in the vessel is 1000 mmHg. Calcuolate the new pressure in the vessel if the
temperature 15 reduced o 27 “C. (The SVP of water at 77 °C = 314 mmHg; SVP
of warer at 27 °C = 2T mmHg.)

Solution

By Dalton’s law of partial pressures, the pressure of the air at 77°C
(350K} = 1000 — 314 = 686 mmHg. Treating the air as an ideal gas and
assuming that its volume 15 V and is constant, we sce that its pressure, p, at
277C (300 K) is (by equation [14.22]) given by
686« 7 pl”
350 300

e, p = 5BEmmHg
The pressure of the water at 27 “C = 27 mmHg, and therefore the votal pressure at
27°0C = 588 4+ 27 = 615mmHg.
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THERMODYNAMICS

The first law of thermodynamics is dealt with in Chapter 14.

16.1 THERMAL EQUILIBERIUM AND THE ZEROTH LAW
OF THERMODYNAMICS

If two bodies are in thermal contact and there 1s no net flow of heat energy between
them, the bodies are said o be in thermal equilibrium with each other. The
bodies must possess some property which determines whether they are in thermal
equilibrium — we call this property temperature. It follows that heat can flow
from one body to another only if they are at different temperatures.

Experiment shows that two bodies which are separately in thermal equilibrium
with a third body are also in thermal equilibrium with each other. This is known as
the zeroth law of thermodynamics. It 15 called the zeroth law because although
the other laws of thermodvnamics inherentlv assume its validity (and therefore
logically come after it) they had been established for many vears before the first
formal starement of it. The reader may feel that the zeroth law is merely a statement

of the obvious — maybe it is, bur the principle it embodies is fundamental o the
whole of thermodynamics and therefore needs to be stated formally.

In order to see how we make use of the zeroth law, suppose we wish to discover
whether two bodies, A and B, are ar the same temperatire, i.e, whether they are in
thermal equilibrium with each other. We do this by first bringing A into thermal
equilibrium with a third body - a thermometer - and then bonging B into thermal
equilibrium with the same thermomerer, If the thermometer gives the same
reading in each case, by using the zeroth law we can say that A and B are at the same
temperature, IR under these circumstances, A and B were not at the same
temperature, i.¢. if the zeroth law were not true, there would be no point in taking
readings with thermometers,

16.2 ENTHALPY

The functuon L7 + pF is involved in many applicatons of thermodynamics; it has
therefore been found useful to give it a name — enthalpy. Thus the enthalpy, H, of
a substance is defined by

H = U+pV [16.1]

where Uis the internal energy of the substance (see section 14.15) when itis ara
pressure poand has a volume V)

253
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Many processes which produce changes in enthalpy take place at constant
pressure (chemical reactions for example), and we shall be concerned only with
enthalpy changes of this type. Suppose that in some constant pressure process LU
increases to (U7 + ALT) and Vincreases to (F 4+ AV). If, as a result of this, the
enthalpy increases by AH to (H + AH ), then from equation [16.1]

H+AH = U+ AU+ p(+ A [16.2]
Subtracting equation [16.1] from equation [16.2] gives

AH = AU +pAV {at constant pressure) [16.3]

Though p is always measured in N m~~, the units in which AH, AU and AT are
measured depend on the amount of substance involved. For unit mass of
substance, AH and AU are respectively called the specific enthalpy change and the
specific internal energy change, and are measured in Jkg™!. The corresponding
value of AV is called the specific volume change and is measured in m” kg~!. For
1 mole of substance A and AL are measured in [ mol~* and A1 is measured in
m mol ', When the amount of substance is neither 1kg nor 1mol, or is
unspecified, AH and AU are measured in ] and &V is measured in m’.

The term p A 1 in equartion [16.3] is the work done by the substance as it expands
against the constant pressure p. It therefore follows from the first law of
thermodynamics (equation [14.15] ) that

AQ = AU +pAV [16.4]

where A 15 the heat supplied to the substance. Comparng equations [16.3] and
[16.4] gives

AH = AQ  (at constant pressure) [16.5]

i.c. in a constant pressure process the enthalpy change is equal to the heat
supplied.

Chemical reactions in which hear is absorbed are called endothermic reactions;
those in which heat is given out are called exothermic reactions. It follows from
equation [16.5] that:

AH = 0 for an endothermic reaction at constant pressune,

AH = 0 for an adiabatic process at constant pressure,

AH <= 0 for an exothermic reaction at CONStant pressure.
Equation [16.5] provides two other useful reladonships.

e ¥ T
oy T

and LFIﬂHﬂ__

[ = the specific latent heat of vaporization at some pressure and
temperature

AHyy = the specific enthalpy change when the substance goes from the
liquid to the vapour phase at that pressure and temperature

=
™
Il

the specific latent heat of fusion at some pressure and
[emperaturs

Mg = the specific enthalpy change when the substance goes from
solid vo the liquid phase at that pressure and temperamire.
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Thus heat has been converted to work. The process stops, however, as soon as the
pressure of the gas becomes equal to the pressure outside the cylinder. Before there
can be any further conversion of heat into work, the gas has to be reurned o irs
initial {compressed) state. That 15, if there 15 to be a continual conversion of heat
into work, the gas has to undergo a cycle. Furthermore, the gas can be returned 1o
its initial state only if some of the heat it initally absorbed is given up to a sink which
is at a lower temperature than the source which provided the heat in the first place,

Thus, in practice we find that all heat engines operate by taking some working
substance around a cycle, and:

) take tn heat at a high tfermperature,
() dowork,
(i)  repect some of the heat at a lower temperamure,

“This is illustrated in Fig. 16.1. Since the engine rejects some of the hear it initially
takes in, 1t has converted only part of 1t into work. This should not be taken to
mean that the engine has violated the first law of thermodynamics. There has been
no loss of energy; it is just that some of it is still in the form of heat.
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16.4 THERMAL EFFICIENCY OF HEAT ENGINES

The thermal efficiency y of a heat engine is defined by

I Work done in one cycle
= Heat taken in at the higher temperature

[16.6]

At the completion of the cyele the engine’s working substance 15 in the same state
as it was initally, and therefore there can have been no change in its internal
energy. It follows from the first law of thermodynamics, therefore, that the work
done is equal 1o the net quantny of heat absorbed, 1.2,

Work done in one cycle = Oy — (b
where
2y = the heat taken in at the higher temperature
s = the heat rejected at the lower remperature.
Therefore by equation [16.6]
Oy — s

= =5 Tk (for both reversible and irreversible engines)  [16.7]
¥
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It can be shown that if the cvele 15 carried our reversibly (see section 14.13), then

n = Ti T i (for all reversible heat engines) [16.58]
1

where T and T are the Kelvin temperatures (as measured on the ideal gas scale™)
at which the heat is respecrively absorbed and rejected,

MNotes (i) Equation [16.8] iz valid for all reversible engines, regardless of the
particular cycle and the pani:uﬁr working substance, as long as the heat
is taken in entirely at the single temperature T and is rejected entirely at the
single temperature 1.

(1) It can be shown that no heat engine is more efficient than a reversible one
working between the same two temperatures, and therefore no heat engine
can possibly have an efficiency greater than that given by equation [16.8].

(1) It follows from equaton [16.8] that the eficiency of a heat engine can never
be 100%s (i.e. i cannot be eqgual o 1) becawse the reservoir oo which the
engine rejects heat would have to be at a temperature of zero kelvin (Le.
T = 0K) and this, of course, is impossible.

(iv) Equation [16.8] can be rewritten as = 1 — T3/7T, and therefore the
cfficiency is increased by decreasing T3/7;, Le. the efficiency is
increased by taking in heat at as high a temperature as possible
and rejecting heat at as low a temperature as possible.

(v}  Theefficiency of a real heat engine is less than that given by equartion [16.8]
because of losses due to fnctional effects, turbulence, etc., and because the
heat 15 usually taken in over a range of temperatures and rejected over a
range of temperarures,

16,5 THE SECOND LAW OF THERMODYNAMICS

Though there is nothing in the frst law of thermodynamics to prevent it being
otherwise, it 1s a matter of common experience that:

(1) noheat engine that works in a cycle completely converts heat into work, and

(ii)  when a cold body and a hot body are brought into contact with each other,
heat always flows from the hot body to the cold body — never from the cold
body to the hot body.

The secomd law of thermodvnamics is a formal statement of these
observations. It can be stated In a number of different (but equivalent) ways.
One such starement is:

It is not possible to convert heat continuously into work withour at the same
ume ransferring some heat from'a warmer body to a colder body.

Thus, whereas the first law tells us of the ugy_ivaltnc: of heat and work, the second
law is concerned with the circumstances in which heat can be converted into work.

[f the second law were not true, it would be possible to run ships on heat exrracted
from the sea, It is not possible to do so, though, because the second law requires
there to be a reservoir at a lower temperamiee than the sea into which some of the

*The significance of specifying the ideal gas scile will become apparent on reading section 16.6.
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repected heat can be discharged. There is no such reservoir, except perhaps the
ship’s cold-store, and this is cold only because refrigeration units are consuming
energy to keep it so!

The experience that heat cannot be completely converted into work is associated
with the fact that heat is fundamentally different from other forms of energy. The
heat energy possessed by a body is the energy of the random motions of its
molecules. This is quite disunct from, say, the kinetic energy the body has when it
is moving. The kinetic energy of a moving body represents the ordered motion
which its molecules have superimposed on their random motion. When we try to
convert heat into work we are orying to change the random molecular motion into
ordered monon. The reason we cannot accomplish thus with 1009 efficiency is
that we cannot control the individual motions of the molecules,

16.6 THE THERMODYNAMIC SCALE OF

TEMPERATURE

The efficiency of a reversible heat engine depends only on the temperatures of the
source and the sink between which it i operating. Eelvin realized that if a
temperature scale were defined in terms of the efficiency of such an engine, it
would be independent of the properties of any particular substance — it would
therefore be an absolute scale.

Kelvin suggested that the scale (now called the thermodynamie scale) should be
such that the rado of any two emperatures on it should be equal o the ratio of the
quantites of heat taken in and rejected by a reversible heat engine operating
berween the same two temperatures, Thus if we represent temperatures on the
thermodyanic scale by r, then for a reversible engine taking in heat ©), at
temperature 1, and rejecting heat 5 at a lower temperature 1,

i )] [16.9]
T 2y
The efficiency of such an engine is given by equation [16.7] as
Q2 - Qs . 22
e i BB o= 1 —
0, v g,

Therefore, by equation [16.9]

n = 1_? [16.10]
1

If the temperatures between which the engine is operating had been measured on
the ideal gas scale (sce section 13.2) and had been found to be T and T, then

from what has been said in section 16.4, the efficiency n would be given by

- T
_ T1TT: ie. n = I_?E [16.11]
I i
Comparing equations [16.10] and [16.11] we see that
T2 _ i: [16.12]
T T,

Thart is to say, any two temperatures on the thermodynamic scale are in the same
ratio as the same two temperatures measured on the ideal gas scale, Finally, by
making the temperature of the triple point of water the fixed point of both the
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thermodynamic scale and the ideal gas scale, and assigning to it the same
numerical value (273,16 K} in each case, the two scales become identical. For
example, if the temperature of the sink to which the engine is discharging heat is
taken to be the temperature of the tnple point of water then 1z = T = 27316 K
and therefore by equaton [16.12]

273.16 _ 273.16
T3 B T

'i..‘E. T, = T]

MNow we have established that the two scales are identical, there is no longer any
need o distinguish berween them, Therefore from now on the single symbol T
should be taken to refer to either scale.

16.7 ENTROPY

The first law of thermodynamics 15 concerned with energy; the second law is
concerned with a quantity called entropy, It can be defined by*

a8 = §Q/T (for a reversible process only) [16.13]
where

485 = the increase in entropy of some system when it undergoes a
reversible change (JK™")

the heat absorbed by the system, and where 40 is so small that the
process can be considered to take place at a constant temperature
T measured in kelvins.

o0

For the more general case of a reversible process in which the temperature is not

necessarily constant and where a system changes from an inital stare (1) to some
other state (2)

3
AS = J % {for a reversible process only) [16.14]
i
where AS = the increase in entropy when the system changes reversibly
from state 1 tostate 2 (JK ')
2
J E]'-"EH = the sum of the ratos of the gquantites of heat absorbed at
!

each point on the path from state | o state 2 o the
temperatures at those points, i.e. the sum of the terms 40/ T
of equation [16.13].

Notas (i) Equations [16.13] and [16.14] are valid for reversible processes only.

(1)  The entropy of a system depends only on the stare of the svstem. When the
entropy of a system changes the change depends only on the initial
and final states of the system, not on the particular process by which
it was accomplished, nor on whether it was reversible or
irreversible. At first this statement may seem to contradict note (), but
it does not. Though the changes in entropy are the same, [dQ/T for the
reversible process is not equal to [ dQ/ T of the irreversible process.

*An aleermative definidon s given later,
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(iii)

(v}

(v

(v}

EXAMPLE 16.2

SECTION © THERMAL PROPEATIES OF LA TTER

Since T cannot be negative, it follows from equation [16.14] that the
entropy of a system increases when it absorbs heat and decreases
when it rejects heat.

For an adiabartic process there i8 no change in heat content and equation
[16.14) reduces o

AS .u.-ﬂ (for any reversible adiabatic process)

Processes which occur without change in entropy are called isentropic
processes and therefore reversible adiabatic processes are isentropic.

For a reversible isothermal process equation [16.4] reduces to

AN = % {for any reversible isothermal process) [16.15]

where () is the heat absorbed at the constant temperamre T

It follows from note (ii) that when a substance is taken through a complete
cycle the net change in entropy is zero, i.e.

A S = 0 for a working substance {for both reversible
undergoing a complete and irreversible
cycle Processes)

When the cycle is carried our reversibly the entropy lost by the source is
equal to that gained by the sink, and therefore the entropy change for the
whaole system (sink, source and working substance) is zero. For an
irreversible cycle, though, the entropy lost by the source is less than thart
gained by the sink. Therefore even though there iz no change in the entropy
of the working substance, there is an increase in the entropy of the system as
a whole.

Calculate the change in entropy of 3.00 kg of water at 100°C when it is con-
verted to steam at 100°C. (Specific latent heat of vaporization of
water = 2.26 = 10*Jkg~! at 100°C.)

Solution

The process is both isothermal and reversible, in which case the change in entropy,
A S, is given by equation [16.5] as

Here

AS=QT
0 =3.00x226x=10% = 678 = 10°]
T =3713K (= 100°C)
6.78 = 107
S 373

= LB2 x 1M JK"!
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EXAMPLE 16.3

Calculate the change in entropy of 5.00 kg of water when it is heaved reversibly
from 0°C o 100°C. (Specific hear capacity of water in the range 0°'C 1w
100°C =420 = 107 kg™ "C ')

Solution

The change in entropy, A5, 15 given by equation [16.4] as

T = 3TE df._}
r=mk 1
It follows from equation [13.7] that 40 mcdT.
73 - ;
AS — J |_5.-IJ-IZI_||-1.:|;‘r:uI ¥ 107 AT
m

= 21.0 = 10*log, T3,

21.0 = 10° log, (333)

6.55 = 10" JK !

EXAMPLE 16.4

5.00 kg of water are heated from 0°C vo 100 °C by being placed in contact with a
body which has a large heat capacity and which 15 imself at 100 "C, Calculate the
changes in entropy of: (a) the water; (b)) the body; () the Universe, (Specific heat
capacity of water in the range 0 " C o 100 C = 4.20 = 107 kg ' "C ')

Solution
{a) This is identical 1o Example 16,3, and therefore
ASume = +055 < I0'JK !

{b) The body is of very large heat capacity and therefore, w a good
APProxXImanion, W may assume that 118 [emperature 15 constant at 100 C
(373 K. The entropy change of the body 15 therefore given (by equation
[16.15]) as

A8y = —0/373
where 15 the heat lost by the body. This 15 equal to the heat gained by the
water, and therefore
O = 5.00 x 4.20 = 10" = 100 = 2,10 = 10°]
210 = 107
EFE
ie. ASue = 563 10 TK!

-l's'hlhl'i' = =
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MNote

SECTION C: THERMAL PROPERTIES OF MATTER
fel  The change in entropy of the Universe is equal to that of the whole system
(i.e. the water and the body), and therefore
A Svawene = A Swaner + A Sioay
6.55 = 10* — 5.63 = 107
920 K-!

e O Syraivene

The transfer of heat from the body (at 100°C) to the water (mmutially at 0°C) 15 an
irreversible process, for at no stage could it go in the opposite direction. In
performing the calculations, though, we have used equations which govern
reverzsible processes, We are justified in doing this because entropy changes
depend only on the initial and final states of the system concerned, and not on the
manner in which the changes occur. (See MNote (ii) on p. 289.) The change in
entropy of the water is therefore the same as it would be if its temperature were
increased reversibly to 100°C. Likewise, the entropy lost by the body as a result of
losing heat is the same as it would be if the heat had been lost reversibly. Note,
though, that there is an overall increase in entropy (of 920K~} as, of course,
there must be for an irreversible process.

16.8 TEMPERATURE — ENTROPY DIAGRAMS (T-5
DIAGRAMS)

Fig. 16.2

Tao illustrate the
significance of tha area
undaer a T=8§ curve

These are plots of temperature against entropy and are a useful alternative to p-1
diagrams. Suppose that during some reversible process the emperature and
entropy of a substance vary in the arbitrary manner shown in Fig. 16.2.

T
1

|
|
|
1
il 5 5

It follows from equation [16.13] that for a reversible process
d0 = T&S

The heat absorbed by the substance when its entropy changes from §; to &; is
therefore given by Q, where

Q= ri TdS

L]

ie. Heat _ Area of (for a reversible process only)  [16.16]

absorbed — shaded region

When a substance is taken through a complete cycle it ends up in the same state as
the one it started in; in particular it has the same temperature and the same

entropy, and is therefore represented by a closed loop on a T-S diagram. Suppose a
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Cooling of Food in a Refrigerator

As the food in a refrigerator cools, its entropy decreases because heat is being
removed from it But this heat goes into the surrounding air, and 5o the entropy of
the air increases. In addition, electrical energy 15 being consumed, and this will
probably have involved the burning of some fuel (coal or oil, for example). The
entropy of the combuston products (hot gases, smoke, etc. ) 15 greater than that of

the original fuel. Calculations show that there is a net increase in entropy.

Irreversible Heat Engines

The efficiency of a heat engine, reversible or irreversible, which takes inhear O}y ata
temperature T and rejects heat (s at a temperature 75 is (O — 0500, [sce
section 16.4). In the case of a reversible engine
0-0 T-T
Ch I
The efficiency of an irreversible engine 15 less than that of a reversible one, and
therefore for an irreversible engine

- §h-1;

£h . I
-2 0
Q] -'rl
G
' T 0
Q@
T, T

Thus the entropy lost by the source (€ /1) is less than that pained by the
sink (0/T5). Since the only other component of the system, the working
substance, undergoes no entropy change i a complete cvele, there has been an
owverall increase in entropy.

16.10 PRINCIPLE OF INCREASE OF ENTROPY
(ENTROPY VERSION OF THE SECOND LAW)

We have seen that when a system undergoes a reversible process there is no change
in the entropy of the system, and that in an irreversible process there 13 always an
mcrease in entropy. Reversible processes are an ideal that cannot be realized in
practice, i.¢. all real processes are irreversible, It follows thar all real processes
occurin such a way that there is a net increase in entropy. This is called the
principle of increase of entropy. It is a conseqguence of the second law of
thermodynamics, and in fact 15 one of the many wavs in which the second law can
be stated.

Every time entropy increases the opportunity 1o convert some hear into work is
lost for ever. For example, there is an increase in entropy when hot and cold water
are mixed. The warm water which results will never separate itself into a hot layer
and a cold laver. There has been no loss of energy but some of the energy 15 no
longer available for conversion into work, YWe can envisage a (distant) future in
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which the temperature of the Universe is the same throughout, The entropy of the
Universe will then have reached its maximum value and all processes will cease -
the so-called *heat death’ of the Universe.

16.11 THE STATISTICAL SIGNIFICANCE OF ENTROPY

Imagine a glass container in which there are a thousand grains of salt, and then
imagine that a thousand grains of black pepper are carefully placed on top of them.
If the conmainer is shaken, the mixmure will become uniformly grey. Continued
shaking will keep redistnbuting the grains at random, but we would not expect that
the original dismmibuton would ever returm, Thus the system has gone from o highly
organized state with salt at the bottom and pepper on top, into a highly
disorganized state where there 15 complete umformity. The reader should realize
that if we were to label the grains in some way (by numbenng them, say), then the
chance that any partucular distriburtion would occur (all the odd numbers being on
top for example) would be just as unlikely as that with all the pepper at the top - no
matter how we numbered the grains. The point is, of course, that the grains are not
labelled. The system has gone from a statistically unlikely state (salt and pepper
separate) to one of a very large number of indistinguishable (uniformly grey) states
in which there are approximately fve hundred grains of salt and five hundred
grains of pepper in each half of the mixmire.

Thiz has been just one example of the common experience that in all naaral
processes (involving large, and therefore statistically meaningful, numbers) the
amount of disorder tends to increase up to some maximum value, We saw in
section 16, 10 that whenever some natural process takes place there is an increase
in entropy., Thus natural processes increase both disorder and entropy. This 15 no
coincidence; entropy and disorder are relaved, and it can be shown that entropy is
in fact a measure of disorder. This is not too surprsing, for we stated in section
16.5 that when work is converted inte heat, ordered moton is being changed into
disordercd moton, and later saw that increases in heat content are brought about
by increases in entropy.

16.12 HEAT PUMPS AND REFRIGERATORS

Both heat pumps and refrigerators (we shall explan the difference in the next
paragraph) act like heat engines working in reverse, i.¢. they take in heat at a low
temperature and reject hear ara higher temperature. In order that they can do this,
some external agency (an clectric motor for example) has to do work on the
working substance of the device. Fig. 16.5 compares the action of a heat engine
operating berween temperatures T and 1 with that of a heat pump or refrigerator
operating berween the same two temperatures.

The purpose of a refrigerator is to cool whatever is inside it, L.e. to remove heat
from the low temperature reservoir. The purpose of a heat pump, on the other
hand, is to supply heat to the high temperature reservoir. For example, a heat
pump might be used to heat a bouse in winter by taking heat from a (cold) river
nearby. The effectiveness of refrigerators and heat pumps is measured by a
quantity called the coefficient of performance. [t is respectively the ratio of the
heat extracted or supplied, to the work done by the external agency. Thus
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Fig. 16.5

la) The action of a heat
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Heat pumps provide a cheap form of heating, because the heat supplied () is
greater than the work done by the external agency () — ;). Suppose that a heat
pump working reversibly extracts heat from ariver at 7 °C (280 K) and deliversitto
aroom at 21 °C (294 K). The pump is reversible, and therefore

Q __ 1
0, -0 T =T

204
204 — 280

= 21

Thus the coefficient of performance is 21, i.e. 21 joules of heat would be provided
with the consumption of only one joule of work! Compare this with a conventional

electric fire where one joule of electrical encrgy can (at best) supply one joule of
hicat.
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16.13 THE PETROL ENGINE CYCLE (OTTO CYCLE)

Fig. 16.6(a) shows the p=1" curve for the cycle of operations known as an Otto

cvele, The Oito cyele is an idealized form of the cycle that occurs in a petrol
engine. Befer also to Fig. 16.6(b).

A=A The inlet valve opens and the exhaust valve closes,

A'— A Induction stroke, A mixture of typically 7% pewrol vapour and 93%. air
{by weight) at about 30 °C is drawn inte the cylinder (through the inlet
valve) as the piston moves down,
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At A

(i)

(i)

(iii)

(iv)
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First part of power stroke, The fuel (dicsel oil) 15 spraved into the
cylinder and is ignited by the hot air. The fuel enters atsuch a rave thatas it
burns (supplving heat () it forces the piston down at constant pressure.

Second part of power stroke. The fuel supply is cut off ar C and the
burnt gas expands adiabatically and pushes the piston down, The
temperature falls.

The exhaust valve opens at I and most of the burnt gas rushes out of the
cylinder, removing an amount of heat G, The pressure and temperature
of the gas remaining in the cylinder decrease.

Exhaust stroke. The rest of the burnt gas is expelled from the cylinder as
the piston moves up.

The exhaust valve closes and the inlet valve opens. The cyvcle starts again.

Each cvcle consists of four strokes of the piston: A" to A (down), Ao B (up),
B to D) {down) and A to A" (up). It is therefore a four-stroke cycle.

The fuel is burnt inside the cyvlinder; it is therefore an intermal
combustion engine.

There is no fuel in the cylinder durng compression (A 1o B) and therefore
(unlike the case of the petrol engine) very high compression ratios (typically
16:17 can be unlized without any nsk of pre-ignitiion, This makes Diesel
engines more efficient than petrol engines.

IMesel engines have the added advantage of using a cheaper fuel. On the
other hand, the higher working pressures of Diesel engines makes them
more expensive o produce and they have lower power /weight ratios than
petrol engines. The theoretical efficiency is typically 65%, bur the efficiency
of an acrual engine is less than this (rypically 36%) because of frictional
effects, etc, (see note (v) of section 16.13),

Nore (vi) of section 16.13 applies here too,

16.15 THE STEAM ENGINE CYCLE (RANKINE CYCLE)

Fig. 16.8

Idealizad steam anging
cycle

Fig. 16.8 shows the p— I curve for the cycle of operations known as a Rankine cycle.
The Rankine cyecle is an idealized form of the cvele which occurs in a steam

engine.

A—B

Water is compressed adiabatically. There is very little change in volume
and only a slight increase in pressure,

Aran of shaded region = Work
- - done by anging in ans Syile
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B=C The wateris heated (in the bodler) at constant pressure 1o its boiling point

at the pressure of the boiler, As the heating continues the water vaporizes,
at the same constant pressure, to form steam, which expands into the

cylinder.

C—D[ The steam is now receiving no heat. It expands adiabatcally and cools.

D—A The steam is condensed to water at constant pressure and temperature.

(1)

(i}

(o

Steam engines are known as external combustion engines becavse the
fuel 15 burned outside the cylinder.

The theoretical efficiency is typically 30%; the actual efficiency is much
less, ovpically 10%. A major cause of this large difference iz the drop in

pressure that occurs as the stream passes along the pipes leading from the
boiler to the cylinder.

The thearetical efficiency 1s much less than that of both the Otvo cvele and
the Diesel cycle, This reflects the fact that the hear is supplied at a much
lower temperamre (about 250 "C) in the case of the steam engine.
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Al

Suppose also that the rate of Qow of heat from the hoteer face to the colder face is
A3/ e It can be shown by experiment that if there are no heat losses from the
sides and steady state conditions prevail, then

0
iif *

il
L

With the introduction of a constant of proportonality & this can be written as

Q0

ar

Sil

dix

which in the limit as dx—0 becomes

dg
dr

where
dQ/de

dil /dx

S [17.1]

is the rate of flow of heat from the hotter face to the colder face and
is at right angles to the faces (unit = W)

is called the temperature gradient across the section concerned
(unit = Km ')

is a constant whose value depends on the matenial of the disc. Itis
called the coefficient of thermal conductivity of the material
(unit = Wom ' K", Values of & for some common materials are
given in Table 17.1.

MNotes (1) When heat 15 flowing in the positive direction of x {as i Fig. 17.1) the
temperature gradient is negative, and therefore the presence of the minus
sign in equation [17.1] makes k a positive constant,

{ii)  Iristhe existence of the temperature gradient which causes the hearto fow,
If it were not for the fact that the vwo faces are being maintained at their
respectivie temperatures, the effect of the heat flow would be to destroy the
temperature gradient by warming the cooler regions,

{i11)  Eguation [17.1] is used o define &. Thus:

The coeficient of thermal conductivity of a material is the rate of
flow of heat per unit area per unit temperature gradient when the heat
flow is at right angles to the faces of a thin parallel-sided slab of the
material under steady state conditions,

Table 17.1

Values of k for some
SOmMmon substances at
FOOM IBMmperaiune

Substance ; KWm K
Silver I 4lE
Copper iHS
Alurmimium 238
Iroin R
Lead 1]
Mercury B
Gilass (Pyrex) i1
Brick |
Ruhber nz
Al .03
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Fig. 17.3
Temperature distribution
along & wniform bar

Fig. 17.4

Heat flow lines in &
lagged and an unlaggad
bar

Therefore, from equations [17.2] and [17.3] and since &y, = &y

an) , (&)
dx f,~ A\dx
and it follows that:

Temperature gradient decreases with distance from the hot end of an
unlagged uniform bar,

Fig. 17.3 is based on these results and shows the steady state temperature
distribution of a perfectly lagged uniform bar of length L, together with that of an

Temparaturn (8} Lasgged, termparatung

gradient constant

Unlagged, temparaturng
grafean decransing

I
I
I
L =
o L Distance fram hat amnd (k)

identical unlagged bar. Each bar has its hot end maintained at a temperature if; and
its cold end at #,. The situations of the two bars are illustrated 10 terms of heat flow
lines im Fig. 17.4.

Unlagged bar. Flaw lines
divergs and there ars
g throwgh X than Y

Pertactly lagged bar.
Flos lines parallel
and aqual numbarn
thraugh X snd ¥

Since the remperamire gradient of the lagged bar 15 constant
a6 -#)
de L

Therefore from equation [17.1]

40 _ (a-b) (fora perfectly

dr lagged bar [17.5]

This is a particularly useful form of equation [17.1], but it is relevant only to the
case of a perfectly lagged bar.
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17.4 ANALOGY BETWEEN THERMAL AND
ELECTRICAL CONDUCTION

Table 17.2
Electric quantities and
their thermal analogues

The flow of heat is anlogous to the flow of electrical charge, and it is possible 1o
think in terms of a heat current d0/ds in the same way as we think in terms of
electrical current [, A heat current flows through a perfectly lagged uniform bar
whenever there is a temperarure difference (6 — #, ) across it. This is equivalent to
the way in which an electrical current is caused to flow by a potential difference I,
Equation [17.5] can be rearranged as

dg (- th)
dt ~ (L/kA)

and for an electrical conductor of resistance B

Comparing these two equations we sce that (L/#&d) is equivalent o R, and
therefore mav be thought of as the thermal resistance of the bar. Electrical
conductivity & and resistivity g are related by o = 1/ p {section 36.1), and therefore
(from equation [36.2]) electrical resistance R is given by K = L/(sAd). Since
thermal resistance is equal to L/ (gA), it follows that B is equivalent to . Table 17.2
summarizes these results. More also that the temperature gradient is equivalent to
porential gradient.

Electrical guanbily Analagous thermal quarntity
Electric current I Heat current ?i?
Potential difference ¥ | Temperarare difference | 6, — f,
Electncal resistance R rri! Thermnl resistance -é!
Electrical conductivity o Thermal conduciviny i
Potennal gradient :: | Tempemture gradient s i il

The analogy is made use of in Example 17.1

EXAMPLE 17.1

Twao perfectly lagged metal bars, X and Y, are arranged (a} in series, (b) in parallel.
When the bars are in series the “hot” end of X is maintained at 90 °C and the ‘cold’
end of ¥ 15 mantained at 30°C, When the bars are in parallel the "hot” end of
each 15 mammtained at 90°C and the ‘cold’ end of cach is maintained ar 30 °C.
Calculare the ratio of the tetal rate of flow ofheat in the parallel arrangement to that
in the series arrangement. The length of cach bar is I and the cross-sectional area
of each i1s A. The thermal conductivity of X 1s 400 Wm ' K ! and that of Y is
2000 m K.
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MNotes

F1

mass and specific heat capacity of Y, then the rate at which it is losing heat to the

surroundings when its temperature is ) 15 given by mela/b), where a/b 15 the

gradient of the graph (1.e. the rate of fall of temperatare at &), The conditions

under which Y is losing hear are the same as those ar steady state, and therefore
x b

from which & can be determined.

(1) The upper and lower surfaces of the sample should be smeared with
perroleum jelly (Vaseline) to give good thermal contact with X and Y.

{ii) The thermometers actually register the temperatures of X and Y, but since
these are good conductors, the temperature gradients across them are small
and therefore (s — i) 15, © a good approximation, the emperamire
difference across the sample.

17.7 THERMAL RADIATION

We shall describe thermal radiation as being electromagnetic radiation emitted
by a body solely on account of its temperature, The radiaton spans a conunuows
range of wavelengths and the distribution of energy amongst these wavelengths
depends on the temperature of the emirter. At temperatures below about 1000 "C
the energy 15 associated almost entirely with infrared wavelengths; at higher
remperamures visible and ultravioler wavelengrhs are also involved. (These aspects
are discussed more fully in section 17,107, Thermal radiation has all the general
properties of electromagnetic waves. It can be reflecred; s speed in a vacuum is
3 = 10" ms~'; it cannot be deflected by electric and magneric fields; the intensity
of the radiation produced by a point source falls off as the inverse square of the
distance from the source; etc.

When thermal radiaton iz incident on a body some of the radiadon may be
reflected, some transmitted, and some may be absorbed and produce a heatng
effect. A substance which transmits the thermal radiavdon incident on i is said o be
diathermanous, one which absorbs the radiation is said 10 be adiathermanous,
(Equivalent respectively to substances which are transparent and substances wheh
are opague to visible light.) The absorption of electromagnetic radiation of any
wavelength may produce a heating effect. Thus, though X-radiation, for example,
t5 not normally thought of as thermal radiation, heat 15 produced when X-rays are
absorbed.

17.8 PREVOST’'S THEORY OF EXCHANGES

According vo this theory a body emuts radiation at a rate which 1s determimed
only by the nature of its surfaceand its temperature, and absorbs radiation at
a'‘rare which is derermined by the nature of its surface and the temperature of
its surroundings:

Suppose that a body 15 suspended by a non-conductng thread inside an evacuated
enclosure whose walls are maintained at a constant temperature 1. Since the
enclosure is evacuated, there 15 no possibility of conduction and convection and
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events are controlled only by radiative processes, i.c. Prévosts's theory applies. If
the temperature of the body is greater than thar of the surroundings, the body emits
radiation at a greater rate than it absorbs it and its temperarure falls, evenmally
becoming equal to T, Conversely, if the inital temperature of the body 15 less than
that of the enclosure, the temperature of the body increases unnil it becomes equal
to T Itis important to note that emission and absorption do not cease at this stage;
instead there is a dynamic equilibrium in which the rate of emission is equal to the
rate of absorption.

It follows that ifthe surface of a body is such that the body is a good absorber
of radiation, it must be an equally good emitter, otherwise its temperature
would rise above that of its surroundings. It also follows that a good emiter is a
good absorber. These conclusions are confirmed by simple experiments (c.g.
Leslie’s cube), In particular, matt black surfaces are the best absorbers and
the best emitters of radiation; highly polished silver surfaces are both poor
emitters and poor absorbers.

17.9 THE BLACK BODY

Fig. 17.7
Approximate realization
of a black body

Ablack body is a body which absorbs all the radiation which is incident on it.

The concept is an idealized one, but it can be very nearly realized in practice -
Fig. 17.7 illustrates how. The inner wall of the enclosure 1s matt black so that most
of any radiation which enters through the small hole is absorbed on reaching the
wall. The small amount of radiation which is reflected has very little chance of
escaping through the hole before it too 1s absorbed ina subsequent encounter with
thie wall.

Senall hobp
acts as a
black by

Kast bdack
theredarn wary
litthe reflection
Small cone presents

raediatenn which

Enters along tha

axis baing reflected

ouwl immediately

A black body radiator (or cavity radiator) is one which emits radiation
which is charactenistic of its temperature and, in particular, which does not
depend on the nature of its surfaces.

A black body radiator can be made by surrounding the enclosure of Fig. 17.7 witha
heating coil. The radiation which is emitted by any section of the wall is involved in
many reflections before it eventually emerges from the hole, Any section whichisa
poor emitter absorbs very little of the radiation which is incident on it, and those
sections which are good emitters absorb most of the radiation incident on them.
This has the effect of mixing the radiations before they emerge, and of making the
temperature the same at all points on the inner surface of the enclosure.
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increasing temperatures cause the overall colour to change from red through
yvellow o white. The intensity distribution of the wavelengths emirted by the Sun is
the same as that of a black body at about 6000 K, 1.2, the temperature of the Sun's
surface is about 6000 K. Some stars are much hotrer than the Sun and appear blue.

Stefan's Law

The toral energy radiated per unit time per unit surface area of a black
body is proportional to the fourth power of the temperature of the body
expressed in kelvins,

Thus

B ot [17.7)

where

a = aconstant of proportionality known as Stefan’s constant. Its value
i55.67 x 10 *Wm 2K,

Mote that the value of E at any temperature T is equal 1o the area under the
corresponding curve, i.e. E = [ E;dA.

If a black body whose temperature is 77is in an enclosure at a temperature 1y, the
rate at which unit surface area of the black body 15 receving radiaton from the
enclosure is o T, *. The net rate of loss of energy by the black body is therefore given
by E,.; where

B = o{T*=ToY) [17.8)

In the case of a non-black body equations [17.7] and [17.8] are replaced by
E = gaTl
and
Epn = ea(TY—=Ty4H
where & 15 called the total emissivity of the body. Its value depends on the nature
of the surface of the body and lies berween O and 1,

EXAMPLE 17.2

A 100W electric light bulb has a filament which is 0.60 m long and has a diameter
of 8.0 = 10 " m, Estimate the working temperature of the filament if its total

emissivity is 0,70, (Stefan’s constant = 5.7 = 10" Wm K1)

Solution

The surface area of the filament is that of a cylinder of diameter 8.0 « 10 " m and
length 0.60 m and is therefore m = 8.0 % 10°7% = 0.60 = 1.51 = 10 *m".

The bulb 1= rated at 100%W and therefore E, the energy radiated per unit time per
unit surface area of the filament, is given by
10D

_—_2 5 2
E = s = 662X 10°Wm
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Fig. 17.11

Tao calculate thermal
resistance coafficiant of a
composite structune
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It 15 possible to estimate the temperatures on the surfaces of the window pane in
our example (see later in this section). Such an estimare gives 6.8 °C for the inner
surface and 5.8°C for the outer surface. There is therefore a temperamure
difference of 1 °C across the glass. The reader should not be surprised by this value
— it is one rwenteth of the value we used in our original calculation, and thar gave
an estimarte of the heat flow rate which was twenty nmes too high!

Thermal Resistance Coefficient

The thermal resistance coefficient of a material is the thermal resistance of unit
area of the material and is defined by

L
X = T [17.10]

where
X = thermal resistance coefficient (im* KW 1)
I. = thickness of matenial (m)
k = cocfficient of thermal conductivity "W m ' E ')

The thermal resistance coefficient of a structure which consists of a number of
different components in series is the sum of the thermal resistance coefficients of
the individual components. In Fig. 17.11, for example, the thermal resistance
coefficient, X5, of the structure {for heat transfer between the outer surfaces of A
and C is given by

x,; = .:'f,.,+xg+.3f.;_-,

[ % = X+ X%+ %

where X, Xy and X are respectively the thermal resistance coefficientz of A, B
and C. The thermal resistance coefficient, Xy, of the window in Fig. 17.10 is
given by

Aw = X+ X+ XK
where X, is the thermal resistance coefficient of the glass and is calculated on the
basis of equation [17.10], and X, and X, are respectively the effective thermal
resistance cocfficients of the ‘layers’ of air on the inner and outer surfaces of the
glass. Equation [17.10] cannot be used to calculate these, but it s found by
experiment that X, = 0.120m* KW ! and X, = 0.053m” KW', The U-value of
the window is the reciprocal of its thermal resistance cocfficient, 1.e.

1

Xo
W arc now In a posidon to show how we estmated the temperatures on the
surfaces of the glass in the window. Equation [17.5] can be rewritten as

difl A

o= -0

=
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the room temperature on the scale of the
resistance thermometer and on the scale of the
constant volume gas thermomener.,

Why do these values differ slightly? [L]

The walue of the property X of a certain
substance is given by

X, = X, + 050+ (2.0 x 107%%?,

where [ is the iemperarure in degrees Celsius
measured on a gas thermometer scale, What
would be the Celsius temperature defined by
the property X which corresponds 1o a tem-
perature of 50°C on this gas thermometer
scale? L]

C9 (a) What i5 meant by a thermometnc

property? What qualities make a par-
ticular property suitable for use in a
practical thermometer?

A Celsius temperature scale may be
defined in terms of a thermomerric
property X by the following equation:
X - Xy
K 1

i X~ X, 100G Ry
where X 15 the value of the property at the
1ce point, X op 8t the steam point, and A at
some intermediate temperature. If X s
plotted against @ a straight line always
results no mater what thermomertric
property is chosen. Explain this.

(b} Omn the graph, line A shows how X varnics
with i (following equaton (1} abowve), line
B shows how a second thermomertric
property O varies with ), the temperature
measured on the X scale,

X 0

Xows, hus !

o Oy

o 20 a0 G0 B wa &rc

I

(i) Descrbe, in prnciple, how you
would conduct an experiment to
obtain line B.

(i) If ¥ = 40°C recorded by an X-scale
thermometer, what temperature
would be recorded by a (Mscale
thermometer?

(1) At what two temperatures will the X
and O scales coincide?

(¢} The ideal gas scale of temperature 15 one
based on the properties of an ideal gas.
What is the particular virtue of this scaler
Descrobe very brefly how readings on
such a scale can be obtained using a
thermometer containing a real gas,  [L]

C10 A temperature T can be defined by

T=TiX/X;), where Ty is the assigned
remperature of a fixed point and X and X;
arc the values of a thermometrnic property of a
substance at T and Ty respectively., On the
ideal-gas scale, the fixed point is the triple
pomnt of water and Ty = 27316 K.

(ay List four thermomerric properties which
are used n thermometry. Explain why
certain thermometric properties of a gas
are taken as standard.

(b} Explainwhatis meant by a fixed pointand
by the triple point of water,

{¢) Skerch and label the simple form of
constant-volume gas thermometer found
in schon] laborarorics, and describe how it
15 used to determine the boiling point of a
liquid on the ideal-gas scale.

{d) For a thermometer which 1s not based on
the properties of gases, explain how vou
would calibrate it in terms of the ideal-gas
scale.

(e} Compare the advantages and disadvan-
tages of the constant-volume gas thermo-
meter with those of any rwwe other types of
thermomerers,

(f) The pressures reconded in a cerain
constant-volume gas thermometer at the
triple point of water and at the boiling
point of a liquid were 600 mm of Hg and
800 mm of Hg respectively, Whart is the
apparent temperature of the boiling
point? However, it was found that the
volume of the thermometer increased by
1% between the two lemperatures,
Obtain a more accurate value of the
boiling point. ™1
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source of the energy required to evaporate the
water? Estimate the proportion of the water
originally in the clothing which remains as ice.
Stare any assumprions vou make,

(Specific latent heat of fusion of ice at
2TIK = 333k kg '; specific latent heat of
vaporizattionofwaterat 273K = 2500 k] kg~ ')

[S]

Describe wath the aid of a labelled diagram a
method of measunng the latent heat of
vaporization of a liquid.

In a factory heating svstem water enters the
radiaters at 60 °C and leaves ar 38°C, The
system 15 replaced by one in which steam at
1M °C 15 condensed in the radiators, the
condensed steam leaving at 82 "C, What mass
of steam will supply the same heat as 1,00 kg of
hot water in the first instance?

(The latent heat of vaporization of water is
2,260 ¢ 10" Tkg " ar 100 °C. The specific heat
of wateris 4.2 = 107 kg ' "C 1) n

Describe how vou would determine  the
specific latent heat of vaporization of a hguid
by the continuous flow method.

What becomes of the energy used 1o change a
liguid into a vapour at the same emperaniee?

A beaker containing ether at a temperamire of
13°C 15 placed i a large vessel in which the
pressure can be reduced so thart the ether boils;
this resules in a cooling of the remaining ether,
What proportion of the ether has evaporated
when the temperature of the remainder has
been reduced to 0°CF (Assume no inter-
change of heat berween the ether and s
surroundings.)

{Mean specific heat capacity of ether over
the temperature range 0-13"C =24«
10° kg ' KL

Mean specific latent heat of vaporization of
ether in temperature range 0-13°C = 3.9 =

10° kg ') (5]

A domestic kertle is marked 250V, 2.3 kW and

the manufacrurer claims that it will heat a ping

of water to bolling point in 94 5.

(@) Tesr this claim by calculation and state
any simplifying assumptions you make.

27
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(b} lfthe ketdeisleft switched on after it boils,
how long will it take to boil away half a pint
of water measured from when it first boils?
Estimate the work done against an ammos-
pheric pressure of 100 kPa when 1 cm” of
water evaporates at 100°C, producing
1600cm® of steam. Express this as a
percentage of the rotal energy required
to evaporate 1 cm” of water at 100°C.,
(Specific heat capacity of water = 4.2 x
10° kg~ K, specific latent heat of vaporisa-
tion of water = 2.3 « 10"Jkg !, density of
water = 1.0gem ™, | pint = 570cm’.)
[]."92]

(c)

The graph refers o an expenment in which an
initially solid specimen of nitrogen absorbs
heat at a constant rate, Nitrogen meles at 63 K,
and the specific heat capacity of solid nitrogen
is 1.6 % 107 Tk 'K,

73
g |
=
B I
23 |
= |
|
1 1
53
K] 160 L00 [=ali}
Todiwils

Calculate the specific latent heat of fusion of
nilroEen.

Calculare the specific heat capacity of liquid
nitrogen. 151

{a) In an espresso coffee machine, steam at
100°C is passed into milk tw heat it
Calculate
(i) the energy required 1o heat 150g of

milk from room temperature (20 °C)
to 80 "C,
(i) the mass of steam condensed,

(b} A student measures the temperature of
the hot coffee as it cools. The results are
given below:

Tirma,/min o (2| 4|6 &8
Temp,"C 78 | 66 | 56 | 48 | 41

A friend sugpests that the rate of cooling is

exponential.

(i} Show guantitatively whether this
suggestion is valid.
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period of three years the pressure has
fallen 1o 2.0 = 10°Pa at the same tem-
perature because of leakage.

[(Assume molar mass of nirogen =
0028kgmol', R = B3Jmol "K',
Avogadro constant = 6.0 = 107 mel ')

Calculate:

(i) the mass of gas originally present in
the cylinder,

the mass of gas which escaped from
the cylinder in three years,

the average number of nitrogen
molecules which escaped from the
cvlinder per second.,

{Take one wear to be egual to
3.2 % 107 s.) [0, "92]

(id)
(iid)

C37 A cylinder containing 19 kg of compeessed air

at a pressure 9.5 umes that of the atmosphere
is keprin a store at 70, When itis moved o a
workshop where the temperature 5 27°C a
safery valve on the cylinder operates, releasing
some of the air, If the valve allows air to escape
when its pressure exceeds 10 times that of the
arnosphere, calculate the mass of air that
CRCAES. [L]

A mole of an ideal gas at 300 K is subjected toa
pressure of 107 Pa and its volume is 0.025m”,
Calculate:
{a) the molar gas constang K,
(b} the Boltzmann constant k&,
(e} the average translagonal kinetic energy of
a molecule of the gas.
[Ny = 6.0 = 107 mole ') [, *o0)
A wvessel of volume 1.0 x 10 m” contains
helium gas at a pressure of 2.0 = 10° Pa when
the temperamure is 300 K.
{a) What is the mass of helium in the vessel?
(b) How many helium atoms are there in the
vessel?
{e) Calculate the r.m.s. speed of the helium
ADDITES.
i Relative atomic mass of heliom = 4, the
Avogadro constant = 6.0 x 10" mol™!, the
molar gas constant K = 8.3 mol "K'
[W, "92]

Lise a simple treatment of the kinetic theory of
gascs, stating any assumptions made, to derve
the expression & = 3p/p for the mean square
speed of the molecules in terms of the density
and pressure of the gas.

ca
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What would be the total kinetic energy of the
atoms of 1kg of neon gas at a pressure of
107 Pa and emperature 293 K, given that the
density of neon under these conditions is
828 gm . What would be the toral kinetic
energy of the aroms of 1 kg of neon gas at
300 K¢ Hence determine the specific heat
capacity of neon at constant volume, [5]

(a) Srarte Avogadro’s law,
(b} The pressure p of an ideal gas is given by:

po=tam< >

where w is the number of molecules per
unit volume, m 15 the mass of one
molecule and <& > is the mean square
speed of the gas molecules,

Use the above equation to deduce
Avogadro’s law, [, "a1]

(a) Suate the assumptions made in the kinetic
theory of gases and prove p = lqp.:_-', in the
usual notation. Hence denve (i) Bovie's
law, and (i) the perfect gas law, assum-
ing that the average kinetic energy of a
molecule 15 proportional to the absolute
Lemperature.

Consider whether the assumptions of the
kineoc theory are likely to be true for real
Eases. )

{¢) Ar room temperature, v of a gas
molecule is typically abour 10°ms .
Explain whyv, if a gas is released ar one
side of a room, it may be several minutes
before it can be detected on the other side
of the room.

At a certain instant of ome, ten molecules
have the following speeds: 100, 3040, 400,
400, 500, 600, 600, 600, 700, #00ms
respectively, Calculate +/ 2. [W]

(k)

(d)

(a) Onemoleof an ideal gas at pressure pand
Celsius temperature f occupics a volume
V. Sketch a graph showing how the
product pl varies with &, What informa-
tion can vou obtain from the gradient of
the pgraph and the intercept on the
[eMperalure axis?

Some helium (molar mass of which =
0,004 kg mol ") is contained in a vessel
of volume 8.0 = 10* m” at a temperature
of M K. The pressure of the gas is

200 kEPa. Calculate

(b)
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Adr may be taken to consist of B0%: nitrogen
molecules and 2096 oxygen molecules of
relative molecular masses 28 and 32 respec-
tively, Calculare:

Y

(b)
(<)

the ratio of the root mean square speed of
nitrogen molecules 1o that of oxygen
molecules i air,

the ratio of the partial pressures of
nitrogen and oxygen molecules in air, and
the ratio of the root mean square speed of
nitrogen molecules in air at 10 °C to that

at 100°C. [0 & C)

C49 Show thart, for an ideal gas, the coefficient of
pressurc increase at constant volume and the
coefficient of cubic expansivity at constant

pressure are equal in value.

C50 (a)

(b)

C51 (a)

(b)

[AEB, "79]

A flask is filled with water vapour at 30 C
and sealed. The velocity of any particular
water vapour molecule in the flask may
vary randemly in owo different ways.
What are these two ways?

Descrbe, with the aid of a diagram, how
the motion of one of the water vapour
molecules could change during a time
interval in which it has six collisions with
other molecules.

Explain why a small increase in pressure
will do more work on a gas than on a

liquid. [L, "a1]

(i) Write dewn the equaton which
defines a temperature on the Kelvin
scale in terms of the properties of an
ideal gas. Explain the symbols you
use.

(i} A simple form of gas thermometer
consizts of a capillary ube sealed at
one end and containing a thread of
mercury which traps a mass of dry
gir. Describe how you would cali-
brate it on the gas scale and use it to
determine the boiling point of a
liguid known to be about 350 E.
Explain how the mwmperarure is
calculated from the readings and
slate any assumptons vou make,

A cvlinder fitted with a piston which can

move without fnicton contains 0,050 mol

of 8 monatomic ideal gas at a temperature
of 27 °C and a pressure of 1.0 x 10° Pa.

Calculane:

(c)

SECTION O THERMAL PROPERTIES OF MATTER

(i) the volume,

(ii) the internal energy of the gas.

The wmperature of the gas in (b) 1s raised

to 77 °C, the pressure remaining constant.

Calculate:

(i) the change in inernal energy,

(i) the exvernal work done,

(iii} the total heat energy supplicd.

{Maolar gas constant — 8.3 mol "K'
)

€52 Ar a temperarure of 100 C and a pressure of
1.01 = 10°% Pa,

.00 kg of steam occupies

1.67 m" but the same mass of water occupies

only
heat of vaporizatgon of water at 100 'C is
2.26 » 10" Jkg '. For a system consisting of

104 = 10 'm’. The specific latent

1.00 kg of water changing to steam at 100°C

and 1.01 = 10° Pa, find:

{a) the heat supplied to the sysoem,

(b} the work done by the system,

{e) the increase in internal cnergy of the

SVELem. [C]

C53 (a) Stare the e low of thermodymanie,
(b) Give one practical example of each of the

following:

(i) aprocessinwhich heat s supplied to
a system withour causing an increase
N temperatine,

(ii} a process in which no heat enters or
leaves a systern but the temperature
changes. 1C]

C54 Some gas, assumed to behave ideally, 15
contained within a cvlinder which is sur-

rounded by insulanon o prevent loss of heat,
as shown below,

:l.l

: _—

Irmulstion

Initially the volume of gas is 2.9 = 10 "m”, its

pressure is 1.04 = 10% Pa and its temperature

is 314 K.
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(a)

(b)

(c)

(d)

Use the equation of state for an ideal gas to
find the amount, in moles, of gas in the
cylinder.

The gas is then compressed to a volume of
2.9 » 107 m” and its temperature rises 1o
700 K. Calculate the pressure of the gas
after this compression.

The work done on the gas during the
compression 15 91 . Use the first law of
thermodynamics w find the increase in
the internal energy of the gas during the
Enmprﬂﬁmn.

Explain the meaning of infernal energy, as
applied to this system, and use your result
in {¢) to explain why a nse in the
temperature of the gas takes place during
the compression.

(Molar gas constant = 8 3JK ' mol ')

C55 The diagram shows curves (not to scale)
relating pressure, p, and volume, V, for a
fixed mass of an ideal monatormic gas at 300 K
and 500 K.. The gas is5 in a container fitted with
a paston which can move with negligible friction.

&
o0 Pa
1
00K
300K
o »
Li] .00 Wria Yt

(a) Give the equation of state for mmoles of an

ideal gas, defining the symbols used.

Show by calculation that:

(i) the number of moles of gas in the
container is 2.01 = 1072,

(ii) the volume of the gas at B on the
graphis 1.67 = 107 * m®.

Molar gas constant, R = 8.31 Jmol ' K™

(b) The kinetic theory gives the equation

p = Lpe® where p is the density of the

gas, _

(i) Explain what is meant by &2,

{ii} Ulse the equation to derive an expres-
sion for the total internal energy of

(c)

(d)

C56 (a)

(b)

(<)

78

one mole of an 1deal monatomac gas

at kelvin temperature T

Caleulare the wotal internal energy of

the gas in the contatner at point A on

the graph,
Stare the first law of thermodynamics
as applied 1o a fAxed mass of an ideal
gas when heat energy 15 supplhied to it 50
that s temperature nses and it s
allowed o expand. Define any symbols
wsed.
Explain how the first law of thermody-
namics applies to the changes represented
on the graph by (i) Aw Cand (i) Aw B,
Calculate the heat encrgy absorbed in
cach case. [I: "89]

The frst law of thermodynmamics s
represented by the equation

0 = AU+ W

Explain each term in this egquation.

An engine (shown below) burns a mixture
of petrol vapour and air. When the engine
is running it makes 25 power strokes per
second and develops a mean power of
15 EW.

f’i?“ﬁ

D.C0im

Crogs sachicnal ares
noos et

.

—— Piglhn

Meglecting losses in the engine due o

friction and other causes, calculate the

work done in each power stroke.

The burning starts when the piston is at

the top of its stroke and the resulting high

pressure droves the piston downwards

through a distance of 0.090m. The

cylinder has a cross-sectional area of

00050 m?,

Calculate:

(i) the mean force on the piston head

dunng the power stroke;

(ii} the mean pressure of the hot gas.

(O, "92]
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is pow expelled into the ammosphere.
Calculare the pressure in A after the
second inlet stroke. Calculate the num-
ber of strokes of the pump o reduce the
pressure in A o 1.0 = 107 Pa, The whole
systemn 15 maintained at 10°C throughout
the process [O & ]

C76 The specific latent heat of vaponzaton of a

c77

C78 (a)

particular liquid at 130°C and a pressure of

2.60 % 10° Pais 1.84 » 10°Jke . The speci-

fic volume of the liquid under these conditions

is 2.00 = 107 m* kg ', and that of the vapour

it 5.66 % 107" m” kg ". Calculate:

(a) the work done, and

(b} the mcrease in internal energy when
1.00 kg of the vapour 15 formed from the
liquid under these conditions.

(a) Explain whar is meant by a reversible

change.

(b) State the first larw of thermodymamics, and

discuss the experimental observanons on

which it 15 based.

A mass of 0,35 kg of ethanol is vaporized

atits boiling point of 78 "C and a pressure

of 1.0 = 10° Pa, At this temperature, the

spectfic latent heat of vaporization of

ethanol s 0.95 = 10°Tkg™ ', and the

densities of the liguid and vapour are

T90kgm ' and 1.6kgm * respectively.

Calculate:

(i) the work done by the system;

(ii} the change in internal energy of the
system,

Explain in molecular terms what happens

to the heat supplied o the system.  [O]

(c)

State four of the basic assumprions made
in developing the simple kinetic theory for
an ideal gas. N
The theory derives the formula p= 4 p ¢
where p is the pressure of the gas, p 15 the
density of the gas and ¢ is the mean
square speed of the molecules. Explain
maore fully what 15 meant by & and explain
it gignificance in relation o the tempera-
ture of 3 gas.
Diescribe briefly the expernments which
Andrews performed on carbon diosde.
(A detailed descnption of the apparatus is
reor required. )
(i) Draw graphs o show the pressure—
volume relattionship which Andrews

(b)

(c)

SECTION C: THERMAL PROPERTIES OF MATTER

obtained for vanous temperatures,
Indicate on your diagram the various
states of the carbon dioxide.

Llse vour graphs 1o explain the mean-
ing of critical temperarure, What is its
sigmificance in connecton with the
liquefaction of gases? [AEB, "79]

(ii)

C79 The model of a gas as a large number of elastic

bodies moving about in a random manner is

the basic idea of the kinetic theory of gases. In

terms of this model, explain;

(a) what is meant by an ideal gas,

(b} how a gas exerts a pressure when enclosed
in a container,

(e} why the atmospheric pressure decreases
with height,

{d} how the atmosphere, which 15 not in a
CONLainer, eXerts a pressure at all.,

Which of the assumptions made o develop a

quantitative expression for the pressure of an

ideal gas require o be modified o explain the

behaviour of a real gas? Hustrate your answer

by considering a p- 1" 1sothermal for an ideal

gas and o p~1° isothermal for a real gas at a

temperature below its critcal value.

A series of experiments was performed by
Andrews to obtain p— 1 1sothermals for carbon
dioxide. Sketch a =set of p=V 1sothermals for
warer, nonng partcularly any dissimilanites
between the curves for water and carbon
dioxide. [L.]

Explain what 15 meant by the crtical rempera=
rire of a real gas (such as carbon dioxide), and
describe, with the aid of pressure-volume
diagrams, the behaviour of a real gas ar a
temperature {a) above the critical tempera-
ture, (b} equal 1o the critical temperature,
(¢} below the critical temperature,

Either: Describe, with the aid of a diagram, an
experiment by which the departure of a real gas

from ideal gas behaviour may be studied.

Cr: Explain how van der Waals attempred to
produce an equation which would descnbe the
behaviour of a real gas. [S5]

What are the condinons under which the
equation pl” = BT gives areasonable descnp-
ton of the relationship between the pressure p,
the volume ¥ and the temperature T of a real

gas?



CRESTIONS ON SECTION &

Skerch p-17 isothermals for the gas-liquid
states and indicate the region in which
pV = RT applies. Indicate the stare of the
substance in the various regions of the p-V
diagram. Mark and explain the significance of
the critical isothermal,

Diiscuss a way in which the equation pV = BT
may be modified so that it can be applied more
generally. Explain and justfy on a molecular
basis the additonal terms introduced. Discuss
the success of this modification. (L]

CB2 (a) State the conditons under which the

behaviour of a real gas will dewiate

significantly from that expected of an

tdeal gas,

(b} (i} On apl against p diagram skerch an
isotherm for a real gas at the Boyle
temperature. On the same set of axes
sketch isotherms for temperatares
just above and just below the Boyle
temperature, labelling the 1sotherms
clearly.

(ii} Explain how the properties of the
atoms of molecules of a gas give rise
to the shape of the isotherm you have
drawn belowr the Bovle temperature,

{c) Aquantrtyof oxygen gas occupies 0.20 m”

at a temperature of 27 “C and pressure of

10 atmospheres. If it were to be liquehed,

what volume of liquid oxygen, density

1.1 = 10*kgm ?, would be produced?

The oxvgen gas in its inital state may be

considered 1o behave as an ideal gas.

What condition must be met before the
gas can be liquefied by the increase of
pressure alone?

{1 atmosphere = 1.0 = 10° Pa, relative
molecular mass of oxygen = 32, molar
gas constant = 8.3 Jmol "K' [], "89]

CB3 The equarion of state for one mole of a real gas

a .
where p 1s the pressure of the gas, V' iz the
volume and T is the absolute temperature of
the gas. Determine the dimensions of (1) a,

(i) b, (iii) R. W, "90]

C84 (a) Write down van der Waals® equation of

state for a real gas and explain how the

(b)

{c)

(d)

G885 (a)

(b)

(c)

(d)

A5

assumptions of the simple kinetic theory

of gases are modified in the derivaton of

the eqguation.

Carbon dioxade has a density of 344 kgm

at its critical pressure 7.5 x 10° Pa and

critical temperature 304 K.

(I} By considering the mass of | mol of
0y show that the value of the critical
volume is 1.28 » 10 'm".

(ii) Hence calculate the van der Waals’
constants a and b given thar the
critical volume I, = b,

{Molar mass of CO. = 4.4 « 10 ? kg,

molar mass constant = 8.3 Jmol "K'

Sketch, on the same axes, P-V 1sotherms

for a fixed mass of CO5 at

(i} the crtical temperamre,

(ii) a wemperanure below the critoal
temperature.

Mark on the same axes points corme-

sponding w the critical volume and

critical pressure.,

For the isotherm vou have drawn in

{c} (1) give the state (or states) of the O,

when

(i} it has the critical volume,

(i1} it 15 at the critical pressure.

[1.'91]

Which two assumptions of the kinetic
theory of ideal gases are unlikely 1o be
valid for real gases at high pressure?

The equation of state for one mole of an

ideal gas is pV = RT".

(i) Write down Van der Waals® equation
for one mole of a real gas.

(i) Explain the reasons for the modifica-
tions made.

The following data refer to nitrogen gas.
Critical pressure = 3.4 « 10*Pa
Critical volume = 9.0 = 10-* m” mol-
Van der Waals" constant,

a= 1.4 = 107" Pam" mol?
Van der Waals® constant,
b=39x% 10" m" mol’

(i) Use the given data to calculate the
critical temperature of nitrogen.

{ii) Calculare the emperature of an ideal
gas with the same pressure and
volume per mole as given in the daea.

aketch a graph of pV against p for 1 mole

of nitrogen at its cntical temperature. On
the same axes, sketch the graph for | mole
of an ideal gas at the remperature calcu-

lated in () (ii).



‘Water bath, P —

QUESTIONS ON SECTION

(e) Explain why some of the assumptions of
the kinertic theory of an ideal gas may have
to be modified for real gases. Hence
explain why a real gas may deviate from
Boyle's law, n

C80 (a) The pardy labelled diagram below shows

the apparatus used by Andrews in his
experiments on carbon dioxide.

State what A s and explain its purpose,
Explain whv each of the warter baths, I, )
and R were used during the experiment.

Capillary tulba containing
A —] " carbon dioxide

. 'Water bath, (0]

1 - Water bath, A

(b) State the meanings of crirtcal remperature
and cnitical pressure,

(e} Some carbon dioxide initally at a tem-
perature above its critical temperature is
subjected to the following changes.

(i) It is compressed isothermally to a
pressure above its critcal pressure.

(ii) Then at this pressure it is cooled
at constant pressure until the tem-
perature 15 well below 15 critical
femperature,

(iil) Then at this remperature it is
expanded isothermally wntl all the
carbon dioxide is again a gas.

Sketch a graph of pressure against volume

to illustrate these changes, and discuss the

associated changes of stane. [1]

s

C91 {a) In terms of simple kinetic theory, explain

qualitatively how a gas exerts a pressure. If
the pressure of an ideal gas is given by
p= 11,:-3 where p is the density of the
gas and & is the mean square speed of the
molecules, explain any change in the
pressure that may occur if the gas is:

(i} allowed o expand while the tem-
perature 15 kept constant,

(il heated while the volume is kept
constant.

(b} Skerch isothermal curves to show how the
pressure of a fixed mass of substance {e.g.
carbon diosade) varies with volume over a
wide range of temperature and pressure.
Indicate on your sketch the regions where
the substance 15 0 the fguid phase, the
safurated vapour phase, the wmsaturated
vaponr phase and the gas phase,

{c) An unsaturated wvapour of mass 5=
10 kg and at a remperatare of 20°C is
compressed imﬂ:mma!l;:‘ uniil, at a
volume I, = 9 « 107" m" and a pressure
6« 10°Pa, the vapour first becomes
saturated, Further compression of the
vapour causes the formation of liquid
unal, when the volume 15 3, the sub-
grance 15 changed completely to higuid. If
I i3 negligible compared with 1 and the
femperature remans constant through-
out the process, calculate:

(i) the work that must be performed
during the compression from [y to
Vs,

(ii) the amount of thermal energy that
must be supplied to, or removed
from, the substance dunng the same
COMpPTEssion.

{Assume that the specific latent heat of

vaporization of the liguid at 20°C is

1.2 107 kg ') [AER, '79]

Sketch a graph to show how the saturated
vapour pressure of a liquid vanes with
temperature. Give a qualitative explanation
of the shape of the graph. [C]

In rerms of the kinetic theory of marter explain:

{a) what 15 meant by sareated vapowr and
SAENTEION VaPOuT PTETSUre,

(b)) how the saturanion vapour pressuce varics
with temperature,

Diescribe an expenment o measure the

saturation vapour pressure of water vapour at

300 K (27 “(C). Discuss one practical difficulcoy



C100 (a) (i)

QUESTICNS QN SECTHONW C

(i) Calculate the saturation vapour
pressure at the temperature of the

eXperiment.
(iil} Calculate the initial pressure of the
WHLET VAPOUT, [AERB, "79]

Explain what is meant by a saturated

Dapoir,

(ii} State Dalton's law of partial pres-
SUes.

(b)) Suggestan experiment to investigare the
variation with temperature of the satu-
rated vapour pressure of water vapour
over the range of 0 °C to 100°C. Sketch
the apparatus you would use, list the
measurements yvou would make, and
describe how the results would be
obtained.

{c) The saturated vapour pressure of water
at 20 'Cis 18mmHg (= 2.4 kPa). Draw
sketch-graphs showing how the pres-
sure, p, of 1 m® of water vapour (with a
small amount of water present through-
our) will vary when:

(i} the vapour is compressed isother-
mally to a volume of 0.2m",

(ii) the vapour (and the water) are
heated ar constant volume to the
boiling point of water (100 "C),

In each case, show on your graph the

final vapour pressure exerted by the

WELET VAPOUr.

() In pure ammosphenc arc it may be

assumed that 80% of the molecules
present are niirogen  (molar mass =
0.028kg) and that 20% are oxygen
[(molar mass = 0.032 kg).
[Take atmospheric pressure as 100 kPa,
temperature to be 17 "C, and the molar
gas constant to be B.3JK "mol ')

Showing all smages in vour working,

calculate:
(1) the partial pressure exerted by cach
Eas,

(ii} the density of the oxygen present,
(i) the density of the air, [

C1071 In an experiment to determine the specific

latent heat of vaporization of benzene, it was
found that when the elecrrical power input to
the heater was B2W, 10.0 g of benzene was
evaporated in 1 minure; when the power input
was reduced to 30W, the rate of evaporation
was 2.0g per minute, Calculate the specific
latent heat of vaporization of benzene.

TS

The saturation vapour pressure of benzene 15
1.0 % 10 Pa at a temperature of B0 C; at the
same remperamire, the saturation vapour pres-
sure of acerone (propanone) is 1.8 = 107 Pa.
Which of these mwo compounds has the
higher boiling point, and why?

(Atmospheric pressure = 1.0 = 10° Pa.) [5]

THERMODYNAMICS
{Chapter 186)

cioz

C103

C104

c10s

(a) Explain what is meant by the statement
that two bodies are in thermal equli-
brium.

(b} Seate the zeroth law of thermodynamics.
Explain why it 15 so called and 1ts
relevance in the wse of o thermometer
[0 MERSUre emperanure,

The specific latent heat of vaponzaton of a
particular liquid ar 30 C and 1.20 = 10" Pa
is 3.20 = 10° kg '. Under the same condi-
tons of emperature and pressure the
specific . volume  of  the  liguid s
1.00 = 10 *m kg ', and that of its vapour
5 451 = 10 "m'kg ', I 3.00kg of the
liguid 15 waponzed at 30°C and
1.20 = 10" Pa, what is:

(a} the increase i enthalpy?

(b) the increase in intemal energy?

What is the maximum theoretical efficiency
of a heat engine which takes in heatat 25.0 C
and rejects i ar 1000 07

(a) Whenasyvsiem istaken fromAw Cvia B
it absorbs 180 ] of heat and does 130 ] of
work, How much hear does the system
absorb in going from A to C svia Dy, if i
performs 40 ] of work in doing so?

(b} The decrease in internal energy in going
from I to A 15 30 ], Calculate the heat
ahsnrbed by the system in going from:

(i) Arold,
(it Do C.
P
F
! B C
A o




Fig. 40.9
Diagram for Example
40.2

SECTION E: ELECTRICITY AND MAGNETISM

Solution
If the initial charge on X is Oy, then by Q = VO (equation [40.1]),
Qo = (40) = (5 = 107")

LE. i 200 = 10" coulombs

The situation after the capacitors have been connected 15 shown in Fig. 40.9,
where (s and () are the final charges on X and Y respectively, and V is the final
FD.

The capacitors are in parallel, and therefore the total capacitance is given {by
equation [40.8]) as

Total capacitance = 5+ 20 = 25uF
The total charge 15 unchanged, and therefore
Total charge = 200 x 10~*® coulombs
Apphving VO to the combination gives
200 = 107% = () = (25 = 107°)
1., vV BV
For X:
By O = MO we have
@y = (B) % (5= 10°%)
i.e. 0y = 40 = 10 " coulombs
ForY;
Since VC we have

Qy = (B) = (20 = 100 %)
L. 2y = 160 = 10 ® coulombs

The energy of a charged capacitor is given by ;J_.Gif': fequation [40.12]3, and
therefore

Inital energy = (5 x 107%) x (40)° = 4= 1077]
Final energy {5 % 10°%) = [B]z + {20 % 107%) x (B) = 0.8=10 7]



SECTION F: ELECTRICITY AND AAGNE TISN

Measurement of the Capacitance of an Isolated
Sphere

When the capacitance being measured is that of an 1solated sphere M and N in Fig.
4. 15(a) are respectively the sphere and an earth.

40.13 THE DC AMPLIFIER

Fig. 40.16
OC amplifier

& DC amplifier (Fig. 40.16) 15 an electronic device which acts as a voltmeter with a
very high input resistance (rypically 10''{}). The instrument is designed 10
produce an output current which s proportional 1o the PII across s input
rerminals. The PDY to be measured is applied to the input terminals and produces a
reading on a microammeter connected across the ourput terminals. A typical
instrument gives a full scale deflection on a 0-100 uA meter when the PID across
the input is 1 V. Before the DC amplifier is used, it must be calibrated by applving a
known PD of 1 ¥ to the input and adjusting a sensitivity control {not shown) to give
a reading of 100 g& on the microammerer,

Fumction seitch amplifiar
e %  NMicrosmmelir
.Ill 0100 A
L~ ‘;i

o 1
N
T /]
/

DiAput tarmanals

Although it 15 basically a voltmeter, a DC amplifier can be adapted o measure very
small charges {<107° C) and very small currents (<10-'' A),

Measureament of Charge and Capacitance

By use of the function switch a capacitor, C, whose capacitance is known, is
connected (internally) across the input. Capacitancesof 10" F, 10~ * Fand 10" F
are normally available. Suppose that the 10 F capacitor is selected and that the
charge to be measured, (3, 1s on the plates of a capacitor, C, (It might equally well
be on & proof plane or the dome of a Van de Grasff generator, etc.) In order that it
can be measured, O has to be transferred o the plates of C (the 107* F capacitor).
Accordingly, C' is connected across the input terminals of the DC amplifier so
that ' and C" are in parallel, in which case, provided the capacitance of C' is much
less than that of C, practcally the whole of the charge on O is transferred 1o O,
Suppose that the charge transfer produces a (steady) reading of 20 pA on the
microammeter. Since the instrument is calibrated 1o register 100 pA for an input
PD of 1V, it follows that the PD across ¢ is 0.2V and that (by ¢} = CV) the
charge on € is 107% x 0.2 = 2 = 107" C. As long as the capacitance of C' is
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MAGNETIC EFFECTS OF
ELECTRIC CURRENTS

41.1 MAGNETIC FIELDS

The region around a magnet where magnetic effects can be experienced 15 called
the magnetic field of the magnet. The direction of a field, at a point, is taken 1o be
the direction in which a north magnetic pole would move under the influence of
the field if it were placed at thar point. The path which such a pole would follow is
called a magnetic field line (or line of force). Field lines are directed away from
the north poles of magnets because ‘like” poles repel each other.

41.2 MAGNETIC FLUX DENSITY (B)

Fig. 41.1
Field lines and flux
density

The magnitude and direction of a magnetic feld can be represented by its
magnetic flux density (B). (This is sometimes called magnetic induction.)
Flux density is proportional to magnetic field strength (H) (see section 41.4).
The unit of flux density is the tesla {1 ). { The tesla is defined in section 41.7.)

The direction of the flux density at a point is that of the tangent 1o the field line ar
the point. The magnitude of the flux density 1s high where the number of field lines
per unit area is high (see Fig. 41.1).

Dirgcticn
of Bat P
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Field lines close e e o
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ANSWERS TO SECTION
QUESTIONS

The Examination Boards accept no responsibilicy whatseever for the accuracy or method of workang in the answers given, These are the
sole respansibility of the author.

SECTION A Ab4 (a) 10ms > (b) 45K () KW
Al 38N horzonally, 32 N verncally ABS m) L1 = 108ms ' (b) 0.16m
Al M at 56 to the horizontal ABT LAT = 10N !
AT 52 LN o the dght at 20 Below the horizonral ABE (n) 20ms 4 (b) L2« 10%kgms ' e} 27 = 10%]
AS 137,325« 0] A% fa) L4 = 10"% (B 7.0 = 10"W, L0 = 107w
AT (b (i) L3 {c) LLOD ATO {a) () 100N Q) 1O b ELTN o) SLTM
A% BE73ms', (a) MAN (b} TTON ATl {a) 25 = 10%kgs ' (b) 7.0 = 10%]s ! (e} 2025
A9 |7 2ms"! AT GhM
ALD {a) 192« 10 “kgs ' (b) 222« WO ms* AT {a) 0.03rads ' (b) 21 = L0° W rowarnds centre of
All 0,051 kg circle
AlZ 55 50ms ", L1295 me ! ATS D.6Brevs |
Al (u) 45m (b} 634 AT7 31 revemin
AlS fa) 155 (b) 11B1m AT (a) (i) 3Z2ms ' (i) ZZms ' (b) D20
AlT BOLOm, 290 = L] ABD (a) 90 = 10°7] fb) (i) 2imst (M) LEms'
A4 lms !, 235] (i) 055 ™
A2 D087 ms ! ARl (a) BM (b)Y BN
A6 2/3 ABZ (o) 0LOL] (b} Zms ' {c) 20ms > (d) 015N
AZT (k) () O60ms® () TS08m (i) L2 < 100 ARY (B) 185N (e} L235m
fiv) 50 kg ABS (b) 157]
AR (a) O60ms ©  (B) 225] (hefored, 81,41 (afrer) ARG 83 0pevy!
A3e 015 ASS (b) () L0« LO7) (i) 10km
AR 257 = I me ' ar 432 to the ompisal direction of the AR? SE9rev, 23568
proton A90 (b) () 29 = 107], 29km
AT (@) Lb < ¥ ms ' {e) QLOZT A9 () LO7rads ", 0161 ms !
A4 (b) (i) 2N A2 (@) d9rads ? (B} 54w W T Nm
Ade kg (A, 1Eg () ASI (e) () 20= 10 rads ' (H4) RO m
AT 23 1M (CD, LLe M (AR ADS (m) 0.08ms ' (b} =/2s
AJE 5208 (X, MOM Y Ata (b (0 010me" @) 0.2%ms 2 (E) LS« "]
A9 lAem AST (m) 0.026ms | (b)) 0.014ms LP =005 0=na8
A4 L0om A 168ms
Adl (m) S06M ar90 torhe wall (b)) 1121 & 63 toothe A% D42 ma !
ground Alol D27
AdE (b)) (i) H10N AlD2 (d) 263 = 10" Hz
Add (d) 500N (e} ISKW ALD3 (a) 0.25ms L0.016]
AdS (b)) (i) 550N () 275 ¢ L Pa AlDS (b) 0.12]
Ads w101 ALDs {a) (1) 0.05m (i) L0s 1 Bmsd
AdT (@) 10ms " (b) 240 1 265ms | AlDT o= 15mm, w = 2738 £ = n/Zrad
A4S (m) 300ms ' (b) 89.64] ALOR () () 338 = 0] (i) 345N, 255N
Ad9 19 4ms Alo® (d) 1398
ASD fa) 0.15ms " (before), 0.060ms ' [afier) Al12 (@) txs (b} L25 = o0 ']
fe) 4.6 « L] (before), LE « L0 ] (after] Al (a) L2 (b) () 22Hz (i) 13ms <
AS1 25 = I0°%, L= 10% M AlLS 16H:
ASd (m) 4.5 =« LD ':']' (b) Db6ms ofe) Dddms! Alle liom
ASS S.0ms ! ALLT (e) (i) 100kg (H) 5.03H:=
ASE 2me (A, dms ' (H), O3 m from A AllS (a) () lrds! (H) 0.%0ms =
AST 2ms V(P 6ms 000, 15me !, 60 THOW ALTS (b) (i) LN (i) 0.79s, 0.04]
ASE () 125m (b) 63N A120 BRI M
ASS (@) 45m (b)) 400N AlZl 144N 245k
ABD (m) () 250m (i) 4.0« 04N Al22 (d) 101 « 109N (&) 265« 10N () LO0]%
(ifi) 20= 0% kgms ', 20 = 10"N Al25 a0 o= 109 kg
(b B0ms ' 20 107 ], 8.0« 104] AlZY bidm
AGL (a) 4.0ms * (b) T.lms ' ALZE 5= 109 kg
A63 () () 5.0 () 5.0 () Lams™" AL {a) (G -5 = 107 Jkg!
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(b) (i) 268 = 10%N  (H) 259 = 10%ms!
() 249 = 107
AlBl 2 [0 kg
Al33 137 « 10°
Al L1 = 10 kgm
Alds 0 iﬁ.ﬂdnp
AlIE S3x 10030 % |0fm. 2.7 = L0 "ms?
A4l (b) Alkm
Al43 (a) —6.3 x 107 [y
Al4d {d) LOT x 10" ]
AL4S ) () L2B = 107 Jkg' (H) L26w 10']
AldS (B) 54 % 10 kg (c) 6% x 10" Nm'kgi
AL4T (a) ) —40.0MJkg !, —26.7 M) kg !
(i) 533 =« I.|L|,l{r7:-c IS (i) 11kms™!
AL4E (b) (1) 4.4 = 10°], 21 kms"
Al49 (a) (v) 79 = 10 ma ' 5] = 10"
(B (i) 4.2= 107m (H) 0.28s (@) 813

(b) -89 x 10" kg '

SECTION B

B2 {c) OMNm " (d) L22 = 10" Hz

B4 2w L0Y] 4% 107 kg !

B5 {a) 45:;11’:‘-'

H6 L3x 10

B7 Lﬂaﬁm’,}zm"'m

B (a) 3L =10 "m (b) 28x=10%]
Bua::uxw-_k.m' (b) 3.5 107 kgm *

BI0 1.b6kg (X}, 1.2kg (Y]
B11 L1 = 10" Pa

Biz 36.8em

B3 132

Bla (a) 4.7 = 10° kgm *
His 15N

Bl6 log

Bi17 o0« 10F kgm"
B18 (a) 600kg (b) DL2lmes
B19 (=) 4.Dmm
BII L._ﬁ_:-.].ﬂ-_
Hid z - |.|": L
B2s 2.74 = m ’f'n:'l"] 5im
Bi6 Scm
B27 T61.9 mmHg
B 3mm
B9 7.5 = 107" Nm ', The warer would fise w only 4.3 cm
B30 (b) Tmm
B32 (c) 4.5« '], 10y Fms "
H33 (b) (i) 7.3 = 10 nm !
B3 (a) Lmm {b) 5.5x 10%]
B35 26« 10 ' m?
B3 T x ll:'r"'Hm",l]-.H-J
Ba7 (&) 0.45m°
B3f LS« 10" Pg
B3% (=) 81 ) D9
Bad (c) (i) L2 = ID =[
B4l .25 10V Mm?
B42 (b) () S0W (W) L8 x 10 " m, 4.4 = 10°7]
(i) 0.85mm (i) 0.084m from B
B43 (b) (i) L0 = LOE! Pa (i} 9.6 = 10F M
() Léw [0 Tm’
Bdd 5.1 « 10°MNm * d6ds
B45 (a) 30N (b} 0.5]
B47 Smm
B4% (@) 3:2 (CuFe) (b) Glmm, 4.0mm () TROM
B49 (&) 989N, 380N (b} 10046m {eh 231]
B51 (a) 30 = 10" (b 4.0 = 10" Pa (e} L4 = L‘Jt
1.56 = 107]

!
i ]

535

B5Z (a) 1020°C (b} LE = 10%Pa

B33 (c) (I L5 10°Pa (i) 0.10] (Hi) 0.20]
(v} L9= 10" Pa

Bis (b) (1) Llmm (i) LI = b0-#]

B36 28 = 107 ""m {a) 20= L Pa (k) 1n0]

(o) Ld = [0 Pa, L0mm

Bi9 by LU= 10" Pa

B6l (a) 0.lm{A), 0.2m (B} (b} 2XNm '

Bel de) (M) 5.0mm

B&Y {c) (i} 20ms'

Bad {c) (1) 2Ems!

B&s5 287 « 10* N

B6é fa) 20ms ' (b} OEm. The second hode must be
20 ¢m above the base of the mnk

B&7 (b) (H) L1~ 10" Pa

Ba% (a) 133ms" (e} 120me ', LEZ = 107 Pa

BTl (c) 15 Ems"'

B4 T.4om

B7S 600 Mm -

B (b) (i) 386mm

BB0 (a) (i) 50 =10 "m (b} (i) Io%me '

HE: 2, 216

B83 {(b) 24m: '

BRd A= I5cmg 's ", B = 15cm ' s, mdius = 0.2 cm

BA&S (b) (i) 045MNem ?

BE& (B {0} 5.0« [0 m'

(i) 10w L0 P kgs
(i %7« 0 "mte!

SECTIONC

G4 200K

C6 fa) 37°C (B) 50°C

CT 166 C, 170 C

CRE 4504 C

Co (b) (i) 23°C (approx) (idiy 0 C, L6 C
C10 (F) 364,21 K; 367,86 K

C11 045 %W

C12 279 kg ' K

C13 5.7V

C14 G000 T kg " B, Lifd

C15 1700 kg 'K

C16 (d) 200 = 10" kg "K', L23W

C17 4

C18 (b) () 426 C

C19 0,67 kg

C20 (m) 250W (b) 250« 10°Tkg ' () 167Tkg 'K !
CH 01225 kg

G212 L6T = 1P kg VK1

X3 EE%

24 0.03%96 kg

G35 7.4%

C26 {e) L6 = 10F ], 7.0°0%

C27 24w 100 Jheg ", 20w 10" Jhg 'K
C28 () () Lbw 10°] (H) |56g

029 L1 = 10° Pa

C30 30m

C31 T45mm

C32 (b)) 4.6mol  fc) 517ms "’

C33 (m) L33 = 10'Py (b) ZginA,IginB
C34 (@) 21 = 10'mnl (B} a0kg

35 40
C36 (b () 23ke (W) Lake (W) 1L =205
C37 .33 kg
C38 (a) 83K 'mal ' (B) Ldw= L0 PJEY

(e) ot w 10 2]

39 (a) 0.32g (b) 4.8 = 107 {e) Ld = l0'ems !
C40 | BL2) = 100 ], 0855 = 10 ] &1 = b Jleg " K1




b5

iC42 (d) 552ms!
CA3 (b) (i) 257 = 10-Ykg (i) 240]
G4 (a) (1) 402 () 140 ke  (iE) 140 kgm!
{iv} l4é6ms"
C46 (B) (i) G0 = 10" () 36« 109 {i{§) 4B3ms"
CAT () (1) 24 = 1077 (i) 1%0]
C4B (n) 1.07:1 (b) &1 (&) 1.15:1
G ) @) 1.2 = 10 Y (i) 1.9 = 100
fch (Iy 31] [y 21] (i) 527
G2 (a) 226 % 10°] (b} 169 =« 10°] (ch 2.08 = 10°]
C54 (a) 1.2% 1077 (b) 26 = 0% Pa () 91]
G35 (b)) (i) 75.0] (dy (@) 500 (M) 85.3]
C56 by 2.2 = 1087 (ch (i) ROKN (i) 1.&6MPa
G839 (dy (B 475 = 107 m”  (H)y 084 K
(i) (1) 200K "mod™" (2) 492 = 10 *m"
3) L76= 100 (4) 439 = 10°]
Col 144 = 10 kg™ K, 003 = 10% g P!
Cal (m) 30D0K  (b) 600Jkg "K', TB3 kg "; 268 ms~"
C63 1.07 = 107 kg~ B0
CoT (a) 2.4 = 10"] b) () 1.1 = 10° Pa
(iiy ELA = [0 Pa
C68 (&) () 4.0« V0N (i) 57 « 109N
(i) &6« 10°N
CA% (B) () 150K
G0 1.7 = 107 kg, GOK, 23 = 10¢ g 'K
T by 358 =« 10" ms!
C72 (&) 1250cm® (b)) 1.38 = 10°Pa
C73 (b T4d = 10 m”  d) 166
CT (b} (i) 01 2KarAand C IS0 6KaR (i) 4375]
(Hiy 31257 (iv) 8257 %) G25]
75 fe) 2.4(5) = 10" Pa  (d) 2.5x 10°Pa, 2.1 = 10 Pa,
k1]
CT6 (a) 1.47 = 10*] (B} .60 = 10%]
CT7 () () 2.2 = 10°] (i) 51 = 10°)
CE2 (e) 2.3 = 10 m®
CR4 (B (H) @ =02 N m mol 2, 8= 427 = 107 m?
CES (&) (D) 127, 369K (d) 1045 = 10" ], 206 « 108]
CH6 (e} () 29 = 10 kg () 1.9 = 10%
(RiEy 4.7 = 1P ms!
CET (e) () 1024KPa (i 33K
GOl (e (i) 540] (6} 60
094 101 = 10%Pa
O 9= L0 Pa
CO7 1.7 = 10V M m?, 30« 10 Nm?, B2
C99 () (i) 2.0kPa (i) 1.5kPa
G (dy (i) BokPa (notrogen), 20 kPa (oxygen)
(Hy G2%kgm " (iHY 1.2kgm™?
CI0l 319w 10% kg
CI103 {a) 160 = 10%] (B) 1.33% = 10%]
Clod 50s;
C105 (a) 20] (b} (@) 70] (idy 20]
C106 1.22 = 10° JE!
C1a7 (s 0 (b) 40JK
G106 (c) 19.6%
CLI0 (ay & (B 4.2 = 10°] (e} —3.0x 10°]
CL11 A0« WP "Cm! (copper), 45 = IF "Cm™!
[aluminfum
G112 0.2°C, 2.4 = 10° Jkg™?
G113 1.9 = 108w
C114 240, 233 min
G115 48,1 W, 2. 16
G116 (d) 2.6°C
G117 G400, Gl
G120 L2 5°C
C121 (m} 4.0KW

ANSWERS TD SECTION QUESTIONS

G122 (a) 0002 (b)) (LDOE

123 a4%%

G128 (a) (@) 1.5 = 10° " Cm', 29%

Ci29 (b) 10°C (¢} () L« 10 KW, 1.0 = 10°W,
QB

CiM 65 = 10°]s "m~?, 2.0 = 10" mme’

C132 (e} LOEW () BEW

C133 (b) (W) 307°C

Cl34 678 = 102 Kg!

C137 1105 K

CI38 1073 K

C139 2021 K

G141 19 %W m!

Cl43 (a) 0.19am {b) 1.07mm

Cldd 3TRE

SECTION D

D {a) 195" (b) 105

D 186

D3 185

D4 264

D3 1.6

D 402

D& X246

D9 (b) (i) s0°4 (id) 42727

D0 46"

11 37.2°; 48.6

D12 32777 41.05°

D3 (b 1.50

D4 307

D15 (a) 1.5cm bagh, 30 cm fom lens on opposite side from

ohiject

(k) L.0cm high, 20om from lens on same side a5 object

D16 20cm; 40 cm from lens

D18 10 e

EY19 A0 can above lens, diameter = Smm

D20 5men, 5mm, 250 mm

D21 1o from diverging lens on same side &8 object

3213 X 6mm

[¥24 10ebmm, 95 mm

D25 0.2 m (diverging)

D27 {m) "o (b 13¥5cm

D30 (b) 100em

D31 {a) 6cm behind the mirror, 1.5= () L3cm behind

the prdrror, 083 =

32 4icm

D33 (a) 41immoo $0mm (b) w3

336 LG (O cm oo the second lens and between the lenses:
X118 cm away on the side remote firom the objece

D37 (a) 41 7mm (b) ¥ {c) 10.7mm

D38 (b} 110mm

D40 (e 227 mm, 3T 5

D4l (@) 550mm (d) 10 (&) 32mm from eyepiece lene

D4 400 mm {obgective), 5hmm {(evepiece)

D45 (b)) 60 mm

MG 4.0em

D47 112 4em, 156

D48 (a) 160 (b)) 252mem () 0.958 mm

D49 (c) (i} 1.Bd4em

50 0.LE(2) omy; 20 em from second bene on the same dde a5
thi= frst lens; (.91 cm

D51 21 = 107" pad

D52 (a) 2.lcm (b)) 1125am

¥53 100



ANSWERS TO SECTION CUESTIONS

D54 (b) (i) Iﬁﬂﬂn,ﬁ (i) 5.3 cm behind
eyepiece () () 1065 cm

D88 (@) 0.029cm (b} 0.55am () 011 rad

D58 fa) () 30mm (b)) ZA6mm pwey from the film

DE9 00658

Dld (e} 1. TS cm; 11, 52 ms

D&l iJ:-'i'm. i_’l-cm. 100 cm {diverpng)

Da2 f = 200 cm diverging

D3 f = Icm CoOnVerging

Dé4 663 cm

D&S (a) f = 400 cm diverging (b} 442 om o infinity

D (m) 425 cm canverging (b 4dem

D6T (b) [ —2.0m"', 0.28m

D8 200 cm (diverging), 50 cm (converging)

D9 by 31w 10" m, Wdrevs !

D71 3002] = 1P ms!

SECTION E

El 60 = 1#m
B4 (a) 1% x 10Fms"' {b) fb6 x 10 ms"
ES {u) (i) 7.5° (Hght), 45.6° (sound)
E12 32ms!
El3 {a) Lim
El4 5.0= 10 "m
El5 {b) LT = 10" eael, (064 mm
EIT L3 = 10-*rad
Elf (b 0.3Mmm {e) {) 0.Xymm
Ei% 643 = 10-"m
E20 {b) 711 am, 427 nm
EX1 (b) 0.021°
E3 1L5=10%"m
E25 (h) 282 = 10" m
Eis 1imm
EIR (b) (i) L26 = 10 *ny
E29 (a) 1Scm from card (b} 20cm
Eil Z4=10*%m
E32 4.60 = 1077 m (viclet), @90 = LO-7 m {red); 66.9
E¥ 640 nm, 480 nm; 287"
E34 (a) 0.96° (b) 0.34cm
E¥ 6llnm, 285 = 107, 43.2
E37 {¢) Lidom
EM 4.0 = 10 Tm
Edw (a) 5= 10°m" (b) () &2« 10 m
E40 {a) 136" (b) 705"
E44 5%,1°
Ed5 (a) L& (b)) 32°
ES5 (a) L83%s (b) L%
Ese (o) 32 =10¢ms " (b)) La= 107 ms !, 003m
EST 3./B, 300 Ha
Es8 L4/
E5% (b) () 91.3Hz {ii) 87.EHz
E6d (o) L5x 10¥ms! (b} LE= LD Mem-?
{e) LBEx 10" Nm-?!
E6l {a) F— 20 (b) f-0.7;0.76%
E63 (d) T1.5cm
E&4 (8) 300ms™" () %0kg
E&5 (a) 250Hz (b} L4 = I0FM
Esé LT « I(F Hz
E&7 (b) (i) 514Hz
E&8 L0 = 07 Hz
Es9 36me!
ET0 {(a) 320ms"?
E7l 5.1Hz
E7T3 0.83m

(i) 4

(i) 512 mm

(b} 10em  (e) 40em (d) 1200 Hz

ET4
ET6&
ET?
ETE
ET¢
ES1
Ex4
ESS
Esis
EaT
E
E%4
E95
ES6
Ea7
E98
E®
El0d
Eim
E103
Eln4
E10s

(b) (H) MOms
Idems !

4B me!, B.26 mm
fm) {iy 340ms*
{e) (W) MHims %, 12mm  (iH) 207 Hz
{a} L.75m, [6Hz

(b) 0.38m, 4.1 N

reH mm

(@) () 1700Hz (i) 0.050m

F30ma', 70 mm

W2ms!

514 Hz, 545 Hz

425H=

].llg. 1.0

(b} Iy £0.0014%nm (H) zero

() 22 = L0-®m

L2 = 10 ms!

{h) 37.8ms", W02m

(b} 521 EkH=

(@) () L9%

(b} SL46Hz (e} LiH=z

() 50 10'ms™' fe) 28« 10°m

(aid) 34.6cm

SECTIONF

F1i
FI
3
F4
Fii
F?
FB
F9

Fid
F11
Fiz
F13
Fl4
F15
Fl&
F17
Fid
Fiy
EXy
F21

Fii
F13
Fi4
F1s5
Fit
F27
Fi9
Fin
Fil
F3i2
F33
F34
F3s
Fit
F37
Fay

F&b
Faz

(ny 504 (b) 20% () 10V
4.6 = 10 "' {im

LL3W

{0,395

() 2.5 =10 "ms !

{a) 3 (b} 402

0.35A

(m) (i) DLO6T A (H) DOB3A () 40V

(b) (i) sero (M) OS4A (i) Z1o%
A.0%, 50141

055

BV, 48V

4043, 400

5%

(a) 9995 [}in series
fm) 0.05A (B) CO125A fc) 05V
14 950140 in series

Bl 4 W

oW

fm) 3600 (b)) 096V

() (i) 3% (LD, 8.7Y (4.7 kD
(o) (i) LO3kE {dy 3.9V, BV
229%

) 20ma, 248 ML

() () 4048 (B 230 (W) 150
b} LIEE (&) 163V IV, 112V (V)
2450

(b} (i) 7.0V

2084

(a) 00 (b) L44W

() 12060 (b) I2 AW

(b ) 10 i) 1731

(@) L79% (b} L9mW

0367 m

(m) (D) 5.04 (D 100V (B) 210
(a) TO.ELE (b)) 340m

by 0l (g) 300°%

(dy 2%

(i)} 596 mrm below wop of mbe

() 29 = LO-* 00 i paralle]

(a) OTIRA (b} 410, 2008 « [0-"6¥Wh

(e} BTV, 399  (d) 905 W. 0592 %
(b) (i) 7T8{ (H) 80 = 1PW
(a) 0.2%m from one end (b)) 2uA

(e} 1600

(d) (i) 33w



L

F43
Fd4

Fiis
F47
Fd8
F4%
F50
Fs2
F53
Fsd
F3s
Fig
Fi%
P59
Fidl
F&2

Fed

Fi&s
F&s
Fos

70
F71
FT:
F73

F74
F75
F6

Fr7
Fi&
Fre

Fai
Fs2
Fa3

Fas
Fi6&
F&7
FS8
F&9

Fa2

F2s
o6

F97

Fag
Flo
Fioi
Floz
Flod
Flos
Flow
F113

Fl18

(@) LZ2°C fb) L2l = 0" 0Om

by (i) ZAG6A (i) 0500V m', 480 x 10*Am,
102 = wfm

() (i) 4.0V () 670 144W

() 0.39041

2V

SL1E Y

24v

E1.5cm, L2V

10k 504V

{c) S0.203

(a) (i) L36Y (iv) 18.6m%W

(c) 20470

b} G330 mV

(b} (i) 0.07T5m

G = [0°*]

24m]

(a) 30« 10°*N (b) 55=10°10C

(e) L&« 10"

(b (i) Z0x 10-*N (i) 20= 10°% N
(Y 0= 10°%] () & (v) O

{a) L45 = 10-10M, L45 = 19~ ]

(1) 36us (i) Ldd o« 0% (i) S1EW

(@) L1=107"C (b) 18« 10']

(e} 25 = I Wm!

{m) LIY (b) 0.56V () LSV

by 3uF  fe) 30 (A, and By, - 3660 (A, and B

EETTH

G 5= 10 Wm' (i) 44= 107 F

(R} 2.2 = LO°®]

133 4 on each; 133 C

1475 ]; an increase ol %63 )

Lid= 10%%Wen~!; (a) 226Y (b) 22= 107°F

e} 5.65 = 10-%]

IV 1V W'Y

(b (i) L5pF (i) l0Bu] (i) 2.0V

¢

0.2 pF; 0,25 m]

D45 0.15]

(a) 5.06= 10°*] (b) L56& = 10°F], 04 = 107* N

Sopl, Bal () S6ul, 384u] (b} 36u], 54 0]

0V

501, 3311

(a) L= 1077 (B) LO0OV (e} 4= 10%]

(a) 4pConeach (b) 2pC (M), BpC (N)

(b)) (i) (D 16w (I0) 324

by (i) 20% W0°C (i) 40= 10']
(i) 2.0 = 107"

(e} (i) 20ms (i) 92 ms= N

(ay (i) 24wC, 144 ] (i) 4.8V, 30.6u]

(b)) (HE) 33 ME (approx.)

L35« 1015 3 nimes; 844 %

Intsalby 3 = 1% C on each; E.l:'li.]|:|.' L = 1 C and

§w 107%Cy L2 x 1070

5040 i

4

Gw [0

218

fa) Liw=10°"% (b) 1.54; 115¢

by (1) Lix 10T (i) zero

L.Og:1

(mp 40 (b} 025

8y A0 = 107 me! (b)Y L4 = 107 m?

fe) 15 = 10 mPs VT (d) 082

24 A

Fi20
Fi2i
Flix
F113

Fiid
F117
F1i%
F130
F134
Fi13%

F136
Fi137

F13%
Fi3s
F143
Fl44
Fl45
Fl46
Fi47
Fl48
Fl49
F150
Fi5k
F153
F154

F15%
Fi57
F138
F15%
Fl&0
Fia2
Fl1&3
Fl64
Fl&5

Flés
F167
Flai
Fl&6%
F170
F171
F172
F173
Fi74

F175

F176
F177
F178
F17%

Fil&2
Fl185

F1&%
F190
Fi91
F1%1

ANSWERS TO SECTION QUESTIONS

(8) (i) £0=10%%Wh () 10V
(a) 0.7A (B) 7.8 x W04
() (24 cos Wh (b)) 15V
b () I2EWh, 26 =« 102V (G Llmd
fil = W-TT
(b} (i) 140ms, 25% e} (D) T9mA  (H) 011w
1hmY
(@) 404 (B 20A"
(w) @) O () 2V (i) O1A (i) LV
(@) () 030As"! (WY 0240 (&) L2I
(m) (i) 4.0A (i) LOAs™" (i) 054"
(b} 268 divisaons
4mH, L2545
(a) (1) 50EW () 340V
() () S00W
LD s
(my 25w 10" Wh (b} 230
{by (i} 02T
054
(@) 14& (b) 2A (c) ZA
(B () 100 k], 300 k]
(m) 7.1V (k) zero
7.5mA, 750 ma
() (i) 15Y (i) BO=10'F
(b} 00 (c) ¥2ZmH
BO Hz; 400 uF
{ay OLI0A,40% (b)) ZO0W
(ad () LS0A (B 2400 (B 24000
(b) {idy 41600 (i) 7.7 aF
(m) 4002 (b) 20 = W0 H () 0.22rmd
(o) P =30V EMS, I =40V RMS {c) 0.64rad
(a) 47.2A (b) BO1 = LN
() (H) L& = 0% Hz
Lb = 1040
0 33T A; 2022V, 2143V, 846N
(a} L1244 (b} 7A.6V
(i} 100 (i eamH
(b (i) GO0, 4590% (D 0.33H, 240W
(3 Hu6 uF, 240
(m) 149% (b} 188V, L9ms
(a) DL.240A RMS (b) 288 (e} 4.77uF
L21 A, 39mH
(b L1.5mid
Bk S0 Hz
()} 159H: (b) LO3A
(ad 1.12pF (B) S4cm (d) 6.9pF
by (i) 100 He
by (@) Xo = 1336k X, = 3000 i) 1310
(i) L91A (i) 52° {v) Gl {e) 101 Hz
(m) 50.0(2 7.96 mH, 3.18 uF
by (@) 707V (H) 225.C (i) T.OTV
(v} B9 = 107 AsE
(a) 14168 (b L20A
227V, 41.1 He
TRV, 62V
() (i) 179 = 10" A, 5.7%
(h) (i) 500, 40H: (i) Mg =50V,
Ve = [V (lw) S0V, 36
(a} 20%W
(a) (i) Q042 A (RME)
{e) (i) 625 = 10°*] (i) 34V (i) 017TW
() 24V (b} LW () 4.0x 10%s )
2l = 10 m®
1037 = 10* Ckg™
42 A

{¥) ls

(i) 6%

(e L36:1

e} 4.0%



ANSWERS TO SECTION QUESTIONS

SECTION G

1 500%
GY 1,06 x 10-%]
Gé 1.96 = 1077 ], =100 = 10 *m
GE 4.45eV
Go 1.5V, 25 % 10 "L 73 = 1P ms!
GT fhd « 10-H]s
GE {e) (i) 235 = W ms!  (H) 0.ISTV
GO (b)) () Afx 107" (H) 28 = 10778 () a0t
() (0 22= 10" m
GIo (b) 6.7 = 10 '“_:I's {c} (I} no emission
(i) ebectrons ermited with a KEof 1.74 = 10
Gl fm) 1eV ) () 1V (i) 075V
GAZ (e} (i) A= 10 "] (i) &68 = 10-M]s
Gis (b (W) (M 26 = 107"%] (D T8 =<10"m
{c) 1.24 = 10~%m
GI4 2% =107 ", 5.0mA 0,39V
G5 (a) () 16 x I0"A (H) 12w 10°"A (i) mero
(b} 0.5
GUE (B) () 1OV (H) L6=10"] () 18 = 10-17]
G 1.2 = 10" m
G4 (a) 219 = 108ms~! {b) 904 = 10%m
G5 (o) 148 = 107" m
G26 (k) (1) 661 nm, 489 nm, 4% nm, 412nm
G27T (a) 34« 10°Y] (b) 1.8 = 10%0g"!
GIE 1,22 = 107" m
G20 () 216 10 "] (b)) 66 = 10-Tm
G30 (b) (f) 51 = 10°"] (i) 39=10 "'m
G3 (m) () 1.9eV (i) 10.2eV
GIZ (a) (D 3.3 =10"%He i) 2.5 = 10V He
G344 (b)) fvi) 11 = 107 m-!
G35 (b)) () 66 =10 Tm () (M) 12210 "m
G339 () (i) L00DDeY (i) 1.23 = 10" m
Iy 160 = 107, 124 = 107 m
Gab (a) 1.2 % W0 He (b) 0.0« 10°W
Gl (b} 0 12mA (B 133 = 10%ma!
Gz fa) 41 = 10" m  (b) W0mA () 1.9 = [0%s0
G44 () 4.0 = L0 eV
G45 (&) (i) 0.0V () 5.4 =00 M)
G 33cm
G47 1.5cm
G485 () (i) E3= 107s (M) 43=10°°T
G49 (a) 1.0 = 10%me ! by 1.7 = 0070
GEO 138 = W07 ms™', 1,71
G5 AT« 10" me-!
GSd 5= 10 TmmV-!
G56 (a) 42 = 107 ms ! (b)) 0.12m
GSE (B) 41kVm!
G &
GE1 (@) (iv) 16 = 107N
GEX fid = 1070
GE3 468 = 10" C
Gl 4.8 = 1071 C3 16 = 1071 C
Ges (b)) (i) 1E=10%s (@) 2.9
GET (B) 114 = 10°V  (¢) 151V
G698 75% [3C1, 25% [101
G0 G (62991, 31%6 (64.99)
G71 {a) 12 = 10%ms™" (b)) 10.6KY
G72 (a) () 179ms~" @b) @ 12« 100N
() 0.11T () (i) 0.50em

G786 A0 MeV
GT7 (b) (H) 0.015cm (i) +0.001 cm
G78 0.11em™!
GT9 (e} (I 25« 10°min~"  {Hy 19%
GO (e} 1.0 % 105! (d) 1.0 % 10"

GE1 8.8 » 10° By

GE2 505!

GE3 (b} (i) 53 = 10° (H) 2.0=10%s!
Ry 1.3 = 10° By

R4 10 g

GES 4.3 hours

GREs 28« 109 [15]

GRY (m) &0« 10" (b)Y &3« 10"

(GER 1.27 = 10"

el fcd (I 1:2 (M) 1:0 (il T9%

Go1 (b) (H) 56 vears

92 Iiﬂdaﬁ;drﬁb:Hi,r:-‘nd— Le=0f=>0

G993 6.0m

G () (i) 62 = 10 s

G5 4.0 mg per day

G 60 = 10" cm”

GE7 (B () 20« 10 ®s ' (H) A0« 10* () 40 hours

G =57 uli

G99 (d) ;

G100 2.0 m; 24 hours

G105 (b) (0 T0s 100ug (H) 25« 10MWe 0

G106 (e) (H) 1.3« 10 *s' () 2.7 x 10!
{iv) 63W

G108 4.5 = 10° years

Glod 6.8 « 10° VEATS

G110 4.2 = 10° years

Gl 8700 years

G112 (b)) (id) 38 = 10 yEArs

Gili4 L1a MeV

GI1S 279 = 10 7]

GI17 &) (i) 1.813u, 1.324u

G118 (@) 283MeV () 23.8MeV

G119 {c) () 26 = 10 @) 1.7 = 10 "'hg

G120 e} L0 = 10" years

G121 B2 = 10-"]

G123 (b) (i) 1.06

G124 +0.624 MeV, —4.01 Me¥

GL2S 30, ] MeV

G127 B9 = 10"

GI2B (e} 25 = 107 mod () 2.5 = 10 Pa

G129 {d) ) 34004 MeV (B 530020 MeV

G130 71 days

G132 (c) {4y 2.1 = 10°17]

G133 (b) L5 hours

Gil3R a0

G147 2.5 = 10V 01 (R,), 3.0 = 10701 (Ra), 15 mA

G148 (m) 1.5V (h) 1.5V

G149 (b) (i) 250 A, 12.75mA, 35

G150 (o) 60k

G157 () (1) 100 mes (M) never

G158 (a) 10

G159 (b)) &

G160 (a) —4.0Y

GA6E (m) (1) 4.7ED, 150k () 53

Glad (a) () 4.5V (i) 0% ¢ (fd) 17%



aberrution
chrogmaric
spherical

absolute pressure

absorbed dose

absorpuion edge

mbsarption spectra
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AL circuits
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AL generator

scceleration
angular
centrip<sral
ik Forem

ECCcepior Impuricies

accumulator

schromatic doublet

sctivity

AT conversion

adhesive force

adiabatic processes

adiathermanous

advanced pas-cooled reactor

aerafoil

AGR

air cell

air rack

air wedge

Alry's disc

Alnico

alpha-parmicles
absorption of

altermagor

AN

AmMmETEr

aminphaous polymers
amorphous solads

ampere; the

Ampere's law
SMPEre-10ms per metre
amplifier

amplinade {of cscillation)
amplitude (of wave motion)
amplinade modulaton
analogue computer
analogue 'digital conversion

AN gate
Andrews' experiments on C0,
Andrews' isothermals for OOy

INDEX

Pareniheses indicate a page where there is & minor reference.

66, 373
104

L4

H18

777
474,475
ik
674-93
679, G800
677, 678
673

67k

651

3

%

B

13, 35 01, 94, 100, 105
[ L]

830

547

74, 108
B0

872

175

268, 268
11

HI29

Las

H29

154

16

442

463

T01

RO, BOS
B

149
{534) 627
621-2

G4

§51, 860, B62
i

423

871

859

aTz

471

855

232

1%
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amgular acosleration
angular frequency [AC)
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angular momenium
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ANIOEORY
anode
anomalous expansion of warer
antnndes
aprerTure

of camern

of mirror
apparent depth
Aquatag
Archimedes® principle
affmatire

of AC generator

of D generator

of DT mowor
artificial radinactivity
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atomic number
atomic radius
atomicity of electricity
attenuation coefficient
avalanche breakdown
Avogadro consiant
Avogadro’s low

back EMF

Bainbridge mass spectrograph

balancing columns

Halhstic gahvanometer
calibraton of

Balmer serses

band specira

hamd theory

bandwidth

banking
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base resistance (of transistor)
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beat frequency

biear period
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Bernoulli®s equation
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beta-panicles B, BOS

absorption of B
nding enengy 146, B23
hinding energy per nuckeon R23
binomdal expansion G2
Bint-Savan law Gl
bipolar ransistor B46
bistable multivibrator ESH
Bimer pamems Tind
black body 312
black-body radiacor L2

enengy distributson of 33
blooming 447
babhin 44
baody—centred cubac siructhire 155
Bohr model of atom T
Bohr radia Ti-d
biling 280
Boltzmann's constant 256
Bourdon gauge b
Boyle rempseratane 275
Boyle's law 244

experimental investigation of 254
breaking stress LEL
Brewser's law 4
bridge rectifier a5
brimle material LE2
Browndan motbon 145
bubble chamber B35
Bucherer a4
bulk flow (speed of ) 204
bualk modulus 187
Eralk scrain 1858
bulk siress 188
Bunsen bumer lag
cadmium sulphede B9
ceesium chloride structure L56
caleme #09
Callendar and Bames” continuous flow calommeter 241
calommely 23748
CRMETH 402
capacitance 5H4

measurement of 606, 608, 669
CARACITATIvE reaciance G
capacilons SE0-610

analogy with spring £

coaxial eylindrical 501

comcentric sphere 1|

discharge of &1

electrodytic &S

energy af 598
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in parallel S04 (599

N serees 505

molated gphere 591

paper el

smoathing i

fme consiant af 2

variable air M
capallary depression 178
capillary rise 176
carbon 14 dating El6
carburettar 198

Carmot cycle
CATTECT Wave
Cassegradn reflecung tebesoope
cathode
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cathode rays
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experimental investigation of
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culbic
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closed pipes
compared with open pipes
cloud chamber
diffusion
Wilson s
coball steel
coefficient of lkmiting friction
caocfficent of performance
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coefficient of diding friction
coelficient of thermal conductivity
coefficient of viscosiry
CieTCIviLy
coherence
cohesive foree
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classification of
colours in chin films
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comipressibility
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concurrent forces
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FLIx]
3E3
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344
549
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578
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conducnen {electrical) 538
anabogy with thermal conduction 306
conduction {thermal) 302-11
anabogy with electrical conduction kL]
mechanisms 308
conductivity
clectrical 537
thermal 302
conical pendulum pri
conservation of charge 534
conseraton of linecar momenmnim iy
experimental investigation of s
conservation of mechanical enesgy i
constants (physical) Q27
oonstunt-volume gas thermometer 236
Conact polential A
continuity, equaton of 196
continuous low method 241
COMTINNOLUS SPecIra 473
control rods 829
COMVECTINTY 315
Toreed 24k
narural 24
Ceolidge ube 773
conling correction 238
theory of 238
corpuscular theory of ligh 430
cosane ruks {6y 922
crossed fields TEl
coulamb, the 534
Coulomb's law 571
experimental investigation of S8A
Go/ G, 266 (504)
creep - 1%
critical angle 353 (432)
critical pressure 213
critical temperature 273
crown plass 373
crysial strucrires 1547
crystalline polymers L33
cryetalline solids 147
cryxtallites 147
Curic tEMmpramnne 08
curie, the B
CUITETT 5%
direction of 535
measurement of 367, 634
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current balance 633, 634
current densiny 537, 530
current element Bl6
currendt sensitivity of galvanometer 632
current tronsfer ratws of transistor H49
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Dalton's law of partial pressures 237 (283
dafrplng 477
arificial 477
critical 57
electromagnetic &57
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nataral 477
Diavisson and Germer Tiw

D amplifier fEH
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[ motor HAE-42
de Broglie wavelength 759
de Broglie's equation 759
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desd nme H32
decay constant 05
degree Celsis 229
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demagnetiEiom M
demagnetimtion curve T2
density Lk
mieasurement of 1701
depletion laver 43
depth of fiekd 403
derved units alg
detergent 176
denterium 798
deuteron T9E
deviation by a prism 357
damagnetism 698, 702
diamond 147
slrucare R3T
diathermanous 111
dichroism A68
dizleciric G849, 592
dielectric constant, wee relstive permittvity
Dricsel cycle 299
diffraction grating 434, 455-63
diffracrion
ar a circular aperture ELE
ar @ single sli 452
by mluiphe slis 461
of elecrons 58
of light 450-63
of nieutrons 759
of sound waves {603}
of water waves 434
of X-rays (154) 7592
diffusion clowd chamber A4
digital compurer (BS54}
digital anslogus conversion 8574
dimensional analysis 917
dimensional homogensiny 917
dimensions aiG
dinde
P00 junet g43
thermionic TER
dislocatomns Lz
edge 122
disorderly flow 194
dispersion 358
displacement 2
nodes and antinodes 4R
displacemens-time graphs 25
division of amplitude Ay
division of wavefrong R L
donor impuritses B30
daping &35
Doppler brosdening (476) 512
Doppler effec SiMi-13
domains T3
dose equivalent EIR
double refracton diath
dovuble-slit experiment 437
double star S



drifi velociry
dynamic Frictional foree

diyniamo, 866 gencrator

mass of

potential of
eddy current damping

edge dislocations
effective mass {of spring)
effective value (of AC)
Einstein"s mass—energy relation
Einsiein®s photoeleciric equation
elastic limit

clastic potential enengy

eleciric feld intensity
at points
due 12 a poing charge
of charged conductors
electric field strength
eleciric potential

ENErgy
clecrrical conductzon
analogy with thermal conduction

electrac deflectson of

magnetic deflection of
mcasurement of charge (o) of
measurement af specific charge ¢/} af

elecrronvolt

clecirophorus

Mﬂ::hulcnp:, see gold-leaf electroscope

measurement of
imduced
thermoelectric
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delects of vasson
EyE-Ting

far pokit
farad, the
Faradav
Faraday constant, the
Faraday's
disc
we-pall experiment
laws of elecrrolysis
taws of electromagnenic induction
farigue
fermomagnetism
domain theory ol
fibres
Eield coil
fickd serength
electric
gravitatioosal
Alament Lamp
filter pump
fine-beam be
firse low of thermodynamics
fiesion
fve-fourths poaer law
fixed points
Fleming's left-hand rule
Fleming's right-kand rule
Ihnt glass
flipg-flop
Hotation
principle of
fow rate
flusds
transmission of pressure
flux {magnetic)
density, see magnetic flux densaiy
lanlage
EM
Jemurmber
focal length
of benses
of murrors
focal plane
of benses
focal poing
of converging lenses
of diverging lenses
of mirmors
finrge
adhesive
between currenis
cenripetl
cohesive
intermolecular
—tirme graphes
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on a moving charge
forced convection
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polygon of
wrangle of
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246
477
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Fraunhofer diffraction
Fraunhofer lines

free surface energy

frequency
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funsdamental (ol string)
messurement of
modulation
of wave moton

Fresnel diffraction

- fmcnion

explanation of laws of
laws of
sliding
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frictional force
dymamic
kinetc
limiting
slicing
fringes (interference)
fundamental frequency
of closed pipe
of apen pipe
of wibrating string
fused quarts

fasiom
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Cralilean welescope
gallivm arsenide
gallium arsenide phosphide
gallium phosphide
galvanometer

ballssric

damping

mmoving-coil
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absorprion of

myverse square law of
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amplificatson

constant [universal molar)

ideal {perbect)

Lawrs
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Ciriger and Marsden
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ghost mnage (ray)
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grain boundarics
graphine
gruphite-moderated reactor
graphs
grating (diffractiom)
compared with prism
spacing
EpeCtra

ETAVTIATH

Mewton's law of universal

gravitetiomnal
CORELEnL
field lines
field strength
peotenial
w ENETEY
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147
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925
455
474
455

acceleration due o, see acceleration due to gravity

gray, the
ground state [(of atom)

healf-life

e nement of
Hall effect

o mveaswre fux density
Hall probe
Hall valtage
Hallwachs
hard magnetic mavertals
harmomnics
hear capacity

meodar (of gases)
heat current
heat death of Universe
heat engine

irreversible

thermal efficiency of
heat pumps
heating effect of a current
heavy water
Helmhiolz ecdls
Henry

hensy, the

Hemz

hexagonal close packing
high tension ransmission
hale

hollow conducior

Hooke"s law

miolecular explanaton of
Hubbde's law
Huygens" oonstroction
hydraulic

braking sysiem

jachk

press
bydrogen line spectrum
hydrometer
hypermctropda
hysteresis
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16840, 6949
B4y, T
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ice-pail experiment
ideal gas equancn
ideal gases
impedance

matching
tmpulae
incompressible fluid
mdicator diagram
imadicator lamp
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inaduced charge
induced EME
inductance

anabogy with mass
induction

charging by
induction furnace
inductive reactancs
inductor

energy stored in

in AC circuits
. ,

mament of, see moment of nertia
infrared
indrial phase angle
input resmtance (of transistor)
interference (of Hght)
mntermaolecular

force

potenbal energy
internal energy
intermal resistance

measurement af
intersecting chords
nkrmssc semoomductors
inverse sguare Law

for force between point charges

for gravitational force

for imensity of y-ravs
inverter
iomic crysrals
IRIZREHTY
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CRErgy

potenmal
ion=pair
inns
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isnlaced svstem
1tothermal process
Holomes
Botopes
sotropic medium

Jaeger's method
funcrion diade

unction transistor, see transisior
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Faufman
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Kepler's laws
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This best salling textbook provides, in its Fourth Edition, full coverage of
the latest syllabus developments at A/AS-level.

Each topic is explained thoroughly in concise, lucid language — starting
at an appropriate level (7/8) of the National Curriculum.

Plenty of worked examples give practice in calculations from first
principles.

The format has been updated for improved presentation. New
‘Consolidation’ sections and questions designed o provide a link
betwean GCSE and A-leval feature in the lexl.

A-Level

At the end of each section thera are many questions - ideal for
consolidation and revision — mainly from past A-level examination papers.
Over 150 of these past-paper questions have been added in the Fourth
Edition. Answers are included.
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