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F..; External forces by non—fluids means, see equation (6.11), page 179

U The velocity taken with the direction, see equation (6.1), page 177
p Density of the fluid, see equation (13.1), page 437

= Martinelli parameter, see equation (15.43), page 615

A The area of surface, see equation (4.140), page 111

a The acceleration of object or system, see equation (4.0), page 69

By Body force, see equation (2.9), page 47

Br bulk modulus, see equation (13.16), page 440

c Speed of sound, see equation (13.1), page 437

c.v. subscribe for control volume, see equation (5.0), page 150
Cp Specific pressure heat, see equation (2.23), page 49

C, Specific volume heat, see equation (2.22), page 49

E Young's modulus, see equation (13.17), page 440

Ey Internal energy, see equation (2.3), page 46

XXili



P

Putmos

Wl 2

says

LIST OF FIGURES
Internal Energy per unit mass, see equation (2.6), page 47
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Version 0.3.0.1
Nov 12, 2010 (3.3 M 358 pages)

e Build the chapter log file for latex (macro) process Steven from www.artofproblemsolving.com.
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e Add discussion change of density on buck modulus calculations as example as
integral equation.

Minimal discussion of converting integral equation to differential equations.

Add several examples on surface tension.

e Improvement of properties chapter.

Improve English in several chapters.

Veersion 0.3.0.0
Oct 24, 2010 (3.3 M 354 pages)

e Change the emphasis equations to new style in Static chapter.

e Add discussion about inclined manometer

Improve many figures and equations in Static chapter.

Add example of falling liquid gravity as driving force in presence of shear stress.

Improve English in static and mostly in differential analysis chapter.

Version 0.2.9.1
Oct 11, 2010 (3.3 M 344 pages)

e Change the emphasis equations to new style in Thermo chapter.

Correct the ideal gas relationship typo thanks to Michal Zadrozny.

Add example, change to the new empheq format and improve cylinder figure.

Add to the appendix the differentiation of vector operations.

Minor correction to to the wording in page 11 viscosity density issue (thanks to
Prashant Balan).

Add example to dif chap on concentric cylinders poiseuille flow.

Version 0.2.9
Sep 20, 2010 (3.3 M 338 pages)

e Initial release of the differential equations chapter.

e Improve the emphasis macro for the important equation and useful equation.
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Version 0.2.6
March 10, 2010 (2.9 M 280 pages)

add example to Mechanical Chapter and some spelling corrected.

Version 0.2.4
March 01, 2010 (2.9 M 280 pages)

The energy conservation chapter was released.

Some additions to mass conservation chapter on averaged velocity.
Some additions to momentum conservation chapter.

Additions to the mathematical appendix on vector algebra.

Additions to the mathematical appendix on variables separation in second order
ode equations.

Add the macro protect to insert figure in lower right corner thanks to Steven from
www.artofproblemsolving.com.

Add the macro to improve emphases equation thanks to Steven from www.artofproblemsolving.com.
Add example about the third component of the velocity.

English corrections, Thanks to Eliezer Bar-Meir

Version 0.2.3
Jan 01, 2010 (2.8 M 241 pages)

The momentum conservation chapter was released.
Corrections to Static Chapter.
Add the macro ekes to equations in examples thanks to Steven from www.artofproblemsolving.com.

English corrections, Thanks to Eliezer Bar-Meir

Version 0.1.9
Dec 01, 2009 (2.6 M 219 pages)

The mass conservation chapter was released.
Add Reynold’s Transform explanation.

Add example on angular rotation to statics chapter.
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e Add the open question concept. Two open questions were released.

e English corrections, Thanks to Eliezer Bar-Meir

Version 0.1.8.5
Nov 01, 2009 (2.5 M 203 pages)

e First true draft for the mass conservation.
e Improve the dwarfing macro to allow flexibility with sub title.

e Add the first draft of the temperature-velocity diagram to the Therm's chapter.

Version 0.1.8.1
Sep 17, 2009 (2.5 M 197 pages)

e Continue fixing the long titles issues.
e Add some examples to static chapter.

e Add an example to mechanics chapter.

Version 0.1.8a
July 5, 2009 (2.6 M 183 pages)

e Fixing some long titles issues.
e Correcting the gas properties tables (thanks to Heru and Micheal)

e Move the gas tables to common area to all the books.

Version 0.1.8
Aug 6, 2008 (2.4 M 189 pages)

e Add the chapter on introduction to muli—phase flow
e Again additional improvement to the index (thanks to Irene).
e Add the Rayleigh—Taylor instability.

e Improve the doChap scrip to break up the book to chapters.
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Version 0.1.6
Jun 30, 2008 (1.3 M 151 pages)

e Fix the English in the introduction chapter, (thanks to Tousher).
e Improve the Index (thanks to Irene).

e Remove the multiphase chapter (it is not for public consumption yet).

Version 0.1.5a
Jun 11, 2008 (1.4 M 155 pages)

e Add the constant table list for the introduction chapter.

e Fix minor issues (English) in the introduction chapter.

Version 0.1.5
Jun 5, 2008 (1.4 M 149 pages)

e Add the introduction, viscosity and other properties of fluid.

e Fix very minor issues (English) in the static chapter.

Version 0.1.1
May 8, 2008 (1.1 M 111 pages)

e Major English corrections for the three chapters.
e Add the product of inertia to mechanics chapter.

e Minor corrections for all three chapters.

Version 0.1a
April 23, 2008

e The Thermodynamics chapter was released.
e The mechanics chapter was released.

e The static chapter was released (the most extensive and detailed chapter).
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Notice of Copyright

This document is published under modified FDL. The change of the license is to prevent
from situations that the author has to buy his own book. The Potto Project License
doesn't long apply to this document and associated documents.

GNU Free Documentation License

The modification is that under section 3 “copying in quantity” should be add in the
end.

“If you intend to print and/or print more than 200 copies, you are required to furnish
the author (with out cost to the author) with two (2) copies of the printed book within
one month after the distributions or the printing is commenced.” If you convert the
book to another electronic version you must provide a copy to the author of the new
version within one month after the conversion.

Version 1.2, November 2002
Copyright (©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document "free” in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft”, which means that derivative works of
the document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
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manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The " Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as "you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A " Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the Doc-
ument is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may con-
tain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document
is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A ” Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount of text. A copy
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that is not " Transparent” is called " Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The " Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page as such,
"Title Page” means the text near the most prominent appearance of the work'’s title,
preceding the beginning of the body of the text.

A section " Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as ” Acknowledgements”, " Dedications”, ” Endorsements”, or " His-
tory”.) To "Preserve the Title” of such a section when you modify the Document
means that it remains a section " Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document'’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly,
all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
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the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
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E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled " History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements” or "Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled " Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document, you
may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.
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You may add a section Entitled " Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties—for example, statements
of peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work
in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled " History” in the
various original documents, forming one section Entitled "History”; likewise combine
any sections Entitled " Acknowledgements”, and any sections Entitled " Dedications”.
You must delete all sections Entitled " Endorsements” .

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution medium,
is called an "aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled " Acknowledgements”, " Dedications”,
or "History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify, sublicense
or distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any later
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version” applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify a version number
of this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just after
the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with... Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.



CONTRIBUTORS LIST

How to contribute to this book

As a copylefted work, this book is open to revisions and expansions by any interested
parties. The only "catch” is that credit must be given where credit is due. This is a
copyrighted work: it is not in the public domain!

If you wish to cite portions of this book in a work of your own, you must
follow the same guidelines as for any other GDL copyrighted work.

Credits

All entries have been arranged in alphabetical order of surname, hopefully. Major con-
tributions are listed by individual name with some detail on the nature of the contribu-
tion(s), date, contact info, etc. Minor contributions (typo corrections, etc.) are listed
by name only for reasons of brevity. Please understand that when | classify a contribu-
tion as "minor,” it is in no way inferior to the effort or value of a "major” contribution,
just smaller in the sense of less text changed. Any and all contributions are gratefully
accepted. | am indebted to all those who have given freely of their own knowledge,
time, and resources to make this a better book!

¢ Date(s) of contribution(s): 1999 to present
e Nature of contribution: Original author.

e Contact at: genick at potto.org

Steven from artofproblemsolving.com

o Date(s) of contribution(s): June 2005, Dec, 2009

e Nature of contribution: LaTeX formatting, help on building the useful equation
and important equation macros.

e Nature of contribution: In 2009 creating the exEq macro to have different
counter for example.
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Dan H. Olson

e Date(s) of contribution(s): April 2008

e Nature of contribution: Some discussions about chapter on mechanics and
correction of English.

Richard Hackbarth

e Date(s) of contribution(s): April 2008

e Nature of contribution: Some discussions about chapter on mechanics and
correction of English.

John Herbolenes

e Date(s) of contribution(s): August 2009

e Nature of contribution: Provide some example for the static chapter.

Eliezer Bar-Meir

e Date(s) of contribution(s): Nov 2009, Dec 2009
e Nature of contribution: Correct many English mistakes Mass.

e Nature of contribution: Correct many English mistakes Momentum.

Henry Schoumertate

e Date(s) of contribution(s): Nov 2009

e Nature of contribution: Discussion on the mathematics of Reynolds Transforms.

Your name here

e Date(s) of contribution(s): Month and year of contribution

e Nature of contribution: Insert text here, describing how you contributed to the
book.

e Contact at: my_email@provider.net



CREDITS xliii
Typo corrections and other " minor” contributions

e R. Gupta, January 2008, help with the original img macro and other ( LaTeX
issues).

e Tousher Yang April 2008, review of statics and thermo chapters.
o Correction to equation (2.38) by Michal Zadrozny. (Nov 2010)

e Seon-Kyu Kim, April 2021, Correction of typo in equation for Rayleigh stagna-
tion pressure ratio (FPp).
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About This Author

Genick Bar-Meir is a world—renowned and leading scientist who holds a Ph.D. in Me-
chanical Engineering from University of Minnesota and a Master in Fluid Mechanics from
Tel Aviv University. Dr. Bar-Meir was the last student of the late Dr. R. G. E. Eckert
(the same one who that they named Ec is his honor.). Bar-Meir is responsible for
major advancements in Fluid mechanics (Pushka equation (deep ocean pressure), ship
stability, etc.), particularly in the pedagogy of Fluid Mechanics curriculum. Currently,
he writes books (there are already four very popular books), and provides freelance con-
sulting of applications in various fields of fluid mechanics. According the Alexa(.com)
and http://website-tools.net/ over 73% of the entire world download books are using
Genick's book.

Bar-Meir also introduced a new methodology of Dimensional Analysis. Tra-
ditionally, Buckingham's Pi theorem is used as an exclusive method of Dimensional
Analysis. Bar-Meir demonstrated that the Buckingham method provides only the min-
imum number of dimensionless parameters. This minimum number of parameters is
insufficient to understand almost any physical phenomenon. He showed that the im-
proved Nusselt's methods provides a complete number of dimensionless parameters and
thus the key to understand the physical phenomenon. He extended Nusselt's methods
and made it the cornerstone in the new standard curriculum of Fluid Mechanics class.

Recently, this author developed a new method to examine ship or floating
bodies. This method shows phenomenon that was shown before. For example, the
method provides a clear boundary where geometrical parameters and densities ratio
determine the stability. The method also provides other effects that were not discovered
before the change of cross area. A book was written about this method and some parts
will be presented in this book.

Bar-Meir developed a new foundation (theory) so that improved shock tubes
can be built and utilized. This theory also contributes a new concept in thermody-
namics, that of the pressure potential. Before that, one of the open question that
remained in hydrostatics was what is the pressure at great depths. The previous com-
mon solution had been awkward and complex numerical methods. Bar-Meir provided
an elegant analytical foundation (Pushka Equation) to compute the parameters in this
phenomenon. This solution has practical applications in finding depth at great ocean
depths and answering questions of geological scale problems.

In the latest version a new, more accurate and hopefully a simpler method
to calculate the stability was developed by Bar—Meir. Additionally, Bar—Meir has shown
that the potential method has limitations because stability is compartmental which the
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way the potential energy structure. Bar-Meir provided a way to improves this limitation.

In the area of compressible flow, it was commonly believed and taught that
there is only weak and strong shock and it is continued by the Prandtl-Meyer function.
Bar—Meir discovered the analytical solution for oblique shock and showed that there is
a “quiet” zone between the oblique shock and Prandtl-Meyer (isentropic expansion)
flow. He also built analytical solution to several moving shock cases. He described
and categorized the filling and evacuating of chamber by compressible fluid in which he
also found analytical solutions to cases where the working fluid was an ideal gas. The
common explanation to Prandtl-Meyer function shows that flow can turn in a sharp
corner. Engineers have constructed a design that is based on this conclusion. Bar-Meir
demonstrated that common Prandtl-Meyer explanation violates the conservation of
mass and therefore the turn must be a round and finite radius. The author's explanations
on missing diameter and other issues in Fanno flow and “naughty professor’'s question”
are commonly used in various industries.

Earlier, Bar-Meir made many contributions to the manufacturing process and
economy and particularly in the die casting area. This work is used as a base in many
numerical works, in USA (for example, GM), British industries, Spain, and Canada.
Bar-Meir's contributions to the understanding of the die casting process made him the
main leading figure in that area. Initially in his career, Bar—Meir developed a new
understanding of Mass Transfer in high concentrations which are now standard building
blocks for more complex situations.

For some time Bar-Meir has worked on project like rain barrels design, ex-
traction energy form breaking system, die casting design improvement for some private
companies. While the extraction energy project provide interesting problems it will not
be produce as much academic advancement because commercial secrecy. In fact, if
you interested in developing these patents you can contact this author (for example
extraction of energy from breaking system has estimated value of hundred of Billions).
These hand—on projects where a great enjoyment and exposed various issues that oth-
erwise were not on the radar of this author. These “strange” projects leads to new
understanding in ship stability (floating bodies). For example, the stability of floating
cylinder is for the first time was solved analytically.

The author used to live with his wife and three children. Now his kids are
in medical school or already pass that stage and are on medical career. This fact is a
demonstration that while you can get your kids to understand calculus and do AP in
elementary school, you still can fall their education. A past project of his was building a
four stories house, practically from scratch. While he writes his programs and does other
computer chores, he often feels clueless about computers and programming. While he is
known to look like he knows about many things, the author just know to learn quickly.
The author spent years working on the sea (ships) as a engine sea officer but now the
author prefers to remain on solid ground.



Prologue For This Book

Version 0.4 April 6, 2020
pages 749 size 11M

What a change and what a strange experience was to write this book. | got many
publishers who told me that | need to “hand over” them the book copyright and in
return they will allow me to use 50% even more of the book. The most bizarre “offer”
was from University of Washington Seattle from mechanical engineering department.
They told me that | must hand over the copyright and that | should be happy if they take
over writing the book because they more qualify than me because they have a member
in the national academy. Perhaps the strange of all was what occur in the following.
The theory | developed on great depth pressure (Pushka's equation) was taught to my
relative for two or three lectures in a famous north Chicagoland private University. The
instructor from mechanical engineering taught this material (Pushka's Equation) and
was using almost verbatim copy of the example including my nomenclature (from this
book) without acknowledgment. While is flattering that the instructor was plagiarizing
my material, it is disturbing that he and others like him violating the copyright of open
content material.

Version 0.3.2.0 March 18, 2013
pages 617 size 4.8M

It is nice to see that the progress of the book is about 100 pages per year. As usual,
the book contains new material that was not published before. While in the near future
the focus will be on conversion to php, the main trust is planed to be on add several
missing chapters. potto.sty was improved and subUsefulEquaiton was defined. For the
content point of view two main chapters were add.

Version 0.3.0.5 March 1, 2011
pages 400 size 3.5M

A look on the progress which occur in the two and half years since the last time this
page has been changed, shows that the book scientific part almost tripled. Three
new chapters were added included that dealing with integral analysis and one chapter

xIvii
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on differential analysis. Pushka equation (equation describing the density variation in
great depth for slightly compressible material) was added yet not included in any other
textbook. While the chapter on the fluid static is the best in the world (according to
many including this authoﬂ), some material has to be expanded.

The potto style file has improved and including figures inside examples. Be-
side the Pushka equation, the book contains material that was not published in other
books. Recently, many heavy duty examples were enhanced and thus the book quality.
The meaning heavy duty example refers here to generalized cases. For example, showing
the instability of the upside cone versus dealing with upside cone with specific angle.

Version 0.1.8 August 6, 2008
pages 189 size 2.6M

When this author was an undergraduate student, he spend time to study the wave
phenomenon at the interface of open channel flow. This issue is related to renewal
energy of extracting energy from brine solution (think about the Dead Sea, so much
energy). The common explanation to the wave existence was that there is always a
disturbance which causes instability. This author was bothered by this explanation.
Now, in this version, it was proven that this wavy interface is created due to the need to
satisfy the continuous velocity and shear stress at the interface and not a disturbance.
Potto project books are characterized by high quality which marked by pre-
sentation of the new developments and clear explanations. This explanation (on the
wavy interface) demonstrates this characteristic of Potto project books. The intro-
duction to multi—-phase is another example to this quality. While it is a hard work to
discover and develop and bring this information to the students, it is very satisfying for
the author. The number of downloads of this book results from this quality. Even in
this early development stage, number of downloads per month is about 5000 copies.

Version 0.1 April 22, 2008
pages 151 size 1.3M

The topic of fluid mechanics is common to several disciplines: mechanical engineering,
aerospace engineering, chemical engineering, and civil engineering. In fact, it is also
related to disciplines like industrial engineering, and electrical engineering. While the
emphasis is somewhat different in this book, the common material is presented and
hopefully can be used by all. One can only admire the wonderful advances done by the
previous geniuses who work in this field. In this book it is hoped to insert, what and
when a certain model is suitable than other models.

One of the difference in this book is the insertion of the introduction to
multiphase flow. Clearly, multiphase is an advance topic. However, some minimal

LWhile this bragging is not appropriate in this kind of book it is to point the missing and additional
further improvements needed.
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familiarity can be helpful for many engineers who have to deal with non pure single
phase fluid.

This book is the third book in the series of POTTO project books. POTTO
project books are open content textbooks so everyone are welcome to joint in. The
topic of fluid mechanics was chosen just to fill the introduction chapter to compressible
flow. During the writing it became apparent that it should be a book in its own right.
In writing the chapter on fluid statics, there was a realization that it is the best chapter
written on this topic. It is hoped that the other chapters will be as good this one.

This book is written in the spirit of my adviser and mentor E.R.G. Eckert.
Eckert, aside from his research activity, wrote the book that brought a revolution in
the education of the heat transfer. Up to Egret's book, the study of heat transfer
was without any dimensional analysis. He wrote his book because he realized that the
dimensional analysis utilized by him and his adviser (for the post doc), Ernst Schmidt,
and their colleagues, must be taught in engineering classes. His book met strong
criticism in which some called to “burn” his book. Today, however, there is no known
place in world that does not teach according to Eckert’s doctrine. It is assumed that the
same kind of individual(s) who criticized Eckert's work will criticize this work. Indeed,
the previous book, on compressible flow, met its opposition. For example, anonymous
Wikipedia user name EMBaero claimed that the material in the book is plagiarizing, he
just doesn't know from where and what. Maybe that was the reason that he felt that is
okay to plagiarize the book on Wikipedia. These criticisms will not change the future
or the success of the ideas in this work. As a wise person says “don't tell me that it is
wrong, show me what is wrong”; this is the only reply. With all the above, it must be
emphasized that this book is not expected to revolutionize the field but change some
of the way things are taught.

The book is organized into several chapters which, as a traditional textbook,
deals with a basic introduction to the fluid properties and concepts (under construction).
The second chapter deals with Thermodynamics. The third book chapter is a review
of mechanics. The next topic is statics. When the Static Chapter was written, this
author did not realize that so many new ideas will be inserted into this topic. As
traditional texts in this field, ideal flow will be presented with the issues of added mass
and added forces (under construction). The classic issue of turbulence (and stability)
will be presented. An introduction to multi—phase flow, not a traditional topic, will
be presented next (again under construction). The next two chapters will deals with
open channel flow and gas dynamics. At this stage, dimensional analysis will be present
(again under construction).
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How This Book Was Written

2021 Version

Many of the programs that were used initially in the book matured like vim currently
version 8 and up. Some other programs like tgif were replaced by other like ipe and
blender. The main change is that the material comes more from the industry. There
are more examples that originated from problems that were encounter in the industry.
Well probably the engagement with one work reflects in its writing. It is a hope that
this material will be well received as before.

Initial

This book started because | needed an introduction to the compressible flow book.
After a while it seems that is easier to write a whole book than the two original planned
chapters. In writing this book, it was assumed that introductory book on fluid mechanics
should not contained many new ideas but should be modern in the material presentation.
There are numerous books on fluid mechanics but none is open content. The approach
adapted in this book is practical, and more hands—on approach. This statement really
meant that the book is intent to be used by students to solve their exams and also
used by practitioners when they search for solutions for practical problems. So, issue
of proofs so and so are here only either to explain a point or have a solution of exams.
Otherwise, this book avoids this kind of issues.

The structure of Hansen, Streeter and Wylie, and Shames books were adapted
and used as a scaffolding for this book. This author was influenced by Streeter and
Wylie book which was his undergrad textbooks. The chapters are not written in order.
The first 4 chapters were written first because they were supposed to be modified and
used as fluid mechanics introduction in “Fundamentals of Compressible Flow." Later,
multi—phase flow chapter was written. The chapter on ideal flow was add in the later
stage.

The presentation of some of the chapters is slightly different from other
books because the usability of the computers. The book does not provide the old style
graphical solution methods yet provides the graphical explanation of things.

Of course, this book was written on Linux (Micro$oftLess book). This book
was written using the vim editor for editing (sorry never was able to be comfortable with
emacs). The graphics were done by TGIF, the best graphic program that this author
experienced so far. The figures were done by GLE. The spell checking was done by
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ispell, and hope to find a way to use gaspell, a program that currently cannot be used
on new Linux systems. The figure in cover page was created by Genick Bar-Meir, and
is copyleft by him.

Over the time the book introduced me to others and make me engaged in
topics that | was not aware off. For example, the issue rain barrels design leads to
several examples dimensional analyses in the book. Another example, work on how to
convert the breaking energy of cars (consider the change of millage per gallon between
the city and the highway). This brought to the realization the maximum temperature
theory. Unfortunately the work finished before it complete due to lack of funding.



Preface

"In the beginning, the POTTO project was without form,
and votd; and emptiness was upon the face of the bits
and files. And the Fingers of the Author moved upon
the face of the keyboard. And the Author said, Let
there be words, and there were words." El

This book, Basics of Fluid Mechanics, describes the fundamentals of fluid me-
chanics phenomena for engineers and others. This book is designed to replace all
introductory textbook(s) or instructor’s notes for the fluid mechanics in undergraduate
classes for engineering/science students but also for technical peoples. It is hoped that
the book could be used as a reference book for people who have at least some basics
knowledge of science areas such as calculus, physics, etc.

The structure of this book is such that many of the chapters could be usable
independently. For example, if you need information about, say, statics' equations,
you can read just chapter . | hope this approach makes the book easier to use as
a reference manual. However, this manuscript is first and foremost a textbook, and
secondly a reference manual only as a lucky coincidence.

| have tried to describe why the theories are the way they are, rather than just
listing “seven easy steps” for each task. This means that a lot of information is presented
which is not necessary for everyone. These explanations have been marked as such and
can be skippedE] Reading everything will, naturally, increase your understanding of the
many aspects of fluid mechanics. Many in the industry, have called and emailed this
author with questions since this book is only source in the world of some information.
These questions have lead to more information and further explanation that is not found
anywhere else.

This book is written and maintained on a volunteer basis. Like all volunteer
work, there is a limit on how much effort | was able to put into the book and its
organization. Moreover, due to the fact that English is my third language and time
limitations, the explanations are not as good as if | had a few years to perfect them.
Nevertheless, | believe professionals working in many engineering fields will benefit from
this information. This book contains many worked examples, which can be very useful
for many. In fact, this book contains material that was not published anywhere else.
As demonstration, some of the work was plagiarized in famous American universities.

| have left some issues which have unsatisfactory explanations in the book, marked
with a Mata mark. | hope to improve or to add to these areas in the near future.

2To the power and glory of the mighty God. This book is only attempt to explain his power.
3At the present, the book is not well organized. You have to remember that this book is a work in
progress.
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Furthermore, | hope that many others will participate of this project and will contribute
to this book (even small contributions such as providing examples or editing mistakes
are needed).

| have tried to make this text of the highest quality possible and am interested in
your comments and ideas on how to make it better. Incorrect language, errors, ideas for
new areas to cover, rewritten sections, more fundamental material, more mathematics
(or less mathematics); | am interested in it all. | am particularly interested in the
best arrangement of the book. If you want to be involved in the editing, graphic
design, or proofreading, please drop me a line. You may contact me via Email at
“barmeir@gmail.com”.

Naturally, this book contains material that never was published before (sorry
cannot avoid it). This material never went through a close content review. While close
content peer review and publication in a professional publication is excellent idea in
theory. In practice, this process leaves a large room to blockage of novel ideas and
plagiarism. If you would like be “peer reviews" or critic to my new ideas please send
me your comment(s). Even reaction/comments from individuals like David Marshalff]

Several people have helped me with this book, directly or indirectly. | would like
to especially thank to my adviser, Dr. E. R. G. Eckert, whose work was the inspiration
for this book. | also would like to thank to Jannie McRotien (Open Channel Flow
chapter) and Tousher Yang for their advices, ideas, and assistance.

The symbol META was added to provide typographical conventions to blurb as
needed. This is mostly for the author's purposes and also for your amusement. There
are also notes in the margin, but those are solely for the author’s purposes, ignore them
please. They will be removed gradually as the version number advances.

| encourage anyone with a penchant for writing, editing, graphic ability, IKTEX
knowledge, and material knowledge and a desire to provide open content textbooks and
to improve them to join me in this project. If you have Internet e-mail access, you can
contact me at “barmeir@gmail.com”.

4Dr. Marshall wrote to this author that the author should review other people work before he
write any thing new (well, literature review is always good, isn't it?). Over ten individuals wrote me
about this letter. | am asking from everyone to assume that his reaction was innocent one. While
his comment looks like unpleasant reaction, it brought or cause the expansion of the explanation for
the oblique shock. However, other email that imply that someone will take care of this author aren’t
appreciated.



To Do List and Road Map

This book isn't complete and probably never will be completed. There will always new
problems to add or to polish the explanations or include more new materials. Also issues
that associated with the book like the software has to be improved. It is hoped the
changes in TEX and IATEX related to this book in future will be minimal and minor. It is
hoped that the style file will be converged to the final form rapidly. Nevertheless, there
are specific issues which are on the “table” and they are described herein.

At this stage, some chapters are missing. Specific missing parts from every chap-
ters are discussed below. These omissions, mistakes, approach problems are sometime
appears in the book when possible. You are always welcome to add a new material:
problem, question, illustration or photo of experiment. Material can be further illu-
minate. Additional material can be provided to give a different angle on the issue at
hand.

Properties

The chapter in beta stage and will be boosted in the future.

Turbulence

To add this chapter.

Inviscid Flow

To add the unsteady Bernoulli in moving frames To add K—J condition and Add prop-
erties.

Machinery

To add this chapter.

Internal Viscous Flow

To add this Chapter.



VERSION 0.1 APRIL 22, 2008
Open Channel Flow

The chapter isn't in the development stage yet. Some parts were taken from Funda-
mentals of Die Casting Design book and are in a process of improvement.
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Introduction to Fluid Mechanics

1.1 What is Fluid Mechanics?

Fluid mechanics deals with the study of all fluids under static and dynamic situations.
Fluid mechanics is a branch of continuous mechanics which deals with a relationship
between forces, motions, and statical conditions in a continuous material. This study
area deals with many and diversified problems such as surface tension, fluid statics,
flow in enclose bodies, or flow round bodies (solid or otherwise), flow stability, etc.
In fact, almost any action a person is doing involves some kind of a fluid mechanics
problem. Furthermore, the boundary between the solid mechanics and fluid mechanics
is some kind of gray shed and not a sharp distinction (see Figure for the complex
relationships between the different branches which only part of it should be drawn in
the same time.). For example, glass appears as a solid material, but a closer look
reveals that the glass is a liquid with a large viscosity. A proof of the glass “liquidity” is
the change of the glass thickness in high windows in European Churches after hundred
years. The bottom part of the glass is thicker than the top part. Materials like sand
(some call it quick sand) and grains should be treated as liquids. It is known that these
materials have the ability to drown people. Even material such as aluminum just below
the mushy zond!] also behaves as a liquid similarly to butter. Furthermore, material
particles that “behaves” as solid mixed with liquid creates a mixture that behaves as a
compleﬂ liquid. After it was established that the boundaries of fluid mechanics aren’t
sharp, most of the discussion in this book is limited to simple and (mostly) Newtonian
(sometimes power fluids) fluids which will be defined later.

IMushy zone refers to aluminum alloy with partially solid and partially liquid phases.
2It can be viewed as liquid solid multiphase flow.
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Fig. -1.1 — Diagram to explain part of relationships of fluid mechanics branches.

The fluid mechanics study involve many fields that have no clear boundaries between
them. Researchers distinguish between orderly flow and chaotic flow as the laminar
flow and the turbulent flow. The fluid mechanics can also be distinguish between
a single phase flow and multiphase flow (flow made more than one phase or single
distinguishable material). The last boundary (as all the boundaries in fluid mechanics)
isn't sharp because fluid can go through a phase change (condensation or evaporation)
in the middle or during the flow and switch from a single phase flow to a multi phase
flow. Moreover, flow with two phases (or materials) can be treated as a single phase
(for example, air with dust particle).

After it was made clear that the boundaries of fluid mechanics aren’t sharp, the
study must make arbitrary boundaries between fields. Then the dimensional analysis can
be used explain why in certain cases one distinguish area/principle is more relevant than
the other and some effects can be neglected. Or, when a general model is need because
more parameters are effecting the situation. It is this author’s personal experience that
the knowledge and ability to know in what area the situation lay is one of the main
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problems. For example, engineers in software company (EKK Inc, http://ekkinc.
com/ ) analyzed a flow of a complete still liquid assuming a complex turbulent flow
model. Such absurd analysis are common among engineers who do not know which
model can be applied. Thus, one of the main goals of this book is to explain what
model should be applied. Before dealing with the boundaries, the simplified private
cases must be explained.

There are two main approaches of presenting an introduction of fluid mechanics
materials. The first approach introduces the fluid kinematic and then the basic gov-
erning equations, to be followed by stability, turbulence, boundary layer and internal
and external flow. The second approach deals with the Integral Analysis to be followed
with Differential Analysis, and continue with Empirical Analysis. These two approaches
pose a dilemma to anyone who writes an introductory book for the fluid mechanics.
These two approaches have justifications and positive points. Reviewing many books
on fluid mechanics made it clear, there isn't a clear winner. This book attempts to find
a hybrid approach in which the kinematic is presented first (aside to standard initial four
chapters) follow by Integral analysis and continued by Differential analysis. The ideal
flow (frictionless flow) should be expanded compared to the regular treatment. This
book is unique in providing chapter on multiphase flow. Naturally, chapters on open
channel flow (as a sub class of the multiphase flow) and compressible flow (with the
latest developments) are provided.

1.2 Brief History

The need to have some understanding of fluid mechanics started with the need to obtain
water supply. For example, people realized that wells have to be dug and crude pumping
devices need to be constructed. Later, a large population created a need to solve waste
(sewage) and some basic understanding was created. At some point, people realized
that water can be used to move things and provide power. When cities increased to
a larger size, aqueducts were constructed. These aqueducts reached their greatest size
and grandeur in those of the City of Rome and China.

Yet, almost all knowledge of the ancients can be summarized as application of
instincts, with the exception Archimedes (250 B.C.) on the principles of buoyancy. For
example, larger tunnels built for a larger water supply, etc. There were no calculations
even with the great need for water supply and transportation. The first progress in fluid
mechanics was made by Leonardo Da Vinci (1452-1519) who built the first chambered
canal lock near Milan. He also made several attempts to study the flight (birds) and
developed some concepts on the origin of the forces. After his initial work, the knowledge
of fluid mechanics (hydraulic) increasingly gained speed by the contributions of Galileo,
Torricelli, Euler, Newton, Bernoulli family, and D'Alembert. At that stage theory and
experiments had some discrepancy. This fact was acknowledged by D’Alembert who
stated that, “The theory of fluids must necessarily be based upon experiment.” For
example the concept of ideal liquid that leads to motion with no resistance, conflicts
with the reality.

This discrepancy between theory and practice is called the “D’Alembert paradox”
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and serves to demonstrate the limitationsof theory alone in solving fluid problems. As
in thermodynamics, two different of school of thoughts were created: the first believed
that the solution will come from theoretical aspect alone, and the second believed
that solution is the pure practical (experimental) aspect of fluid mechanics. On the
theoretical side, considerable contributions were made by Euler, La Grange, Helmholtz,
Kirchhoff, Rayleigh, Rankine, and Kelvin. On the “experimental” side, mainly in pipes
and open channels area, were Brahms, Bossut, Chezy, Dubuat, Fabre, Coulomb, Dupuit,
d'Aubisson, Hagen, and Poisseuille.

In the middle of the nineteen century, first Navier in the molecular level and
later Stokes from continuous point of view succeeded in creating governing equations
for real fluid motion. Thus, creating a matching between the two school of thoughts:
experimental and theoretical. But, as in thermodynamics, people cannot relinquish
control. As results it created today “strange” names: Hydrodynamics, Hydraulics, Gas
Dynamics, and Aeronautics.

The Navier-Stokes equations, which describes the flow (or even Euler equations),
were considered unsolvable during the mid nineteen century because of the high com-
plexity. This problem led to two consequences. Theoreticians tried to simplify the
equations and arrive at approximated solutions representing specific cases. Examples
of such work are Hermann von Helmholtz's concept of vortexes (1858), Lanchester's
concept of circulatory flow (1894), and the Kutta—Joukowski circulation theory of lift
(1906). The experimentalists, at the same time proposed many correlations to many
fluid mechanics problems, for example, flow resistance by Darcy, Weisbach, Fanning,
Ganguillet, and Manning. The obvious happened without theoretical guidance, the
empirical formulas generated by fitting curves to experimental data (even sometime
merely presenting the results in tabular form) resulting in formulas that the relationship
between the physics and properties made very little sense.

At the end of the twenty century, the demand for vigorous scientific knowledge
that can be applied to various liquids as opposed to formula for every fluid was created
by the expansion of many industries. This demand coupled with new several novel
concepts like the theoretical and experimental researches of Reynolds, the development
of dimensional analysis by Rayleigh, and Froude's idea of the use of models change
the science of the fluid mechanics. Perhaps the most radical concept that effects the
fluid mechanics is of Prandtl's idea of boundary layer which is a combination of the
modeling and dimensional analysis that leads to modern fluid mechanics. Therefore,
many call Prandtl as the father of modern fluid mechanics. This concept leads to
mathematical basis for many approximations. Thus, Prandtl and his students Blasius,
von Karman, Meyer, and Blasius and several other individuals as Nikuradse, Rose,
Taylor, Bhuckingham, Stanton, and many others, transformed the fluid mechanics to
today modern science.

While the understanding of the fundamentals did not change much, after World
War Two, the way how it was calculated changed. The introduction of the computers
during the 60s and much more powerful personal computer has changed the field. There
are many open source programs that can analyze many fluid mechanics situations. To-
day many problems can be analyzed by using the numerical tools and provide reasonable
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results. These programs in many cases can capture all the appropriate parameters and
adequately provide a reasonable description of the physics. However, there are many
other cases that numerical analysis cannot provide any meaningful result (trends). For
example, no weather prediction program can produce good engineering quality results
(where the snow will fall within 50 kilometers accuracy. Building a car with this ac-
curacy is a disaster). In the best scenario, these programs are as good as the input
provided. Thus, assuming turbulent flow for still flow simply provides erroneous results
(see for example, EKK, Inc).

1.3 Kinds of Fluids

Some differentiate fluid from solid by the reaction to shear stress. The fluid continuously
and permanently deformed under shear stress while the solid exhibits a finite deformation
which does not change with time. It is also said that fluid cannot return to their original
state after the deformation. This differentiation leads to three groups of materials: solids
and liquids and all material between them. This test creates a new material group that
shows dual behaviors: under certain limits; it behaves like solid and under others it
behaves like fluid (see Fig. . The study of this kind of material called rheology and
it will (almost) not be discussed in this book. It is evident from this discussion that
when a fluid is at rest, no shear stress is applied.

The fluid is mainly divided into two categories: liquids and gases. The main differ-
ence between the liquids and gases state is that gas will occupy the whole volume while
liquids has an almost fix volume. This difference can be, for most practical purposes
considered, sharp even though in reality this difference isn't sharp. The difference be-
tween a gas phase to a liquid phase above the critical point are practically minor. But
below the critical point, the change of water pressure by 1000% only change the volume
by less than 1 percent. For example, a change in the volume by more 5% will required
tens of thousands percent change of the pressure. So, if the change of pressure is sig-
nificantly less than that, then the change of volume is at best 5%. Hence, the pressure
will not affect the volume. In gaseous phase, any change in pressure directly affects the
volume. The gas fills the volume and liquid cannot. Gas has no free interface/surface
(since it does fill the entire volume).

There are several quantities that have to be addressed in this discussion. The first
is force which was reviewed in physics. The unit used to measure is [N]. It must be
remember that force is a vector, e.g it has a direction. The second quantity discussed
here is the area.This quantity was discussed in physics class but here it has an additional
meaning, and it is referred to the direction of the area. The direction of area is perpen-
dicular to the area. The area is measured in [m?]. Area of three—dimensional object
has no single direction. Thus, these kinds of areas should be addressed infinitesimally
and locally.

The traditional quantity, which is force per area has a new meaning. This is a
result of division of a vector by a vector and it is referred to as tensor. In this book,
the emphasis is on the physics, so at this stage the tensor will have to be broken
into its components. Later, the discussion on the mathematical meaning is presented
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(later version). For the discussion here, the pressure has three components, one in the
area direction and two perpendicular to the area. The pressure component in the area
direction is called pressure (great way to confuse, isn't it?). The other two components
are referred as the shear stresses. The units used for the pressure components is [N/m?].

The density is a property which requires that

liquid to be continuous. The density can be changed p
and it is a function of time and space (location) but WWWW—
must have a continues property. It doesn’'t mean that

a sharp and abrupt change in the density cannot oc-
cur. It referred to the fact that density is independent
of the sampling size. Figure [I.2] shows the density as

a function of the sample size. After certain sample log £
size, the density remains constant. Thus, the density
is defined as Fig. -1.2 — Density as a function of
. . Aﬂ (1.1) the size of sample.
AV —e AV

It must be noted that ¢ is chosen so that the continuous assumption is not broken,
that is, it did not reach/reduced to the size where the atoms or molecular statistical
calculations are significant (see Figure for point where the green lines converge to
constant density). When this assumption is broken, then, the principles of statistical
mechanics must be utilized.

1.4 Shear Stress

The shear stress is part of the pressure tensor. AL
However, here, and many parts of the book, it I
will be treated as a separate issue. In solid me-
chanics, the shear stress is considered as the ra-
tio of the force acting on area in the direction of
the forces perpendicular to area (Note what the
direction of area?). Different from solid, fluid
cannot pull directly but through a solid surface.

Fig. -1.3 — Schematics to de-
; o scribe the shear stress in
Consider liquid that undergoes a shear stress be- fluid mechanics.

tween a short distance of two plates as shown in
Fig.

The upper plate velocity generally will be

U=f(AFh) (1.2)

Where A is the area, the F' denotes the force, h is the distance between the plates.
In this discussion, the aim is to develop differential equation, thus the small distance
analysis is applicable. From solid mechanics study, it was shown that when the force
per area increases, the velocity of the plate increases also. Experiments show that the
increase of height will increase the velocity up to a certain range. Moving the plate with
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a zero lubricant (h ~ 0) results in a large force or conversely a large amount of lubricant
results in smaller force. For cases where the dependency is linear, the following can be
written

hF
Uox —— 1.3
x (13)
Equations ([1.3]) can be rearranged to be
Uu F
Shear stress was defined as
F

The index = represent the “direction of the shear stress while the y represent the
direction of the area(perpendicular to the area). From equations and (1.5) it
follows that ratio of the velocity to height is proportional to shear stress. Hence,
applying the coefficient to obtain a new equality as

U
Toy = W ﬁ (16)
Where p is called the absolute viscosity or dynamic viscosity which will be discussed
later in this chapter in a great length.
In steady state, the distance the up-

per plate moves after small amount of do < <t <t

time, 0t is + 7 ; ,74’
dt = U bt 1.7 t S
a7 + S
From Figure[1.4]it can be noticed that for A
~ o3 *’74
a small angle, 68 = sin 3, the regular ap-

proximation provides

Fig. -1.4 — The deformation of fluid due to shear

geomelry stress as progression of time.

~~
d=Ust= hop (1.8)

From equation ([1.8)) it follows that

)]
= h = 1.
U 5 (1.9)
Combining equation ([1.9) with equation ((1.6)) yields
B
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If the velocity profile is linear between the plate (it will be shown later that it is consistent
with derivations of velocity), then it can be written for small a angel that

08 dU

_— = — 1.11

ot dy ( )
Materials which obey equation ([1.10)) referred to as Newtonian fluid. For this kind of
substance

Toy = b —— (1.12)

Newtonian fluids are fluids which the ratio is constant. Many fluids fall into this category
such as air, water etc. This approximation is appropriate for many other fluids but only
within some ranges.

Equation can be interpreted as momentum in the x direction transferred
into the y direction. Thus, the viscosity is the resistance to the flow (flux) or the
movement. The property of viscosity, which is exhibited by all fluids, is due to the
existence of cohesion and interaction between fluid molecules. These cohesion and
interactions hamper the flux in y—direction. Some referred to shear stress as viscous
flux of x-momentum in the y—direction. The units of shear stress are the same as flux
per time as following

F lkgm 1| mU/|kg m 1
- sec sec m?

sec? m2 A

A

Thus, the notation of 7,,, is easier to understand and visualize. In fact, this interpretation
is more suitable to explain the molecular mechanism of the viscosity. The units of
absolute viscosity are [N sec/m?].

Example 1.1:

A space of 1 [em] width between two large plane surfaces is filled with glycerin. Calculate
the force that is required to drag a very thin plate of 1 [m?] at a speed of 0.5 m/sec.
It can be assumed that the plates remains in equidistant from each other and steady
state is achieved instantly.

SOLUTION

Assuming Newtonian flow, the following can be written (see equation (1.6]))

ApU  1x1.069 x 0.5
h 0.01

End Solution

F = = 53.45[N]

Example 1.2:

Castor oil at 25°C fills the space between two concentric cylinders of 0.2[m] and 0.1fm]
diameters with height of 0.1 [m]. Calculate the torque required to rotate the inner
cylinder at 12 rpm, when the outer cylinder remains stationary. Assume steady state
conditions.
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SOLUTION

The velocity is
ps
. —_——
U=r0=2mr;rps=2xmx0.1x12/60=047r;
Where rps is revolution per second.

The same way as in Example [1.I] the moment can be calculated as the force
times the distance as

ri 2wr;h

T
M=F(=——= 12
To —T;
In this case r, — r; = h thus,
Ti M
20.1% 7 0.986 0.4
2 . . )
M=:" i ~ .0078[N m]

End Solution

1.5 Viscosity
1.5.1 General Discussion

Viscosity varies widely with tem-
perature. However, tempera-
ture variation has an opposite
effect on the viscosities of lig-
uids and gases. The difference
is due to their fundamentally dif-
ferent mechanism creating vis-
cosity characteristics. In gases,
molecules are sparse and cohesion
is negligible, while in the liquids,
the molecules are more compact
and cohesion is more dominate.
Thus, in gases, the exchange of Fig. -1.5 — The different of power fluids families.

momentum between layers brought as a result of molecular movement normal to the
general direction of flow, and it resists the flow. This molecular activity is known to
increase with temperature, thus, the viscosity of gases will increase with temperature.
This reasoning is a result of the considerations of the kinetic theory. This theory indi-
cates that gas viscosities vary directly with the square root of temperature. In liquids,
the momentum exchange due to molecular movement is small compared to the cohe-
sive forces between the molecules. Thus, the viscosity is primarily dependent on the
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10000

100004 3

10004

10004

Viscosity, uPa-s
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8
Viscosity, uPa-s

5o 4 ) 120 160 200
Temperature, K Temperature, K

(a) Nitrogen viscosity. (b) Argon viscosity.

Fig. -1.6 — Nitrogen (left) and Argon (right) viscosity as a function of the temperature and
pressure after Lemmon and Jacobsen.

magnitude of these cohesive forces. Since these forces decrease rapidly with increases
of temperature, liquid viscosities decrease as temperature increases.

Figure demonstrates that viscosity increases slightly with pressure, but this
variation is negligible for most engineering problems. Well above the critical point, both
phases are only a function of the temperature. On the liquid side below the critical point,
the pressure has minor effect on the viscosity. It must be stress that the viscosity in
the dome is meaningless. There is no such a thing of viscosity at 30% liquid. It simply
depends on the structure of the flow as will be discussed in the chapter on multi phase
flow. The lines in the above diagrams are only to show constant pressure lines. Oils
have the greatest increase of viscosity with pressure which is a good thing for many
engineering purposes.

1.5.2 Non—-Newtonian Fluids

In equation , the relationship between the
velocity and the shear stress was assumed to be
linear. Not all the materials obey this relation-
ship. There is a large class of materials which
shows a non—linear relationship with velocity for
any shear stress. This class of materials can be L e
approximated by a single polynomial term that

is a = bx™. From the physical point of view,

the coefficient depends on the velocity gradi- Fig. -1.7 — The shear stress as a function
ent. This relationship is referred to as power of the shear rate.

relationship and it can be written as

8
8

®
8

=
8

E

Shear Stress [Pa]
g

viscosity

—_—
@)
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Air absolute & kinematic viscosity Atmospheric P
0000025 L e e L R

Water absolute and kinematic viscosity Atmospheric Pressure
o e e A B e e

ooz [

August 22, 2013 August 22, 2013

(a) Air viscosity as a function of the (b) Water viscosity as a function tem-
temperature. perature.

Fig. -1.8 — The effect of the temperature on the absolute the kinematic viscosity of water
and air

The new coefficients (n, K) in equation are constant. When n = 1 equation
represent Newtonian fluid and K becomes the familiar p. The viscosity coefficient is
always positive. When n, is above one, the liquid is dilettante.When n is below one,
the fluid is pseudoplastic. The liquids which satisfy equation are referred to as
purely viscous fluids. Many fluids satisfy the above equation. Fluids that show increase
in the viscosity (with increase of the shear) referred to as thixotropic and those that
show decrease are called rheopectic fluids (see Figure .

Materials which behave up to a certain shear stress as a solid and above it as
a liquid are referred as Bingham liquids. In the simple case, the “liquid side” is like
Newtonian fluid for large shear stress. The general relationship for simple Bingham flow
is

Ty = —H £ 70 if |7yl > 70 (1.14)

du,
dy

=0 if |Tyz| < 70 (1.15)

There are materials that simple Bingham model does not provide adequate explanation
and a more sophisticate model is required. The Newtonian part of the model has to be
replaced by power liquid. For example, according to Ferraris at el (Ferraris, De Larrard,
and Martys 2001)) concrete behaves as shown in Figure However, for most practical
purposes, this kind of figures isn't used in regular engineering practice.

1.5.3 Kinematic Viscosity

The kinematic viscosity is another way to look at the viscosity. The reason for this
new definition is that some experimental data are given in this form. These results
also explained better using the new definition. The kinematic viscosity embraces both
the viscosity and density properties of a fluid. The above equation shows that the
dimensions of v to be square meter per second, [m?/sec|, which are acceleration units
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(a combination of kinematic terms). This fact explains the name “kinematic” viscosity.
The kinematic viscosity is defined as

V=

u
= (1.16)
p

The gas density decreases with the temperature. However, The increase of the

absolute viscosity with the temperature is enough to overcome the increase of density
and thus, the kinematic viscosity also increase with the temperature for many materials.

1.56.4 Estimation of The Viscosity

The absolute viscosity of many fluids relatively doesn't change with the pressure but very
sensitive to temperature. For isothermal flow, the viscosity can be considered constant
in many cases. The variations of air and water as a function of the temperature at
atmospheric pressure are plotted in Figures Fig.

Some common materials (pure and mixture) have expressions that provide an
estimate. For many gases, Sutherland’s equation is used and accordinge to the literature,
provides reasonabl resultsE] for the range of —40°C to 1600°C.

3
2

0.555 Tig + Suth ( T >

— 1.17
0.555 T, + Suth \Tj ( )

K= Ho

Where

Example 1.3:
Calculate the viscosity of air at 800K based on Sutherland’s equation. Use the data
provide in Table|1.1]

SOLUTION

Applying the constants from Suthelnd’s table provides

3
0.555 x 524.07 + 120 y 800 \2 ~925110-° N sec
0.555 x 800 + 120 524.07 2

1 = 0.00001827 x

m

The viscosity increases almost by 40%. The observed viscosity is about ~
3.7107° [%]

End Solution

3This author is ambivalent about this statement.
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coefficients | Chemical : 2
Material formula Sutherland | T;0[K] | po(N sec/m?)
ammonia NH; 370 527.67 0.00000982
standard air 120 524.07 0.00001827
carbon dioxide CO, 240 527.67 0.00001480
carbon monoxide CcO 118 518.67 0.00001720
hydrogen H, 72 528.93 0.0000876
nitrogen Ny 111 540.99 0.0001781
oxygen o)) 127 526.05 0.0002018
sulfur dioxide S0- 416 528.57 0.0001254

Table -1.1 — The list for Sutherland’s equation coefficients for selected materials.

Substance (;anTlec:I Ten%p[ircaiure Viscosity [%]
1— C4 Hyg 23 0.0000076
CHy 20 0.0000109
COq 20 0.0000146
Oxygen O, 20 0.0000203
Mercury vapor Hg 380 0.0000654
Table -1.2 — Viscosity of selected gases.
Table -1.3 — Viscosity of selected liquids.
Chemical Chemical | Temperature . . [N sec
component formula T[°C| Viscosity [
(CoH5)O 20 0.000245
CsHg 20 0.000647
Bra 26 0.000946
CoHsOH 20 0.001194
Hg 25 0.001547
Hy50,4 25 0.01915
Olive Oil 25 0.084
Castor Qil 25 0.986
Clucuse 25 5-20
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Table -1.3 — Viscosity of selected liquids (continue)

Chemical Chemical | Temperature Viscosity [Nsec

component formula ‘ae Y
Corn Oil 20 0.072
SAE 30 - 0.15-0.200
SAE 50 ~ 25°C 0.54
SAE 70 ~25°C 1.6
Ketchup ~ 20°C 0,05
Ketchup ~ 25°C 0,098
Benzene ~ 20°C 0.000652
Firm glass - ~1x107
Glycerol 20 1.069

Various Carbon Oils

Fig. -1.9 — Cotton seed oil kinatic vsicotity in 3-D as a function of pressure and temperature.
The symble 1 should be v as figure made by non fluid mechanics after Nieves M. C.
Talavera—Prieto, Abel G. M. Ferreira, Anto nio T. G. Portugal, and Ana P. V. Egas

The kinatic viscosity affected strongly by the temperature and it depend on the chemistry
of oils. The kinatic viscosity is generaly by what is reffered as Arrhenius—type relationship
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which given by the following (Talavera-Prieto, Ferreira, Portugal, and Egas 2019)
v=Ael"/ET (1.18)

where v is kinatic viscosity, A initial factor, E® is the activation energy, R the gas
constant, and 7' the absolute temperature. There are relationship between the initail
factor the the value at high temperature which related by A = Inv..

For wider range of temperature the viscosity three parameters are need and it is
given by VogelFulcherTammann (VFT) equation:

By rr
Inv=A 1.19
ny=Aypr + 5= T (1.19)

where Ay pr = Inve, and constants Ay pr , By pr , and T are the fitting parameters.
When the situation is more complex more complex equations are required.

Liquid Metals

Liquid Metal viscosity
2577 T T T T T T T
— Li
- Na
20 - K 7]

He
Pb

[

10 - o -

05 T -

L L L L L L L L L
0 100 20 300 400 500 600 700 800 900
Temperature [°C]

August 22, 2013

Fig. -1.10 — Liquid metals viscosity as a function of the temperature.

Liquid metal can be considered as a Newtonian fluid for many applications. Furthermore,
many aluminum alloys are behaving as a Newtonian liquid until the first solidification
appears (assuming steady state thermodynamics properties). Even when there is a so-
lidification (mushy zone), the metal behavior can be estimated as a Newtonian material
(further reading can be done in this author’s book “Fundamentals of Die Casting De-
sign”). Figure exhibits several liquid metals (from The Reactor Handbook, Vol.
Atomic Energy Commission AECD-3646 U.S. Government Printing Office, Washington
D.C. May 1995 p. 258.).

The General Viscosity Graphs

In case “ordinary” fluids where information is limit, Hougen et al suggested to use
graph similar to compressibility chart. In this graph, if one point is well documented,
other points can be estimated. Furthermore, this graph also shows the trends. In Figure
the relative viscosity p,. = p/pc is plotted as a function of relative temperature,
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Chemical Molecular N sec
component Weight Te[K] Pe[Bar] He 17m2
H, 2.016 333 12.9696 3.47
He 4.003 5.26 2.289945 2.54
Ne 20.183 44.5 27.256425 15.6
Ar 39.944 151 48.636 26.4
Xe 131.3 289.8 58.7685 49,
Air “mixed” 28.97 132 36.8823 19.3
COs 44.01 304.2 73.865925 19.0
Oq 32.00 154.4 50.358525 18.0
CoHg 30.07 305.4 48.83865 21.0
CHy 16.04 190.7 46.40685 15.9
Water 18.01528 | 647.096 K | 22.064 [MPa] | ~ 11,

Table -1.4 — The properties at the critical stage and their values of selected materials.

T.. e is the viscosity at critical condition and  is the viscosity at any given condition.
The lines of constant relative pressure, P, = P/P. are drawn. The lower pressure is,
for practical purpose, ~ 1[bar].

The critical pressure can be evaluated in the following three ways. The simplest
way is by obtaining the data from Table [I.4] or similar information. The second way, if
the information is available and is close enough to the critical point, then the critical
viscosity is obtained as

gwluen
fhe = 1.20
- (1.20)

-~

Figure [[.1T4]
The third way, when none is available, is by utilizing the following approximation
e = /M T,05.2/? (1.21)
Where 9. is the critical molecular volume and M is molecular weight. Or

pre = VMPAPT, 7S (1.22)

Calculate the reduced pressure and the reduced temperature and from the Figure
obtain the reduced viscosity.

Example 1.4:
Estimate the viscosity of oxygen, Oy at 100°C' and 20[Bar].

SOLUTION
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Reduced Viscosity

T
\
\

\
\
0 biua &

\

dense gas

, |-critical point

August 22, 2013

Reduced Temperature
May 27, 2008

(a) Reduced viscosity as function of (b) Reduced viscosity as function of
the reduced temperature. the reduced temperature.

Fig. -1.11 — Relative viscosity

The critical condition of oxygen are P. = 50.35[Bar|, T. = 154.4 and therefor p. =

N
18 [ sec} The value of the reduced temperature is
m

2
373.15
AT
The value of the reduced pressure is
P~ 2 04
50.35

From Figure it can be obtained p,- ~ 1.2 and the predicted viscosity is
Table

0= e (“) = 18 x 1.2 = 21.6[Nsec/m?]

e

The observed value is 24[N sec/m?*J|

End Solution

Viscosity of Mixtures

In general the viscosity of liquid mixture has to be evaluated experimentally. Even
for homogeneous mixture, there isn't silver bullet to estimate the viscosity. In this book,

4Kyama, Makita, Rev. Physical Chemistry Japan Vol. 26 No. 2 1956.
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only the mixture of low density gases is discussed for analytical expression. For most
cases, the following Wilke's correlation for gas at low density provides a result in a
reasonable range.

T
i = 3 e (123)
Y i

where ®,7 is defined as

2
1 M, 1 J[M;
B, =— /1 ‘1 Llayy A 1.24
ERVR +Mj<+\/uj\/Mi> (1.24)

Here, n is the number of the chemical components in the mixture. x; is the mole
fraction of component 4, and p; is the viscosity of component i. The subscript 7 should
be used for the j index. The dimensionless parameter ®;; is equal to one when i = j.
The mixture viscosity is highly nonlinear function of the fractions of the components.

Example 1.5:
Calculate the viscosity of a mixture (air) made of 20% oxygen, Oz and 80% nitrogen
Ny for the temperature of 20°C..

SOLUTION

The following table summarizes the known details

i Component Molecular Mole Viscosit
' P Weight, M Fraction, x ¥
1 O, 32. 0.2 0.0000203
2 Ny 28. 0.8 0.00001754
i j M; /M; wilbg | Py
1 1 1.0 1.0 1.0
2 1.143 1.157 | 1.0024
2 1 0.875 .86 0.996
2 1.0 1.0 1.0
0.2 x 0.0000203 0.8 x 0.00001754

~ 0.0000181 {stc}
m

Hmiz ™ 55X 1.0+ 0.8 x 1.0024 0.2 x 0.996 1 0.8 x 1.0

N
The observed value is ~ 0.0000182 S:c )

End Solution
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In very low pressure, in theory, the viscosity is only a function of the temperature
with a “simple” molecular structure. For gases with very long molecular structure or
complexity structure these formulas cannot be applied. For some mixtures of two liquids
it was observed that at a low shear stress, the viscosity is dominated by a liquid with
high viscosity and at high shear stress to be dominated by a liquid with the low viscosity
liquid. The higher viscosity is more dominate at low shear stress. Reiner and Phillippoff
suggested the following formula

1

Ho — Moo .
Wy _ | oo+ —————5 | T2 (1.25)
dy 14 (%;)

Where the term o is the experimental value at high shear stress. The term pg
is the experimental viscosity at shear stress approaching zero. The term 75 is the
characteristic shear stress of the mixture. An example for values for this formula, for
Molten Sulfur at temperature 120°C' are fio = 0.0215 (£5¢¢), 1o = 0.00105 (£2¢<),
and 7, = 0.0000073 (£5). This equation provides reasonable value only up to
7 =0.001 (&3).

Figure [1.IIB can be used for a crude estimate of dense gases mixture. To esti-
mate the viscosity of the mixture with n component Hougen and Watson's method for
pseudocritial properties is adapted. In this method the following are defined as mixed
critical pressure as

P. :ixiPc. (1.26)
miz i
the mixed critical temperature is
T. :ixiTq (1.27)
miz i
and the mixed critical viscosity is
ucmm = i T ,uci (1.28)
i=1

Example 1.6:
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An inside cylinder with a radius of 0.1 [m]
rotates concentrically within a fixed cylin-
der of 0.101 [m] radius and the cylinders
length is 0.2 [m]. It is given that a moment
of 1 [N x m] is required to maintain an
angular velocity of 31.4 revolution per sec-
ond (these number represent only academic
question not real value of actual liquid). Es-
timate the liquid viscosity used between the
cylinders.

Fig. -1.12 — Concentrating cylin-
ders with the rotating inner
cylinder.

SOLUTION

The moment or the torque is transmitted through the liquid to the outer cylinder.
Control volume around the inner cylinder shows that moment is a function of the area
and shear stress. The shear stress calculations can be estimated as a linear between the
two concentric cylinders. The velocity at the inner cylinders surface is

Ui, =rw=0.1 x 31.4[rad/second] = 3.14[m/s] (1.VLa)

The velocity at the outer cylinder surface is zero. The velocity gradient may be assumed
to be linear, hence,

dU 0.1—-0 1
—_— = 1.Vl.b
ar 0101 —o1  [V0see ( )
The used moment is
A A~ =
dU ~~ (1.Vl.c)

or the viscosity is

M 1

h AU T 2% x012x02x100 (1.VL.d)
2mr; h%

End Solution

Example 1.7:

A square block weighing 1.0 [kN] with a side surfaces area of 0.1 [m?] slides down an
incline surface with an angle of 20°C. The surface is covered with oil film. The oil
creates a distance between the block and the inclined surface of 1 x 10=%[m]. What is
the speed of the block at steady state? Assuming a linear velocity profile in the oil and
that the whole oil is under steady state. The viscosity of the oil is 3 x 1075[m?/sec].

SOLUTION

The shear stress at the surface is estimated for steady state by

dUu U
w109 —Y  _a0p 1.VII.
T=po 3x10 X T3 106 30 ( a)
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The total fiction force is then
f=7A=01x30U=3U (1.VIL.b)

The gravity force that acting against the friction is equal to the friction hence

Or the solution is
U— 1% 9.8 x sin 20 (LVILd)
3
End Solution
\
Example 1.8: i
!
!
Develop an expression to estimate of the |
torque required to rotate a disc in a nar- l(i |
row gap. The edge effects can be neglected. o
The gap is given and equal to § and the ro- R I r

tation speed is w. The shear stress can be \

assumed to be linear.
Fig. -1.13 — Rotating disc in a
steady state.

SOLUTION

In this cases the shear stress is a function of the radius, r and an expression has to be

developed. Additionally, the differential area also increases and is a function of . The
shear stress can be estimated as

U wr

T = —— 1.VIll.a

py = H ( )

This torque can be integrated for the entire area as

R N Wy P
T:/ erA:/ r ,uﬂ 2mrdr (1.VIIl.b)
0 0 g
The results of the integration is
4
7o THOR (LVIll.c)

20

End Solution
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Water Density As A Function of Temperature and Pressure
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August 22, 2013

Fig. -1.14 — Water density as a function of temperature for various pressure. This figure
illustrates the typical situations like the one that appear in Example

1.6 Fluid Properties

The fluids have many properties which are similar to solid. A discussion of viscosity
and surface tension should be part of this section but because special importance these
topics have separate sections. The rest of the properties lumped into this section.

1.6.1 Fluid Density

The density is a property that is simple to analyzed and understand. The density is
related to the other state properties such temperature and pressure through the equation
of state or similar. Examples to describe the usage of property are provided.

Example 1.9:

A steel tank filled with water undergoes heating from 10°C' to 50°C'. The initial pressure
can be assumed to atmospheric. Due to the change temperature the tank, (strong steel
structure) undergoes linear expansion of 8 x 10~ per °C. Calculate the pressure at the
end of the process. E denotes the Young's modu/u:ﬂ Assume that the Young modulus
of the water is 2.15 x 10°(N/m?f¥| State your assumptions.

SOLUTION

5The definition of Young's modulus is E = £ where in this case o can be estimated as the pressure

change. The definition of ¢ is the ratio length change to to total length AL/L.
5This value is actually of Bulk modulus.
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The expansion of the steel tank will be due to two contributions: one due to the
thermal expansion and one due to the pressure increase in the tank. For this example,
it is assumed that the expansion due to pressure change is negligible. The tank volume
change under the assumptions state here but in the same time the tank walls remain
straight. The new density is

pr=p1 (L+aAT)’
~—————

thermal expansion

(1.1X.a)

The more accurate calculations require looking into the steam tables. As estimated
value of the density using Young's modulus and V5 o (Lg)

m
X — —> =
NI <L (1 AP)>3 (1.IX.b)
! E
It can be noticed that p; & m/L13 and thus
P1 _ P1
(1+aAT)? L_AP K (L.IX.c)
E
The change is then
AP
1JrcuAT:1—f (1.1X.d)
Thus the final pressure is
P2=P1—ECYAT (1|Xe)

In this case, what happen when the value of P, — F o AT becomes negative or very
very small? The basic assumption falls and the water evaporates.

If the expansion of the water is taken into account then the change (increase) of
water volume has to be taken into account. The tank volume was calculated earlier
and since the claim of “strong” steel the volume of the tank is only effected by the
temperature.

Vs

21 =1 +aAT)? (LIXf)
Vl tank

The volume of the water undergoes also a change and is a function of the temperature
and pressure. The water pressure at the end of the process is unknown but the volume
is known. Thus, the density at end is also known

My

p2 = 1.IX.
TQ‘tunk ( g)

"This leads F (L2 — L1) = AP Ly. Thus, Ly = Ly (1 — AP/E)
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The pressure is a function volume and the temperature P = P(v,T) thus

) axn
dP = (61}) dv + (8T> T

As approximation it can written as
AP =3,Av+ EAT (1.0X.0)

Substituting the values results for

~0.0002

AP
Ap

+2.15 x 10° AT (1.1X])

Notice that density change, Ap < 0.

End Solution

—_— — assssm Advance material can be skipped —o—— — —

1.6.2 Bulk Modulus

Similar to solids (hook's law), liquids have a property that describes the volume change
as results of pressure change for constant temperature. It can be noted that this
property is not the result of the equation of state but related to it. Bulk modulus
is usually obtained from experimental or theoretical or semi theoretical (theory with
experimental work) to fit energy—volume data. Most (theoretical) studies are obtained
by uniformly changing the unit cells in global energy variations especially for isotropic
systems (where the molecules has a structure with cubic symmetries). The bulk modulus
is a measure of the energy can be stored in the liquid. This coefficient is analogous to
the coefficient of spring. The reason that liquid has different coefficient is because it is
three dimensional verse one dimension that appear in regular spring.
The bulk modulus is defined as

Br = —v <E;1;)T (1.29)

Using the identity of v = 1/p transfers equation ([1.29) into

Br=p (?;)T (1.30)

The bulk modulus for several selected liquids is presented in Table [1.5
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Table -1.5 — The bulk modulus for selected material with the critical temperature and
pressure na — not available and nf — not found (exist but was not found in the

literature).

Chemical Bulk

component ll\/écgdﬂulus Te P
Acetic Acid 2.49 593K 57.8 [Bar]
Acetone 0.80 508 K 43 [Bar]
Benzene 1.10 562 K 4.74 [MPa]
Carbon Tetrachloride 1.32 556.4 K 4.49 [MPa]
Ethyl Alcohol 1.06 514 K 6.3 [Mpa]
Gasoline 1.3 nf nf
Glycerol 4.03-4.52 850 K 7.5 [Bar]
Mercury 26.2-28.5 1750 K 172.00 [MPa]
Methyl Alcohol 0.97 Est 513 | Est 78.5 [Bar]
Nitrobenzene 2.20 nf nf
Olive Oil 1.60 nf nf
Paraffin Oil 1.62 nf nf
SAE 30 Oil 1.5 na na
Seawater 2.34 na na
Toluene 1.09 591.79 K | 4.109 [MPa]
Turpentine 1.28 na na
Water 2.15-2.174 | 647.096 K | 22.064 [MPa]

In the literature, additional expansions for similar parameters are defined. The
thermal expansion is defined as

1 [/ov
Bp = v ((9T>P (1.31)

This parameter indicates the change of volume due to temperature change when the
pressure is constant. Another definition is referred as coefficient of tension and it is
defined as

1 [foP
Bv = P <3T>v (1-32)

This parameter indicates the change of the pressure due to the change of temperature
(where v = constant). These definitions are related to each other. This relationship
is obtained by the observation that the pressure as a function of the temperature and
specific volume as

P = f(T, v) (1.33)
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The full pressure derivative is

oP OP
P=|— T — 1.34
d <8T)vd —I—(av)Tdv (1.34)
On constant pressure lines, dP = 0, and therefore equation ([1.34)) reduces
oP oP
0 (8T)Ud +(8U>Tdv (1.35)

From equation ([1.35)) follows that

(57),

dv
bt =~ Zv 1.36
dr P=const aip ( )

ov )
Equation ((1.36)) indicates that relationship for these three coefficients is
Bo

=7 1.37
Br 3 (1.37)

The last equation ((1.37]) sometimes is used in measurement of the bulk modulus.

The increase of the pressure increases the bulk modulus due to the molecules
increase of the rejecting forces between each other when they are closer. In contrast, the
temperature increase results in reduction of the bulk of modulus because the molecular
are further away.

Example 1.10:
Calculate the modulus of liquid elasticity that reduced 0.035 per cent of its volume by
applying a pressure of 5[Bar] in a s slow process.

SOLUTION
Using the definition for the bulk modulus

oP v
L VAP 0 L 14985.714(B
Pr=—va, = Ay 0.00035 [Bar]

End Solution

Example 1.11:
Calculate the pressure needed to apply on water to reduce its volume by 1 per cent.
Assume the temperature to be 20°C.

SOLUTION
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Using the definition for the bulk modulus

A
AP ~ Bp=2 ~ 2.1510°.01 = 2.15107[N/m?] = 215[Bar]
v

End Solution

Example 1.12:

Two layers of two different liquids are con-
tained in a very solid tank. Initially the pres-
sure in the tank is Py. The liquids are com-
pressed due to the pressure increases. The -
new pressure is Py. The area of the tank I ‘,,]
is A and liquid A height is hy and liquid B —
height is hy. Estimate the change of the

air (or gas)

. . . . . . Water (liquid 2) hy
heights of the liquids depicted in the Figure T
State your assumptions. -
Fig. -1.15 — Two liquid layers un-
SOLUTION der pressure.

The volume change in a liquid is

AP
Br = —— XILIL
T AVIV (1.XI1.a)
Hence the change for the any liquid is
AP h AP
Ah = = 1.XI1.
ABr/V Br ( b)
The total change when the hydrostatic pressure is ignored.
hi hs
Ahjyo =AP | — + =— 1.XI1.
. (BTl - BT2> ( 9

End Solution

Example 1.13:
In the Internet the following problem ( here with PTEX modification) was posted which
related to Pushka equation.

A cylindrical steel pressure vessel with volume 1.31 m? is to be tested. The vessel
is entirely filled with water, then a piston at one end of the cylinder is pushed in until
the pressure inside the vessel has increased by 1000 kPa. Suddenly, a safety plug on the
top bursts. How many liters of water come out?

Relevant equations and data suggested by the user were: By = 0.2 x 1010N/m?,
P, =Py+pgh, P = —BrAV/V with the suggested solution of
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“l am assuming that | have to look for AV as that would be the water that comes
out causing the change in volume.”
_ =V AP

AV = —2— = —1.31(1000)/(0.2 x 101 AV =6.55 % 1077
T

Another user suggest that:
We are supposed to use the bulk modulus from our textbook, and that one is 0.2 x 101°.
Anything else would give a wrong answer in the system. So with this bulk modulus, is
0.655L right?

In this post several assumptions were made. What is a better way to solve this
problem.

SOLUTION

It is assumed that this process can be between two extremes: one isothermal and one
isentropic. The assumption of isentropic process is applicable after a shock wave that
travel in the tank. If the shock wave is ignored (too advance material for this boolﬂ)
the process is isentropic. The process involve some thermodynamics identities to be
connected. Since the pressure is related or a function of density and temperature it
follows that

P=P(p,T) (1.XI1l.a)
Hence the full differential is
opP oP
dP = —| d —| dT
o0, P+ aT ) (1.XI1.b)

Equation ((1.XIII.b) can be multiplied by p/P to be

Br B

P 1 1 opP

P

pdb 1 OPL e LXIII.
PP | || Par| (1XlLc)

The definitions that were provided before can be used to write

P 1
%:FBpoerﬁvdT (1.XI11.d)

The infinitesimal change of density will be then

1 pdP
— Brdp="——pB,dT 1.Xlll.e
p T P P pB ( )

8The shock wave velocity is related to square of elasticity of the water. Thus, the characteristic
time for the shock is S/c when S is a typical dimension of the tank and c is speed of sound of the
water in the tank.
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or
_ pdP _ p P B, dl

d
=B, By

(1.XIILf)

Thus, the calculation that were provide on line need to have corrections by subtracting
the second terms.

End Solution

1.6.2.1 Bulk Modulus of Mixtures

In the discussion above it was assumed that the liquid is pure. In this short section a
discussion about the bulk modulus averaged is presented. When more than one liquid
are exposed to pressure the value of these two (or more liquids) can have to be added
in special way. The definition of the bulk modulus is given by equation or
and can be written (where the partial derivative can looks as delta A as

V OP V AP
o= Br ~ Br

(1.38)

The total change is compromised by the change of individual liquids or phases if two
materials are present. Even in some cases of emulsion (a suspension of small globules
of one liquid in a second liquid with which the first will not mix) the total change is the
summation of the individuals change. In case the total change isn't, in special mixture,
another approach with taking into account the energy-volume is needed. Thus, the
total change is

OV =0Vi + Vo +---0V; X AVh + AV + - - AV, (1.39)
Substituting equation ((1.38]) into equation ([1.39)) results in

VioP V,0P V; 0P ViAP V5, AP V; AP
IV = + 4+ 4 o + B A
Brq B, Br; Br, Br, Br;

(1.40)

Under the main assumption in this model the total volume is comprised of the
individual volume hence,

V=x1V+ax,:V+--+x;V (141)

Where 1, xo and x; are the fraction volume such as z; = V;/V. Hence, using this
identity and the fact that the pressure is change for all the phase uniformly equation

(1.41)) can be written as
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Rearranging equation (1.42)) yields

P _ AP 1
U@vav_<x1 T9 l‘i) (143)

Equation ([1.43]) suggests an averaged new bulk modulus

1

Broiz = 1.44
Tmix (wl +l2+ +$1) ( )

Bry  Bra Br;

In that case the equation for mixture can be written as
OP
v % = BTmi;c (145)
A
— — s Fnd Advance material w— — —

1.6.2.2 When the Bulk Modulus is Important? and Hydraulics System

There are only several situations in which the bulk modulus is important. These sit-
uations include hydraulic systems, deep ocean (on several occasions), geology system
like the Earth, Cosmology. The Pushka equation normally can address the situations
in deep ocean and geological system. This author is not aware of any special issues
that involve in Cosmology as opposed to geological system. The only issue that was
not addressed is the effect on hydraulic systems. The hydraulic system normally refers
to systems in which a liquid is used to transmit forces (pressure) for surface of moving
object (normally piston) to another object. In theoretical or hypothetical liquids the
moving one object (surface) results in movement of the other object under the condi-
tion that liquid volume is fix. The movement of the responsive object is unpredictable
when the liquid volume or density is a function of the pressure (and temperature due to
the friction). In very rapid systems the temperature and pressure varies during the op-
eration significantly. In practical situations, the commercial hydraulic fluid can change
due to friction by 50°C'. The bulk modulus or the volume for the hydraulic oil changes
by more 60%. The change of the bulk modulus by this amount can change the response
time significantly. Hence the analysis has to take into account the above effects.

1.7 Surface Tension

9To be added in the future the effect of change of chemical composition on bulk modulus.
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The surface tension manifested it-
self by a rise or depression of the
liquid at the free surface edge. Sur-
face tension is also responsible for
the creation of the drops and bub-
bles. It also responsible for the
breakage of a liquid jet into other
medium/phase to many drops (at-
omization). The surface tension is
force per length and is measured by
[N/m] and is acting to stretch the
surface.

Surface tension results from

a sharp change in the density be- Fig. -1.16 — Sl.lrface t.erllsion .cor}trol
T . volume analysis describing principles
tween two adjoined phases or ma- radii

terials. There is a common miscon-

ception for the source of the surface tension. In many (physics, surface tension, and
fluid mechanics) books explained that the surface tension is a result from unbalanced
molecular cohesive forces. This explanation is wrong since it is in conflict with Newton's
second law (see Example . This erroneous explanation can be traced to Adam'’s
book but earlier source may be founﬂ

Example 1.14:

. Surf
In several books the following explana- C.V T 1:n5?;ﬁ

tion is offered for surface tension. “The ()(—)O(--)O(—)o

cohesive forces between molecules down
into a liquid are shared with all neighbor-

ing atoms. Those on the surface have O O O
no neighboring atoms above, and exhibit

stronger attractive forces upon their near-

est neighbors on the surface. This en- O

hancement of the intermolecular attrac-
tive forces at the surface is called™” Ex- O O o
plain the fundamental error of this expla-
nation (see Figure|1.1

Fig. -1.17 — Surface tension erro-
SOLUTION neous explanation.

It amazing that this erroneous explanation is prevalent in physics and chemistry (check
the standard books for general chemistry in any college). In fact, even in Wikipedia

OFinding the source of this error was a class project early 1990 in Chemical Engineering University
of Minnesota.

"This text and picture are taken from the web at the address of hyperphysics.phy-
astr.gsu.edu/hbase/surten.html.
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this erroneous explanation appears. The explanation based on the unbalance of the
top layer of molecules. Consider the control volume shown in Figure[I.17] The control
volume is made from a molecule thickness and larger width. If this explanation was to
be believed it must obey Newton's Laws. However, as it will be shown, this explanation
violates Newton's Laws and hence it is not valid. The entire liquid domain is in a static
equilibrium and hence every element is static equilibrium including the control volume.
The pulling on the left of control volume is balanced with forcing that pulling to the
right. However, the control volume is pulled by the molecules below while there counter
force to balance it. There are no molecules about to balance it. If this explanation
was correct the top layer (control volume) was supposed to be balanced. According to
Newton second Law this layer should move down and the liquid cannot be at rest ever.
Obviously, the liquid is at rest and this explanation violates Newton second law. In the
Dimensional Analysis Chapter, provide another reason why this explanation violate all
what is known experimentally about the surface tension.
End Solution
The relationship between the surface tension and the pressure on the two sides
of the surface is based on geometry. Consider a small element of surface. The pressure
on one side is P; and the pressure on the other side is P,. When the surface tension
is constant, the horizontal forces cancel each other because symmetry. In the vertical
direction, the surface tension forces are puling the surface upward. Thus, the pressure
difference has to balance the surface tension. The forces in the vertical direction reads

(Pi — PO) d€1 dfg = Apdfl deg =2 0'd£1 sin 61 + 2 O'dgg sin /82 (146)

For a very small area, the angles are very small and thus (sin 8 ~ (). Furthermore,
it can be noticed that d¢; ~ 2 R; dB3;. Thus, the equation ([1.46) can be simplified as

1 1
AP=c—+ — 1.47
(7 + %) (147)
Equation ([1.47)) predicts that pressure difference increase with inverse of the radius.
There are two extreme cases: one) radius of infinite and radius of finite size. The
second with two equal radii. The first case is for an infinite long cylinder for which the

equation ([1.47)) is reduced to
1
AP = — 1.48
*(%) (1.48)

Other extreme is for a sphere for which the main radii are the same and equation (|1.47)
is reduced to

20
AP=— 1.4
- (1.49)

Where R is the radius of the sphere. A soap bubble is made of two layers, inner and
outer, thus the pressure inside the bubble is

4o
AP=— 1.
- (1.50)
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Example 1.15:
A glass tube is inserted into bath of mercury. It was observed that contact angle between
the glass and mercury is 55°.

The inner diameter is 0.02[m] and 550
the outer diameter is 0.021[m]. Es- o
timate the force due to the surface

tension (tube is depicted in Figure

[1.18). It can be assume that the b

contact angle is the same for the 0.025[m]|
inside and outside part of the tube.

Estimate the depression size. As-

sume that the surface tension for

this combination of material is 0.5
[N/m] Fig. -1.18 — Glass tube inserted into mer-
cury.

SOLUTION

The mercury as free body that several forces act on it.
F =o02mcosb5° (D; + D,) (1.XV.a)

This force is upward and the horizontal force almost canceled. However, if the inside
and the outside diameters are considerable different the results is

F =027sin550 (D, — D,) (1.XV.b)

The balance of the forces on the meniscus show under the magnified glass are

A
~3 ~0 1XV.
PWTQ:U2WT+W ( )
or
~0 1.XV.d
gphﬂ'r2=027rr+14/ (1.XV.d)
Or after simplification
20
h= (1.XV.e)
gpr

End Solution

Example 1.16:

A Tank filled with liquid, which contains n bubbles with equal radii, r. Calculate the
minimum work required to increase the pressure in tank by AP. Assume that the liquid
bulk modulus is infinity.

SOLUTION
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The work is due to the change of the bubbles volume. The work is
T§
w = / AP(v)dv (1.51)
To

The minimum work will be for a reversible process. The reversible process requires very
slow compression. It is worth noting that for very slow process, the temperature must
remain constant due to heat transfer. The relationship between pressure difference and
the radius is described by equation for reversible process. Hence the work is

AP do

=
20 2 Y 2 2
w = —4drr*dr=8no rdr =470 (r;? —re?) (1.52)
To r To

Where, 7 is the radius at the initial stage and r is the radius at the final stage.
The work for n bubbles is then 47w on (rf2 — r02). It can be noticed that the
work is negative, that is the work is done on the system.

End Solution

Example 1.17:

Calculate the rise of liquid between two di- )
mensional parallel plates shown in Figure
[1.19 Notice that previously a rise for circu-
lar tube was developed which different from
simple one dimensional case. The distance
between the two plates is ¢ and the and sur- it
face tension is . Assume that the contact
angle is 0° (the maximum possible force).
Compute the value for surface tension of

h

0.05[N/m], the density 1000[kg/m3} and Fig. -1.19 — Capillary rise be-
distance between the plates of 0.001[m)]. tween two plates.
SOLUTION

In Figure exhibits the liquid under the current study. The vertical forces acting on
the body are the gravity, the pressure above and below and surface tension. It can be
noted that the pressure and above are the same with the exception of the curvature on
the upper part. Thus, the control volume is taken just above the liquid and the air part
is neglected. The question when the curvature should be answered in the Dimensional
analysis and for simplification this effect is neglected. The net forces in the vertical
direction (positive upwards) per unit length are

2
25 cos 0° = ghlp = h= —_ (1.53)
lpyg
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Inserting the values into equation ((1.53)) results in

B 2 x 0.05 B
©0.001 x 9.8 x x1000

End Solution

h (1.54)

Example 1.18:
Develop expression for rise of the liquid due to surface tension in concentric cylinders.

SOLUTION

The difference lie in the fact that “missing” cylinder add additional force and reduce the
amount of liquid that has to raise. The balance between gravity and surface tension is

027 (r; cost; +r,c080,) = pgh (m(ro)* — m(r;)?) (1.XVIIl.a)
Which can be simplified as

b= 20 (r; cosb; +1,cos6,)
pg ((ro)* — (ri)?)

The maximum is obtained when cosf; = cosf, = 1. Thus, equation (1.XVIIIl.bf) can
be simplified

(1.XVIILb)

_ 20
pg (ro—ri)

End Solution

h (1XVIIl.c)

1.7.1 Wetting of Surfaces

To explain the source of the contact angle, con-

sider the point where three phases became in con-

tact. This contact point occurs due to free surface S‘/

reaching a solid boundary. The surface tension

occurs between gas phase (G) to liquid phase (L)

and also occurs between the solid (S) and the lig-

uid phases as well as between the gas phase and Fig. -1.20 — Forces in Contact angle.
the solid phase. In Figure [1.20] forces diagram is

shown when control volume is chosen so that the masses of the solid, liquid, and gas
can be ignored. Regardless to the magnitude of the surface tensions (except to zero)
the forces cannot be balanced for the description of straight lines. For example, forces
balanced along the line of solid boundary is

Ogs — O1s — Oygcos § =0 (1.55)
and in the tangent direction to the solid line the forces balance is

Fsolid = Olg Siﬂﬁ (156)
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substituting equation (1.56]) into equation ([1.55) yields

o o Fsolid
— 015 =
957 9 = n g

(1.57)

For 8 = /2 = tan 8 = co. Thus, the solid reaction force must be zero. The gas
solid surface tension is different from the liquid solid surface tension and hence violating
equation (|1.55)).

The surface tension forces must be bal-
anced, thus, a contact angle is created to bal-
ance it. The contact angle is determined by : NonWetting

N Wetting fluid

whether the surface tension between the gas fluid

solid (gs) is larger or smaller then the surface
tension of liquid solid (Is) and the local geom-
etry. It must be noted that the solid boundary
isn't straight. The surface tension is a molec-
ular phenomenon, thus depend on the locale
structure of the surface and it provides the balance for these local structures.

The connection of the three phases—materials—mediums creates two situations
which are categorized as wetting or non—wetting. There is a common definition of
wetting the surface. If the angle of the contact between three materials is larger than
90° then it is non—wetting. On the other hand, if the angle is below than 90° the
material is wetting the surface (see Figure. The angle is determined by properties
of the liquid, gas medium and the solid surface. And a small change on the solid surface
can change the wetting condition to non—wetting. In fact there are commercial sprays
that are intent to change the surface from wetting to non wetting. This fact is the
reason that no reliable data can be provided with the exception to pure substances and
perfect geometries. For example, water is described in many books as a wetting fluid.
This statement is correct in most cases, however, when solid surface is made or cotted
with certain materials, the water is changed to be wetting (for example 3M selling
product to “change” water to non—wetting). So, the wetness of fluids is a function of
the solid as well.

Fig. -1.21 — Description of wetting and
non—wetting fluids.

Table -1.6 — The contact angle for air, distilled water with selected materials to demonstrate
the inconsistency.

Chemical Contact
Source

component Angle
Steel /3.7 (Siegel and Keshock 1964))
Steel, Nickel w/4.74 (Bergles and Rohsenow 1964)
Nickel w/4.74 to w/3.83 (Siegel and Keshock 1964))
Nickel w/4.76 to 7/3.83 | (Tolubinsky and Ostrovsky 1966))
Chrome-Nickel Steel /3.7 (Arefeva and Aladev 1958)

Continued on next page
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Table -1.6 — The contact angle for air, distilled water with selected materials to demonstrate

the inconsistency. (continue)

Chemical Contact

component Angle X Source
Silver 7/6 to w/4.5 (Labuntsov 1963)
Zink /3.4 Arefeva and Aladev 1958
Bronze /3.2 Arefeva and Aladev 1958
Copper /4 Arefeva and Aladev 1958
Copper /3 (Gaertner 1959)
Copper 9.6[deg] (Bernardin and etc 1997)
Copper /2 (Wang and Dhir 1993)

July 7, 2021

Fig. -1.22 — Contact angle for water and copper as a function of the temperature.

Contact [deg
&

Contact Angele for water and copper

Data is taken from

Wettability of copper and

conditions.

(Boyes, A. P. and Ponter 1973)

polytetrafiuoroethylene  surfaces ~with
water the influence of environmental

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Temperature T[]

37

In addtion to the complications mentioned before the temperatuere play a significat role

in the

In addition to the complication mentioned earlier the temperature play a significat
part (as it expect since it effect the surface tension). The change is order of magnitute

(Boyes and Ponter 1973).




38 CHAPTER 1. INTRODUCTION TO FLUID MECHANICS

To explain the contour of the sur-
face, and the contact angle consider sim-
ple “wetting” liquid contacting a solid ma-
terial in two—dimensional shape as depicted
in Fig.[1.23] To solve the shape of the liquid
surface, the pressure difference between the
two sides of free surface has to be balanced
by the surface tension. Fig. [1.23] describes
the raising of the liquid as results of the sur-
face tension. The surface tension reduces
the pressure in the liquid above the liquid line (the dotted line in the Fig.[1.23). The
pressure just below the surface is —g h(z) p (this pressure difference will be explained
in more details in Chapter . The pressure, on the gas side, is the atmospheric pres-
sure. This problem is a two dimensional problem and equation is applicable to
it. Appalling equation and using the pressure difference yields

Fig. -1.23 — Description of the liquid surface.

gh(z)p= R (1.58)
The radius of any continuous function, h = h(x), is
. 9\ 3/2
(1 + [h(x)} )
R(z) = (1.59)

Where  is the derivative of h with respect to .

Equation can be derived either by forcing a circle at three points at (x,
x+dx, and x+2dx) and thus finding the diameter or by geometrical analysis of triangles
build on points x and x+dx (perpendicular to the tangent at these points). Substituting

equation ([1.59)) into equation ([1.58)) yields
g

gh(z)p= 5 (1.60)
(1 + [h(z)r)g/

h(x)

Equation ((1.60)) is non—linear differential equation for height and can be written as

1-D Surface Due to Surface Tension
o\ 3/2
ghp dh d*h
= |1 — - — = 1.61
o ( u [dm] ) dx? 0 (1.61)

With the boundary conditions that specify either the derivative h(x =r) =0 (symme-
try) and the derivative at hxz = /3 or heights in two points or other combinations. An
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alternative presentation of equation ((1.60) is

oh
(1 + h2)
Integrating equation ([1.62)) transforms into
i
/%hdh:/ig/zdh (1.63)
’ (1+72)

The constant Lp = o/pg is referred to as Laplace’s capillarity constant. The units of
this constant are meter squared. The differential dh is h. Using dummy variable and
the identities & = £ and hence, h = £ = d¢ transforms equation ([1.63)) into

R £dg
/Lphdh_/(1+£2>3/2 (1.64)

After the integration equation ([1.64]) becomes

h? 1

57 +constant = —————7 (1.65)
(1 + h2>

2Lp
At infinity, the height and the derivative of the height must by zero so constant + 0 =
—1/1 and hence, constant = —1 .
) h 1
- - . N1/2
2Ly (1 + h2)

Equation (1.66]) is a first order differential equation that can be solved by variables
separation’?| Equation ([1.66]) can be rearranged to be

(1.66)

.o\ 1/2 1
T 2Lp

Squaring both sides and moving the one to the right side yields

2
. 1
I - 2Lp

2This equation has an analytical solution which is = Lp+/4 — (h/Lp)2 — Lpacosh(2 Lp/h) +
constant where Lp is the Laplace constant. Shamefully, this author doesn’t know how to show it in a
two lines derivations.
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The last stage of the separation is taking the square root of both sides to be

2
. dh 1
h="C=,—r] -1 1.

2Lp

or

= dz (1.70)

2
— —
1—2Lp

Equation ((1.70) can be integrated to yield

dh

= X + constant
/ ( 1 ) (171)
— ] -1

2
1— h
2Lp

The constant is determined by the boundary condition at z = 0. For example if
h(x — 0) = hg then constant = hg. This equation is studied extensively in classes on
surface tension. Furthermore, this equation describes the dimensionless parameter that
affects this phenomenon and this parameter will be studied in Chapter [0} This book is
introductory, therefore this discussion on surface tension equation will be limited.

1.7.1.1 Capillarity

The capillary forces referred to the fact that
surface tension causes liquid to rise or penetrate
into area (volume), otherwise it will not be there.
It can be shown that the height that the liquid
raised in a tube due to the surface tension is

Theory

actual

20 cosf ol
h=——— 1.72
g A or ( ) e R

Where Ap i§ the difﬂ?rence oflliquid density to Fig. -1.24 — The raising height as a func-
the gas density and r is the radius of tube. tion of the radii.

But this simplistic equation is unusable and useless unless the contact angle (as-
suming that the contact angel is constant or a repressive average can be found or
provided or can be measured) is given. However, in reality there is no readily infor-
mation for contact angld™| and therefore this equation is useful to show the treads.
maximum that the contact angle can be obtained in equation (1.72)) when 8 = 0 and
thus cos 8 = 1. This angle is obtained when a perfect half a sphere shape exist of the
liquid surface. In that case equation becomes
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20
h __%9 1.73
Capilary Height
2 “ — Distilled water [25°C] ]
\ ~—=- Mercury [25°C]

Equation

i I I I I I I I
00 03 06 09 12 15 18 21 24 27
Radii [em]

August 22, 2013

Fig. -1.25 — The raising height as a function of the radius.

Figure exhibits the height as a function of the radius of the tube. The height
based on equation ([1.73) is shown in Figure as blue line. The actual height is
shown in the red line. Equation provides reasonable results only in a certain
range. For a small tube radius, equation proved better results because the curve
approaches hemispherical sphere (small gravity effect). For large radii equation (1.61))
approaches the strait line (the liquid line) strong gravity effect. On the other hand, for
extremely small radii equation indicates that the high height which indicates a
negative pressure. The liquid at a certain pressure will be vaporized and will breakdown
the model upon this equation was constructed. Furthermore, the small scale indicates
that the simplistic and continuous approach is not appropriate and a different model
is needed. The conclusion of this discussion are shown in Figure The actual
dimension for many liquids (even water) is about 1-5 [mm)].

The discussion above was referred to “wetting” contact angle. The depression of
the liquid occurs in a “negative” contact angle similarly to “wetting.” The depression
height, A is similar to equation with a minus sign. However, the gravity is working
against the surface tension and reducing the range and quality of the predictions of
equation . The measurements of the height of distilled water and mercury are
presented in Figure[1.25] The experimental results of these materials are with agreement
with the discussion above. The surface tension of a selected material is given in Table
L7

In conclusion, the surface tension issue is important only in case where the radius
is very small and gravity is negligible. The surface tension depends on the two materials
or mediums that it separates.

1:*]Actually, there are information about the contact angle. However, that information conflict each
other and no real information is available see Table Table@}



42 CHAPTER 1. INTRODUCTION TO FLUID MECHANICS

Example 1.19:
Calculate the diameter of a water droplet to attain pressure difference of 1000[N /m?].
You can assume that temperature is 20°C.

SOLUTION
The pressure inside the droplet is given by equation (|1.49)).

220 4x0.0728
AP 1000

D=2R ~2.9121074[m]

End Solution

Example 1.20:
Calculate the pressure difference between a droplet of water at 20°C' when the droplet
has a diameter of 0.02 cm.

SOLUTION

using equation

20 2x0.0728
r 0.0002

End Solution

AP = ~ 728.0[N/m?]

Example 1.21:
Calculate the maximum force necessary to lift a thin wire ring of 0.04[m] diameter from
a water surface at 20°C. Neglect the weight of the ring.

SOLUTION

F=22nro)cosf

The actual force is unknown since the contact angle is unknown. However, the maximum
Force is obtained when 5 = 0 and thus cos 8 = 1. Therefore,

F=4nro=4xmx0.04 x 0.0728 ~ .0366[N]

In this value the gravity is not accounted for.

End Solution

Example 1.22:

A small liquid drop is surrounded with the air and has a diameter of 0.001 [m]. The
pressure difference between the inside and outside droplet is 1[kPa]. Estimate the surface
tension?

SOLUTION
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To be continue

End Solution

Table -1.7 — The surface tension for selected materials at temperature 20°C when not

mentioned.
) Surface )
Chemical Tension T C;L)]r\;ectlon
component mN mK
Acetic Acid 27.6 20°C n/a
Acetone 25.20 - -0.1120
Aniline 43.4 22°C -0.1085
Benzene 28.88 - -0.1291
Benzylalcohol 39.00 - -0.0920
Benzylbenzoate 45.95 - -0.1066
Bromobenzene 36.50 - -0.1160
Bromobenzene 36.50 - -0.1160
Bromoform 41.50 - -0.1308
Butyronitrile 28.10 - -0.1037
Carbon disulfid 32.30 - -0.1484
Quinoline 43.12 - -0.1063
Chloro benzene 33.60 - -0.1191
Chloroform 27.50 - -0.1295
Cyclohexane 24.95 - -0.1211
Cyclohexanol 34.40 25°C -0.0966
Cyclopentanol 32.70 - -0.1011
Carbon Tetrachloride 26.8 - n/a
Carbon disulfid 32.30 - -0.1484
Chlorobutane 23.10 - -0.1117
Ethyl Alcohol 223 - n/a
Ethanol 22.10 - -0.0832
Ethylbenzene 29.20 - -0.1094
Ethylbromide 24.20 - -0.1159
Ethylene glycol 47.70 - -0.0890
Formamide 58.20 - -0.0842
Gasoline ~ 21 - n/a
Glycerol 64.0 - -0.0598
Helium 0.12 —269°C n/a
Mercury 425-465.0 - -0.2049
Methanol 22.70 - -0.0773
Methyl naphthalene 38.60 - -0.1118
Methyl Alcohol 22.6 - n/a
Neon 5.15 —247°C n/a
Continued on next page
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Table -1.7 — The surface tension for selected materials (continue)

Surface )

Chemical Tension T correction

component mN o
Nitrobenzene 43.90 - -0.1177
Olive Qil 43.0-48.0 - -0.067
Perfluoroheptane 12.85 - -0.0972
Perfluorohexane 11.91 - -0.0935
Perfluorooctane 14.00 - -0.0902
Phenylisothiocyanate 41.50 - -0.1172
Propanol 23.70 25°C -0.0777
Pyridine 38.00 - -0.1372
Pyrrol 36.60 - -0.1100
SAE 30 Oil n/a - n/a
Seawater 54-69 - n/a
Toluene 28.4 - -0.1189
Turpentine 27 - n/a
Water 72.80 - -0.1514
o-Xylene 30.10 - -0.1101
m-Xylene 28.90 - -0.1104




Review of Thermodynamics

2.1 Introductory Remarks

In this chapter, a review of several definitions of common thermodynamics terms is
presented. This introduction is provided to bring the student back to current place with
the material.

2.2 Basic Definitions

The following basic definitions are common to thermodynamics and will be used in this
book.
Work

In mechanics, the work was defined as

mechanical work = /F odl = /PdV (2.1)

This definition can be expanded to include two issues. The first issue that must
be addressed is the sign, that is the work done on the surroundings by the system
boundaries is considered positive. Two, there is distinction between a transfer of energy
so that its effect can cause work and this that is not. For example, the electrical current
is a work while pure conductive heat transfer isn't.

System

This term will be used in this book and it is defined as a continuous (at least
partially) fixed quantity of matter. The dimensions of this material can be changed.
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In this definition, it is assumed that the system speed is significantly lower than that
of the speed of light. So, the mass can be assumed constant even though the true
conservation law applied to the combination of mass energy (see Einstein's law). In
fact for almost all engineering purposes, this law is reduced to two separate laws of
mass conservation and energy conservation. The system can receive energy, work, etc
as long the mass remain constant the definition is not broken.

2.3 Thermodynamics First Law

This law refers to conservation of energy in a non accelerating system. Since all the
systems can be calculated in a non accelerating systems, the conservation is applied to
all systems. The statement describing the law is the following.

Qi2 — Wiz = E> — E4 (2.2)

The system energy is a state property. From the first law it directly implies that
for process without heat transfer (adiabatic process) the following is true

Wis = E1 — B, (2.3)

Interesting results of equation is that the way the work is done and/or intermediate
states are irrelevant to final results. There are several definitions/separations of the kind
of works and they include kinetic energy, potential energy (gravity), chemical potential,
and electrical energy, etc. The internal energy is the energy that depends on the
other properties of the system. For example for pure/homogeneous and simple gases it
depends on two properties like temperature and pressure. The internal energy is denoted
in this book as Ey and it will be treated as a state property.

The potential energy of the system is depended on the body force. A common
body force is the gravity. For such body force, the potential energy is mgz where g is
the gravity force (acceleration), m is the mass and the z is the vertical height from a
datum. The kinetic energy is

Kp - " (2.4)
2
Thus the energy equation can be written as
Total Energy Equation
m[2/'12 +mgz+ By +Q = m(fz +mgz+ By + W (2.5)

For the unit mass of the system equation ([2.5) is transformed into

Specific Energy Equation
U,? Uy?
— 92+ Butq=—+gzn+Entuw (2.6)
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where ¢ is the energy per unit mass and w is the work per unit mass. The “new”
internal energy, F,, is the internal energy per unit mass.

Since the above equations are true between arbitrary points, choosing any point in
time will make it correct. Thus differentiating the energy equation with respect to time
yields the rate of change energy equation. The rate of change of the energy transfer is

DQ .
o =@ (27)

In the same manner, the work change rate transferred through the boundaries of the
system is
DW

T W (2.8)

Since the system is with a fixed mass, the rate energy equation is

DFE DU DB
U—l—mU——l—m 1z

S i —
@ Dt Dt Dt

(2.9)

For the case were the body force, By, is constant with time like in the case of gravity

equation (2.9)) reduced to

Time Dependent Energy Equation

DE D D
U tmU U+mg77;z (2.10)

R-W=—"F; Dt

The time derivative operator, D/Dt is used instead of the common notation
because it referred to system property derivative.

2.4 Thermodynamics Second Law

There are several definitions of the second law. No matter which definition is used
to describe the second law it will end in a mathematical form. The most common
mathematical form is Clausius inequality which state that

oQ
7{7 >0 (2.11)

The integration symbol with the circle represent integral of cycle (therefor circle) in
with system return to the same condition. If there is no lost, it is referred as a reversible
process and the inequality change to equality.

Q)
f{? =0 (2.12)

The last integral can go though several states. These states are independent of the
path the system goes through. Hence, the integral is independent of the path. This
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observation leads to the definition of entropy and designated as S and the derivative of

entropy is
ds = (‘SQ) (2.13)
T /ey

Performing integration between two states results in

2 5Q 2
Sy — 5y :/1 (T>rev :/1 ds (2.14)

One of the conclusions that can be drawn from this analysis is for reversible and
adiabatic process dS = 0. Thus, the process in which it is reversible and adiabatic, the
entropy remains constant and referred to as isentropic process. It can be noted that
there is a possibility that a process can be irreversible and the right amount of heat
transfer to have zero change entropy change. Thus, the reverse conclusion that zero
change of entropy leads to reversible process, isn't correct.

For reversible process equation can be written as

0Q =T4dS (2.15)
and the work that the system is doing on the surroundings is

SW = PdV (2.16)

Substituting equations (2.15]) (2.16)) into (2.10]) results in

TdS =dEy + PdV (2.17)

Even though the derivation of the above equations were done assuming that
there is no change of kinetic or potential energy, it still remain valid for all situations.
Furthermore, it can be shown that it is valid for reversible and irreversible processes.

Enthalpy

It is a common practice to define a new property, which is the combination of
already defined properties, the enthalpy of the system.

H=Ey+PV (2.18)

The specific enthalpy is enthalpy per unit mass and denoted as, h.
Or in a differential form as

dH = dEy +dPV + PdV (2.19)
Combining equations (2.18]) the (2.17) yields

(one form of) Gibbs Equation
TdS = dH — V dP (2.20)



2.4. THERMODYNAMICS SECOND LAW 49

For isentropic process, equation ([2.17)) is reduced to dH = VdP. The equation ([2.17))
in mass unit is

P
Tds = du+ Pdv = dh— (2.21)
p

when the density enters through the relationship of p = 1/v.

Specific Heats

The change of internal energy and enthalpy requires new definitions. The first
change of the internal energy and it is defined as the following

Specific Volume Heat

Cy = (%) (2.22)

And since the change of the enthalpy involve some kind of boundary work is defined as

Specific Pressure Heat
([ Oh
Cp = (B_T> (2.23)

The ratio between the specific pressure heat and the specific volume heat is called
the ratio of the specific heat and it is denoted as, k.

Specific Heats Ratio
- % (2.24)

Cy

For solid, the ratio of the specific heats is almost 1 and therefore the difference
between them is almost zero. Commonly the difference for solid is ignored and both are
assumed to be the same and therefore referred as C'. This approximation less strong
for liquid but not by that much and in most cases it applied to the calculations. The
ratio the specific heat of gases is larger than one.

Equation of state

Equation of state is a relation between state variables. Normally the relationship
of temperature, pressure, and specific volume define the equation of state for gases.
The simplest equation of state referred to as ideal gas. And it is defined as

P=pRT (2.25)

Application of Avogadro’s law, that "all gases at the same pressures and temperatures
have the same number of molecules per unit of volume,” allows the calculation of a
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“universal gas constant.” This constant to match the standard units results in

_ k]
=8.314 2.2
R=28.3 5kmol % (2.26)
Thus, the specific gas can be calculate as
R
= __ 2.27
R=1 (227)
The specific constants for select gas at 300K is provided in table [2.1]
Table -2.1 — Properties of Various Ideal Gases [300K]
Chemical ~ Molecular kj kj kj
Gas Formula Weight R [KHK} Cr [KQK} Co [KQK} F
Air - 28.970 0.28700 1.0035 0.7165 1.400
Argon Ar 39.948  0.20813 0.5203 0.3122 1.667
Butane CyHg 58.124 0.14304 1.7164 1.5734 1.091
Carbon CO;y 4401  0.18892 0.8418 0.6529 1.289
Dioxide
Carbon co 28.01  0.29683 1.0413 0.7445  1.400
Monoxide
Ethane CoHg 30.07  0.27650 1.7662 1.4897 1.186
Ethylene CyHy 28.054 0.29637 1.5482 1.2518 1.237
Helium He 4.003 2.07703 5.1926 3.1156 1.667
Hydrogen Hoy 2.016 412418 14.2091 10.0849 1.409
Methane CHy 16.04  0.51835 2.2537 1.7354 1.299
Neon Ne 20.183  0.41195 1.0299 0.6179 1.667
Nitrogen No 28.013  0.29680 1.0416 0.7448 1.400
Octane CsHig 114.230  0.07279 1.7113 1.6385 1.044
Oxygen 0> 31.999  0.25983 0.9216 0.6618 1.393
Propane C3Hg 44.097 0.18855 1.6794 14909 1.126
Steam H>0O 18.015 0.48152 1.8723 1.4108 1.327

From equation ([2.25)) of state for perfect gas it follows

d(Pv) = RdT (2.28)
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For perfect gas
dh = dE, + d(Pv) =dE, + d(RT) = f(T) (only) (2.29)

From the definition of enthalpy it follows that

d(Pv) = dh — dE, (2.30)
Utilizing equation ([2.28)) and subsisting into equation ([2.30) and dividing by dT yields
C,—C,=R (2.31)

This relationship is valid only for ideal/perfect gases.
The ratio of the specific heats can be expressed in several forms as

C, to Specific Heats Ratio

Cy= —— (2.32)

C) to Specific Heats Ratio

kR
Cp = 1 (2.33)
The specific heat ratio, k value ranges from unity to about 1.667. These values depend
on the molecular degrees of freedom (more explanation can be obtained in Van Wylen
“F. of Classical thermodynamics.” The values of several gases can be approximated as
ideal gas and are provided in Table [2.1]
The entropy for ideal gas can be simplified as the following

2
dh  dP

S9 — §1 = - - = 2.34

2 /1 ( T pT) (234)
Using the identities developed so far one can find that

2 2
B dT RdP T, Py
Sg— 81 = /1 Cp? e Cp In T R1n 2 (2.35)

Or using specific heat ratio equation ([2.35]) transformed into

S92 — 81 k TQ P2
= In=2—ln—2 2.
R k-1 'T, P (236)

For isentropic process, As = 0, the following is obtained

k=1

15 P\ k
In—==In(—= 2.37
nT1 n<P1> (2.37)
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There are several famous identities that results from equation (2.37)) as

Ideal Gas Isentropic Relationships

T, (PN *T (V)"
=3 -&) 239

The ideal gas model is a simplified version of the real behavior of real gas. The
real gas has a correction factor to account for the deviations from the ideal gas model.
This correction factor referred as the compressibility factor and defined as

z=-2Y (2.39)

Z deviation from the Ideal Gas Model
|( RT




Review of Mechanics

3.1 Introductory Remarks

This chapter provides a review of important definitions and concepts from Mechanics
(statics and dynamics). These concepts and definitions will be used in this book and a
review is needed.

3.2 Kinematics of of Point Body

A point body is location at time, t in a location, R The velocity is derivative of
the change of the location and using the chain role (for the direction and one for the
magnitude) results,

change in R .
direction change in per-
—N pendicular to R
G_dR_ 4R T3 6
= —_——= — w .
dt dt R

Notice that & can have three dimensional components. It also can be noticed that this
derivative is present derivation of any victory. The acceleration is the derivative of the
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velocity
“regular . Coriolis
acceleration” Zzgelzjlfr;tion centrifugal acceleration
acceleration
- - —_— -
au d’R = dod = dR
i-— - °= BEx ) +ax (Bxa)+2 | | xw 3.2
dt az| " ( dt) + L7 (3-2)
R R
Example 3.1:

A water jet is supposed be used to extinguish the fire in a building as depicted in

Figure For given velocity, at what angle the jet has to be shot so that velocity

will be horizontal at the window. Assume that gravity is g and the distance of the

nozzle

from the building is a and height

of the window from the nozzle is

b. To simplify the calculations, it

proposed to calculate the velocity
. . Usin8,// Ucosf

of the point particle to toward the 4

window. Calculate what is the ve- I —

locity so tha't the jet reach th.e win- Fig. -3.1 — Description of the extinguish

dow. What is the angle that jet has nozzle aimed at the building window.

to be aimed?

4

SOLUTION

The initial velocity is unknown and denoted as U which two components. The velocity
at x is U, = Ucosf and the velocity in y direction is U, = Usinfl. There there
are three unknowns, U, 6, and time, t and three equations. The equation for the =
coordinate is

a=U cosft (3.1.8)

The distance for y equation for coordinate (zero is at the window) is

2
0:—%+Usin9t—b (3.1b)

The velocity for the y coordinate at the window is zero
u(t) =0=—gt+U sinf (3.1.¢)

These nonlinear equations (3.1.a), (3.1.6) and (B.I.d) can be solved explicitly. Isolating
t from ([3.1.a)) and substituting into equations (3.1.b)) and ({3.1.c|

2

__—9¢a 3.1d
b 2U200529+atan9 ( )

While the simple example does not provide exact use of the above equation it provides experience
of going over the motions of kinematics.
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and equation ([3.1.a)) becomes

0=—2% 1 Ucosh = U= YV7 (3.1e)
U cost cos 0
Substituting (3.1.€)) into (3.1.d)) results in
1
tanf = é—&—f (3.1.)
a 2

End Solution

3.3 Center of Mass

The center of mass is divided into two sections, first, center of the mass and two,
center of area (two—dimensional body with equal distribution mass). Additionally, the
change of center of mass due to addition or subtraction of mass plus discrete areas are
presented.

3.3.1 Actual Center of Mass

In many engineering problems, the knowledge of center of mass is required to make
the calculations. This concept is derived from the fact that a body has a center of
mass/gravity which interacts with other bodies and that this force acts on the cen-
ter (equivalent force). It turns out that this concept is very useful in calculating
rotations, moment of inertia, etc. The center of mass doesn't depend on the coor-
dinate system and on the way it is calculated. The physical meaning of the center
of mass is that if a straight line force acts on the body in away through the cen-
ter of gravity, the body will not rotate. In other words, if a body will be held by
one point it will be enough to hold the body in the direction of the center of mass.

Note, if the body isn't be held
through the center of mass, then a mo-
ment in additional to force is required
(to prevent the body for rotating). It is y
convenient to use the Cartesian system
to explain this concept. Suppose that
the body has a distribution of the mass Z
(density, rho) as a function of the lo-
cation. The density “normally” defined
as mass per volume. Here, the line den-

X
sity is referred to density mass per unit
length in the z direction. Fig. -3.2 — Description of how the center
In  coordinate, the center will be of mass is calculated.
defined as
dm

*—i z p(x
T = m/v p(z)dV (3.3)
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Here, the dV element has finite dimensions in y—z plane and infinitesimal dimension in
x direction see Figure Also, the mass, m is the total mass of the object. It can be
noticed that center of mass in the x—direction isn’'t affected by the distribution in the
y nor by z directions. In same fashion the center of mass can be defined in the other
directions as following

x; of Center Mass

SR
T; = m /V i p(zi)dV (3.4)

where z; is the direction of either, z, y or z. The density, p(x;) is the line density as
function of x;. Thus, even for solid and uniform density the line density is a function of
the geometry. When finite masses are combine the total mass Eq. (3.4]) converted into

ngm (3.5)

where i denotes every mass in the system.

xr =

3.3.2 Approximate Center of Area

In the previous case, the body was a three dA t
dimensional shape. There are cases where y

the body can be approximated as a two-
dimensional shape because the body is
with a thin with uniform density. Consider
a uniform thin body with constant thick-
ness shown in Figure[3.3]which has density, X
p. Thus, equation can be transferred

into Fig. -3.3 — Thin body center of mass/area
dm schematic.

—~
/ x ptdA (3.6)
14

tA p
v

The density, p and the thickness, ¢, are constant and can be canceled. Thus equation

(3.6 can be transferred into

Approximate x; of Center Mass
1

when the integral now over only the area as oppose over the volume. Eq. ([3.7]) can also
be written for discrete areas as

= le A
(2 ZA,L
It must be noted that area A; can be positive or negative. The meaning of negative
area in this context is subtraction of area.

(38)
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3.3.3 Change of Centroid Location Due to Added/Subtracted
Area

This section deals with a change centroid
location when an area is add or subtracted
from a given area with a know centroid (or
unknown). This topic is important when
a centroid of area was found or previously
calculated. Furthermore, while the loca-
tion can be recalculated for some problems
the change or its direction has more impor-
tance as it will be discussed in greater detail Fig. -3.4 — Solid body with one

. . . . . area added and one area re-
in, section on stability of floating bodies on moved.  The old centroid

page @ . . . marked “0” the new centroid
The centroid of body in Fig. marked “n” and area removed
is “r” and area added “a.”

denoted at point “0” (old). The centroid of the added and removed areas are at points
“a" (added) and “r" (removed), respectively. The point “n” (new) is the centroid after
modification. A special case when the added area is equal to the subtracted area and
its application will be discussed in an example below. It has to be noted that added
and subtracted areas do not have to be continuous. Utilizing Eq. for the identical
areas reads for this case as

To Ao+ 1, A — x4 Ag

T AT A, A, (3.9)

In a special case where subtracted area is equal to added area (A4, = A4,) Eq. (3.9) is
reduced to

Ty =T, +T &—x &
Ao 4o (3.10)
A )
T xO—AO(xT Tq

Finding the centroid location should be done in the most convenient coordinate system
since the location is coordinate independent. There should be a sign convention to
determine the centroid direction movement so that the direction should be immedi-
ately expressed in the result. However, faults were found in several options that were
considered?

2If you have a good method/technique please consider discussing it with this author.

Example 3.2:
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A circle with a radius, r has a cut out from a larger circle
with radius, R where R > r. The distance between the
center of the larger circle and the small circle is x. Calculate
the centroid of the circle that a smaller circle was cut out of
it. Assume that x is small enough so that the small circle is
whole.

SOLUTION

The change in the centroid is only the direction of x. It

should be noted that for £ = 0, the centroid is at z = 0 Flg'subt'iiionf
and y = 0 that is the centroid is at the center of the larger of circle
circle. For larger distance up to the z = R —r the centroid from a large
can be calculated utilizing Eq. (3.9)) reads circle  for
/7’7”2 N calculating
Ar="—(z—-0)==z (—) the new (3]l.a
/7/R2 ( ) R center. ( )

Notice that x is the distance between the two centers while Az is the change in the
centroid location. Additionally, if the removed circle is not on the x coordinate then
these calculations can be reused. For instance, if the cut is at angle, 6, the change
will be along straight line from the center of the large circle at the distance that was
obtained in Eq. (B.1.a). The conversion to a regular coordinate system could be done
by utilizing simple trigonometric functions.

End Solution

3.3.4 Change of Mass Centroid Due to Addition or Subtraction
of Mass in 3D

This innovative topic (as witting it) is extension of the previous topic of two dimensions
change of centroid. All bodies are three dimensions thus when no symmetry or extru-
datiorﬂ exist the full analysis has to be done. Furthermore, it is interesting to point to
the phenomenon none symmetrical body the change and be in a third dimension. This
topic to be discussed in stability issue.

A centroid of slob is located in point “0” and additional mass depicted as “a"

won

and the subtracted mass “r" and again the new location of centroid is at “n.”

. :moxo+maxa—m,.x,. (311)
" mo_ma+mr .

As before the special case of equal subtracted and added material Eq. (3.11]) converted
into
Mo To+m (Tq — )

n = 3.12
v - (312)

2The word “extrudation” means same meaning it has in blender (software).
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when the density is uniform, Eq. (3.12)) can be written

T, = Vo Lo + ‘/‘v/o(xa - xr) s Ty — To = %(ma — xr) (313)

Example 3.3:

In ?? Ay was assumed to be zero. Is this assumption is correct or/and under what
conditions it is correct. Hint: first calculate Ay and then use the results to the estimated
results.

3.3.4.1 A Small Change in Angle of Rotation

This section is dealing with a special topic of
change of area due to rotation when the area
is constant that is important to stability. The
change of the area in ?? dealt with a specific
geometry. This procedure can be generalized
or even simplified the procedure. The process
of calculating the change of the centroid can
be converted for small angle.

h
—
__f:ch_fxxtan@dA_tant:c2dA

T Tav v v
(3.14)

The term in the nominator is called the Mo-
ment of Inertia and will be discussed in the
following section. The Moment of Inertia sym-

bolized by I, and Eq. (3.14) by

tanf I,
Notice that I, is a function of the cross section only and is half of the cross section.
Hence for the total moment of inertia double the half (see next section for explanation).
The volume of the small wedge is calculated below. The total change is defined in

Eq. (3.13)

Fig. -3.6 — Center mass of cylinder wedge
with added wedge and subtracted wedge.

21}1
—~—
Y tan61,, .
Ar=% ———— =tanf — 3.16
Vo Y Vo (3.16)

It is remarkable that the change location of centroid can be determined from know-
ing/calculating the moment of inertia of the cross section and by the displaced volume.

Example 3.4:
Repeat example with using Eq. (3.16)).
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As a side kick, the integral that was canceled before can be calculated as following
/dV:/x tan@dA:tane/di:tanﬁch (3.17)

The value of tan @ is constant in the integration and the value Z is the average height
of wedge. The value of Z is a function of 8 but not its location and the A cross area is
not function of 8. Sometime of values Z are tabulated and hence the integration can
be readily available.

3.4 Moment of Inertia

As it was divided for the body center of mass, the moment of inertia is divided into
moment of inertia of mass and area.

3.4.1 Moment of Inertia for Mass

The moment of inertia turns out to be an essential part for the calculations of ro-
tating bodies. Furthermore, it turns out that the moment of inertia has much wider
applicability. Moment of inertia of mass is defined as

Moment of Inertia

Ir"r‘m _ / p,erV_l (318)
12

If the density is constant then equation (3.18) can be transformed into

Loy = p/ r2dV (3.19)
1%

The moment of inertia is independent of the coordinate system used for the calculation,
but dependent on the location of axis of rotation relative to the body. Some people
define the radius of gyration as an equivalent concepts for the center of mass concept
and which means if all the mass were to locate in the one point/distance and to obtain
the same of moment of inertia.

I,
= — 3.20
Tk - (3.20)

The body has a different moment of inertia for every coordinate/axis and they are
Iow = [y radm = [, (y? +2°) dm

Ly = [, r2dm = [, (2* + 2?)dm (3.21)
I, = fV r,2dm = fv(m2 +y2)dm



3.4. MOMENT OF INERTIA 61
3.4.2 Moment of Inertia for Area

3.4.2.1 General Discussion

For body with thickness, ¢t and uniform density the following can be written

moment of iner-
tia for area

Lowmm :/ r2dm = pt / r2dA (3.22)
m A
The moment of inertia about axis is = can be defined as

— Moment of Inertia

A pt

where 7 is distance of dA from the axis x and ¢ is the thickness.
Any point distance can be calculated
from axis = as

T =y?+ 22 (3.24)

Thus, equation (3.23]) can be written as

Liw = / (v +2°) dA (3.25)

In the same fashion for other two coordi-

Fig. -3.7 — The schematic that explains the sum-
nates as

mation of moment of inertia.

I, = /A (2® +2%) dA (3.26)

IZZ:/A(m +y*) dA (3.27)

3.4.2.2 The Parallel Axis Theorem

The moment of inertial can be calculated for any axis. The knowledge about one axis
can help calculating the moment of inertia for a parallel axis. Let I, the moment of
inertia about axis xz which is at the center of mass/area.

The moment of inertia for axis = is

L :Ar’sz:A(y’2+z’2) dA:/A [0+ 89 + (= + 82| 4 (328)
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equation ([3.28)) can be expended as

I(EI =0

L. :/A(y2—|—z2) dA+2/A(yAy+zAz)dA+/A((Ay)2+(Az)2> dA (3.29)

The first term in equation ((3.29)) on the right hand side is the moment of inertia
about axis x and the second them is zero. The second therm is zero because it integral
of center about center thus is zero. The third term is a new term and can be written
as

2 A
constant T ——

/A ((Ay)2 + (Az)2) dA = ((Ay)2 n (Az)) /A CdA—2 A (3.30)

Hence, the relationship between the moment of inertia at xx and parallel axis
T x is

Parallel Axis Equation
IE/Z/ = sz —|— 1"2 A _| (331)

The moment of inertia of several areas is A
the sum of moment inertia of each area see y z
Figure 3.8 and therefore,

X

n
L, = me (3.32)
=1

If the same areas are similar thus Fig. -3.8 — The schematic to ex-
plain the summation of mo-
ment of inertia.

Lip =Y Top; =1 Iy (3.33)
i=1

Equation (3.33)) is very useful in the
calculation of the moment of inertia utiliz-

ing the moment of inertia of known bod-
ies. For example, the moment of inertial
of half a circle is half of whole circle for
axis a the center of circle. The moment of
inertia can then move the center of area.
of the

Fig. -3.9 — Cylinder with an element for calcu-
lation moment of inertia.
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3.4.3 Examples of Moment of Inertia

Example 3.5:

Calculate the moment of inertia for the mass of the cylinder about center axis which
height of h and radius, 1o, as shown in Figure[3.9 The material is with an uniform
density and homogeneous.

SOLUTION
The element can be calculated using cylindrical coordinate. Here the convenient element
is a shell of thickness dr which shown in Figure 3.9 as
dv
PR N rot 4 4 _ 1 2
L., = p/VTQdm = p/o r? h2mrdr = phZNT = 5phmry” = 3mmo

smro? 1o
T = = —
m V2

End Solution

The radius of gyration is

Example 3.6:
Calculate the moment of inertia of the rect-
angular shape shown in Figure around

Fig. -3.10 — Description of rectan-

x coordinate. Notice that the location of gular in x—y plane for calculation
the distance from z coordinate is not given. of moment of inertia.

Is it important?

SOLUTION

The moment of inertia is calculated utilizing equation (3.25]) as following

A< o M
Ixm :/ y2 +2’2 dA :/ 22 bdz = L
A 0 3

This value will be used in later examples. The distance to z is not relevant for the
calculation.

End Solution

Example 3.7:

To study the assumption of zero thickness, consider a simple shape to see the effects of
this assumption. Calculate the moment of inertia about the center of mass of a square
shape with a thickness, t compare the results to a square shape with zero thickness.

SOLUTION
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The moment of inertia of trans-

;
verse slice about 3 (see Figure[3.11)) is \ﬁ o
\ /\

IJ.’I?
t ~ N
~ =~ ba3 (3V||a) ==
dlpom =p dy —5
12 Fig. -3.11 — A square element for
. . . the calculations of inertia of two-
The transformation into from local axis dimensional to three—dimensional de-
T to center axis, x can be done as fol- viations.
lowing
Ipo
N r2 A
bad> "
al . =pdy | —+_ 2" ba (3.34)

12 N ——
r2 A

The total moment of inertia can be obtained by integration of equation ((3.34) to write

as
t/2 3 2, .3
Im,np// <ba+22ba> dz = pt 20T T a7h (3.35)
—72 \ 12 12
Comparison with the thin body results in
Impt: ba? _ 1 (3.36)
Loz t2ba+ba® 2
1+ )
It can be noticed right away 14 - - . .
that equation (3.36) indicates 12r ]
that ratio approaches one when g ]
thickness ratio is approaches zero, 42T ]
Lizm(t = 0) — 1. Additionally T )
it can be noticed that the ratio “r ]
a®/t? is the only contributor to N . . ]
the errorﬂ The results are present Yo s we s e st st
in Figure [3.12l | can be noticed September 20, 2015 ‘
that the error is significant very
fast even for small values of t/a Fig. -3.12 — The ratio of the moment of inertia

while the with of the box, b has of two-dimensional to three-dimensional.
no effect on the error.

End Solution

3This ratio is a dimensionless number that commonly has no special name. This author suggests
to call this ratio as the B number.
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Example 3.8:

Calculate the rectangular moment of In-
ertia for the rotation trough center in zz
axis (axis of rotation is out of the page).
Hint, construct a small element and build 2b
longer build out of the small one. Using this
method calculate the entire rectangular.

SOLUTION

65

dy! y

2a

Fig. -3.13 — Rectangular Mo-
ment of inertia.

The moment of inertia for a long element with a distance y shown in Figure is

T

a4 —N— 2 (3 2 + 3
The second integration ( no need to use (3.31)), why?) is
b 2 (3 2 3
L. / 2Bay+d) (3.VIILb)
b 3
Results in
P P 4ab
[ a (2&()‘3 +2a? b) _ /'A\ (20,)2 + (2b)2 (3.V|||.C)
= 3 N 12
Or
End Solution
Example 3.9:
Calculate the center of area de
and moment of inertia for the T
parabola, y = «az?, depicted XX N —
in Figure[314, Hint, calculate de Pl
the area first. Use this area e 7

to calculate moment of inertia.
There are several ways to ap-
proach the calculation (differ-
ent infinitesimal area).

SOLUTION

Fig. -3.14 — Parabola for calculations of mo-
ment of inertia.

For y = b the value of x = /b/a. First the area inside the parabola calculated as

A

2 [ Y agha = 28e =D (b)2

dA/2 3

3 a
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The center of area can be calculated utilizing equation (3.7). The center of every

b— 2
element is at, (a £+ ;€> the element area is used before and therefore
\/b/ - 2 ,—L
1 * 5 (b—ag?) 2 3ab
L= = b— dé = ——— 37
=g [ (e + B e - 200 e

The moment of inertia of the area about the center can be found using in equation
can be done in two steps first calculate the moment of inertia in this coordinate
system and then move the coordinate system to center. Utilizing equation and
doing the integration from 0 to maximum y provides

dA
b 7/2
/ 2b
I,,=4 2 éd =
r /05 a ¢ 7V

A
Izlzl — N (AI:mc)z
—_—— 3

g AA,2_ AT Ba—1 (b\2( 3ab 2
rr — el T xr = - - e . E
' ve 7V 3 « 15a—5

or after working the details results in

Utilizing equation ({3.31)

Vb (200° — 14?)
35 /a

End Solution

Iwm =

Example 3.10:

Calculate the moment of inertia of strait angle tri- y
angle about its y axis as shown in the Figure on the
right. Assume that base is a and the height is h.
What is the moment when a symmetrical triangle is
attached on left? What is the moment when a sym-
metrical triangle is attached on bottom? What is the
moment inertia when a — 07 What is the moment
inertia when h — 07 >

Qg ——*

o—

dy

SOLUTION Fig. -3.15 — Triangle for
example [3.10
The right wedge line equation can be calculated as

)
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z Y
r_(1- f)
a ( h
Now using the moment of inertia of rectangle on the side (y) coordinate (see example

3.6)

or

y\3
/h@(l—h) dy_U/Sh,
0 3 4
. . . a’h
For two triangles attached to each other the moment of inertia will be sum as 5

The rest is under construction.

End Solution

3.4.4 Product of Inertia

In addition to the moment of inertia, the product of inertia is commonly used. Here
only the product of the area is defined and discussed. The product of inertia defined as

For example, the product of inertia for x and y axis is

Ixy:/xydA (3.39)
A

Product of inertia can be positive or negative value as oppose the moment of
inertia. The calculation of the product of inertia isn't different much for the calculation
of the moment of inertia. The units of the product of inertia are the same as for moment
of inertia.

Transfer of Axis Theorem

Same as for moment of inertia there is also similar theorem.

L, = /Aa: y dA = /A(LE + Az) (y+ Ay)dA (3.40)

expanding equation (3.40)) results in

0 0

——

Ay/di Aa:/ydA
Iay A A Az Ay A

—_——
Ly :/xydA+/xAydA+/ AxydA+/ Az AydA (3.41)
’ A A A A
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The final form is

Loy =1y+AxAyA

There are several relationships should be mentioned

Iy = Iy

REVIEW OF MECHANICS

(3.42)

(3.43)

Symmetrical area has zero product of inertia because integration of odd function (asym-

metrical function) left part cancel the right part.

Example 3.11:

Calculate the product of inertia of straight wedge
triangle. Assume that body is two dimensional.

SOLUTION

The equation of the line is
Lo+
=-x+a
Y7

The product of inertia at the center is zero. The

total product of inertia is
aby a’b?
2 ) 18

End Solution

Fig. -3.16 — Product of
inertia for triangle.

3.4.5 Principal Axes of Inertia
The inertia matrix or inertia tensor is

Iww _Izy _Ia:z
_[yw Iyy _Iyz

_Izac —Izy Izz

(3.44)

In linear algebra it was shown that for some angle equation (3.44]) can be transform

into

I, 0 0
0 Iy, 0
0 0 I

z z

(3.45)

System which creates equation ([3.45) referred as principle system.
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3.5 Newton’'s Laws of Motion

These laws can be summarized in two statements one, for every action by body A on
Body B there is opposite reaction by body B on body A. Two, which can expressed in
mathematical form as

_ D(mU)
ZF_Tt (3.46)

It can be noted that D replaces the traditional d since the additional meaning
which be added. Yet, it can be treated as the regular derivative. This law apply to any
body and any body can “broken” into many small bodies which connected to each other.
These small “bodies” when became small enough equation can be transformed

to a continuous form as
D (pU)
F= | ——=adV 3.47
Yr= [P (347

The external forces are equal to internal forces the forces between the “small” bodies
are cancel each other. Yet this examination provides a tool to study what happened in
the fluid during operation of the forces.

Since the derivative with respect to time is independent of the volume, the deriva-
tive can be taken out of the integral and the alternative form can be written as

D
> F= Di).” Udv (3.48)

The velocity, U is a derivative of the location with respect to time, thus,

D2
Y F= W/Vp rdV (3.49)

where 7 is the location of the particles from the origin.

The external forces are typically divided into two categories: body forces and
surface forces. The body forces are forces that act from a distance like magnetic field
or gravity. The surface forces are forces that act on the surface of the body (pressure,
stresses). The same as in the dynamic class, the system acceleration called the inter-
nal forces. The acceleration is divided into three categories: Centrifugal, wx (r X w),
Angular, r x w, Coriolis, 2 (U, X w). The radial velocity is denoted as U,.

3.6 Angular Momentum and Torque
The angular momentum of body, dm, is defined as
L=rxUdm (3.50)

The angular momentum of the entire system is calculated by integration (summation)
of all the particles in the system as

Ls= / r x Udm (3.51)
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The change with time of angular momentum is called torque, in analogous to the
momentum change of time which is the force.

_DL_ D

T,
Dt Dt

(r x Udm) (3.52)

where T’ is the torque. The torque of entire system is

DL D
T»,—S = . ﬁ = Ft . (I‘ X Udm) (353)

It can be noticed (well, it can be proved utilizing vector mechanics) that

D Dr D?r

i o) = o

D
T. = Z(rxU) =
(rxU) =5

= (3.54)

To understand these equations a bit better, consider a particle moving in x=y plane.
A force is acting on the particle in the same plane (x=y) plane. The velocity can be
written as U = ui + v and the location from the origin can be written as r = zi+yJ.
The force can be written, in the same fashion, as F = F,i + ij. Utilizing equation

(3.50) provides

L=rxU= = (zv—yu)k (3.55)

S K8 <o
S e o
o O T

Utilizing equation ([3.52)) to calculate the torque as

T.=rxF= x y 0 |=(@F,—yFy)k (3.56)
F, F, 0

Since the torque is a derivative with respect to the time of the angular momentum it is
also can be written as

zFy, —yF, = % [(zv — yu) dm) (3.57)

The torque is a vector and the various components can be represented as

.~ D
Tm:iojt/merdm (3.58)
In the same way the component in y and z can be obtained.

3.6.1 Tables of geometries

Th following tables present several moment of inertias of commonly used geometries.
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Table -3.1 — Moments of Inertia for various plane surfaces about their center of gravity (full

shapes)
Shape Picture .
Name description o Ve A Lo
rectangle b.a b ab?
& 279 “ 12
b b?
Triangle 4 a2 @
3 3 36
b b2 4
Circle - ™ ﬂ
2 4 64
Elliose a b mab ab®
P 22 4 64
6a—2
3 X Vo (2063 —1412
y:al’z 1?3_115 (Q)g %
Parabola “
Trapezoid h(2a—b) hlet) B (ets)
3(a+b)
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Table -3.2 — Moment of inertia for various plane surfaces about their center of gravity

Shape Picture .
Name description o Ye A Log
r
Quadrant X Ar _7”2 4 4
u — — - w4
of Circle I;J 3w 4 rs )
e
4b b
Ellipsoidal T % 0t (FH—dk)
Quadrant m
4b b
Half of 3_ % “bs(%_ﬁ)
Elliptic g
Circular 0 2a7% | £ (a-gsin2a)
Sector
2rsin o I _
1 3 o 2 r sina 2 o
Circular grena 2ar
Sector E (a+% sin2a)




Fluids Statics

4.1 Introduction

The simplest situation that can occur in the study of fluid is when the fluid is at rest or
quasi rest. This topic was introduced to most students in previous study of rigid body.
However, here this topic will be more vigorously examined. Furthermore, the student
will be exposed to stability analysis probably for the first time. Later, the methods
discussed here will be expanded to more complicated dynamics situations.

Th H d - E - (P+6—de)dxdz
4.2 e Hydrostatic Equation By )
P+ _dz ) dxdy
A fluid element with dimensions of DC, ’
dy, and dz is motionless in the accel- (P+%de)dydz

erated system, with acceleration, a as
shown in Figure 4.1l The system is in a
body force field, gg(z,y,z). The com-
bination of an acceleration and the body
force results in effective body force which
is

Fig. -4.1 — Description of a fluid element in accel-
erated system under body forces.

8c — O = Jerr (4-1)
Equation (4.1)) can be reduced and simplified for the case of zero acceleration,
a=0.
In these derivations, several assumptions must be made. The first assumption

is that the change in the pressure is a continuous function. There is no requirement
that the pressure has to be a monotonous function e.g. that pressure can increase

73
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and later decrease. The changes of the second derivative pressure are not significant
compared to the first derivative (0P/0n x df >> 0?P/dn?). Where n is the steepest
direction of the pressure derivative and d/ is the infinitesimal length. This mathematical
statement simply requires that the pressure can deviate in such a way that the average
on infinitesimal area can be found and expressed as only one direction. The net pressure
force on the faces in the x direction results in

8P ~
dF = — ((%> dydz (4.2)

In the same fashion, the calculations of the three directions result in the total net
pressure force as

ZF——(?;i+?;j+?;k) (4.3)
surface

The term in the parentheses in equation referred to in the literature as
the pressure gradient (see for more explanation in the Mathematics Appendix). This
mathematical operation has a geometrical interpretation. If the pressure, P, was a
two—dimensional height (that is only a function of x and y) then the gradient is the
steepest ascent of the height (to the valley). The second point is that the gradient is a
vector (that is, it has a direction). Even though, the pressure is treated, now, as a scalar
function (there no reference to the shear stress in part of the pressure) the gradient is
a vector. For example, the dot product of the following is

~ ~ OP
i-gradP=1¢-VP = — 4.4
g 5 (4.4)
In general, if the coordinates were to “rotate/transform” to a new system which
has a different orientation, the dot product results in
_ — oP
iy -gradP =i, - VP = o (4.5)
where i, is the unit vector in the n direction and 9/0n is a derivative in that direction.
As before, the effective gravity force is utilized in case where the gravity is the only
body force and in an accelerated system. The body (element) is in rest and therefore

the net force is zero
S>F=) F+) F (4.6)

total surface body
Hence, by utilizing the above derivations one can obtain
—gradPdrdydz + p ggdr dydz = 0 (4.7)

or
— Pressure Gradient
gradP = VP = pg, (4.8)
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Constant —
Pressure
Lines

Fig. -4.2 — Pressure lines in a static fluid with a constant density.

Some refer to equation (4.8) as the Fluid Static Equation. This equation can be
integrated and therefore solved. However, there are several physical implications to this
equation which should be discussed and are presented here. First, a discussion on a
simple condition and will continue in more challenging situations.

4.3 Pressure and Density in a Gravitational Field

In this section, a discussion on the pressure and the density in various conditions is
presented.

4.3.1 Constant Density in Gravitational Field

The simplest case is when the density, p, pressure, P, and temperature, T (in a way
no function of the location) are constant. Traditionally, the z coordinate is used as the
(negative) direction of the gravityfl] The effective body force is

Gett = _gI% (4.10)

Utilizing equation ([4.10]) and substituting it into equation (4.8)) results into three
simple partial differential equations. These equations are

oP  oP

- = _ 411
or Jy ( )
and
Pressure Change
Z_P — g (4.12)
2
Equations (4.11]) can be integrated to yield
P(z,y) = constant (4.13)

IThis situation were the tradition is appropriated, it will be used. There are fields where x or y are
designed to the direction of the gravity and opposite direction. For this reason sometime there will be
a deviation from the above statement.
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and constant in equation (4.13) can be absorbed by the integration of equation (4.12)
and therefore

P(x,y,2) = —pg z + constant (4.14)

The integration constant is determined from the initial conditions or another point. For
example, if at point 2z the pressure is Py then the equation ([4.14])) becomes

P(z) —Po=—pg(z — 20) (4.15)

It is evident from equation (4.14) that the pressure depends only
on z and/or the constant pressure lines are in the plane of x and y.

"

Figure describes the constant
pressure lines in the container under the
gravity body force. The pressure lines
are continuous even in area where there
is a discontinuous fluid. The reason that pygh
a solid boundary doesn’t break the con-
tinuity of the pressure lines is because

there is always a path to some of the ale
planes.
It is convenient to reverse the di- &//
rection of z to get rid of the negative
sign and to define h as the dependent Fig. -4.3 — A schematic to explain the
of the fluid that is h = —(Z — ZO) o] measure of the atmospheric pressure.

equation (|4.15)) becomes

Pressure relationship
P(h)—Py=pgh (4.16)

In the literature, the right hand side of the equation (4.16]) is defined as piezo-
metric pressure.

Example 4.1:
Two chambers tank depicted in Figure are in equilibration. If the air mass at
chamber A is 1 Kg while the mass at chamber B is unknown. The difference in the
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liquid heights between the two chambers
is 2[m]. The liquid in the two chambers
is water. The area of each chamber is

1[m?]. Calculate the air mass in chamber hs
B. You can assume ideal gas for the air th

and the water is incompressible substance

with density of 1000[kg/m?]. The total
height of the tank is 4jm]. ~ Assume that
the chamber are at the same temperature

of 27°C. Fig. -4.4 — The effective gravity is
for accelerated cart.

hy

SOLUTION

The equation of state for the chamber A is

RT
= 4.1,
ma PA VA ( a)
The equation of state for the second chamber is
RT
= 4.1.b
ms =5 (4.1.b)
The water volume is
Vvtotal = }Ll A -+ (hl + hQ)A = (2 h1 + }LQ) A (4|C)

The pressure difference between the liquid interface is estimated negligible the air density
as

PA—PB:AP:hgpg (4|d)
combining equations (4.1.a]), (4.1.b)) results in

RT RT 1 hapgmaVa
—h 1— -
2pg = mi@ RT
ma VA

(4.1.e)

ma VA mp VB

In equation the only unknown is the ratio of mp/m4 since everything else is known.
Denoting X = mp/m4 results in

1 hapgmaVa 1
X RT 1 hopgmaVa (4.1.1)
RT

End Solution
The following question is a very nice qualitative question of understanding this
concept.

Example 4.2:
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A tank with opening at the top to the at- 11
mosphere contains two immiscible liquids
one heavy and one light as depicted in Fig- X
ure[4.5 (the light liquid is on the top of the ‘ l
heavy liquid). Which piezometric tube will [h o ‘m
be higher? why? and how much higher? :

What is the pressure at the bottom of the
tank? Fig. -4.5 — Tank and the effects dif-
ferent liquids.

SOLUTION

The common instinct is to find that the lower tube will contain the higher liquids. For
the case, the lighter liquid is on the top the heavier liquid the top tube is the same as
the surface. However, the lower tube will raise only to (notice that g is canceled)

_phitpahy
P2

hL (4.11.2)

Since p; > p1 the mathematics dictate that the height of the second is lower. The
difference is

hH—hL:hi_ p1h1 + p2 ho (4.11.b)
R ho 21 py o

It can be noticed that Ay = h1 + A — 2 hence,

hH—hL:h1+h2_<P1h1+P2h2>:h1(1_,01> (411.¢)
ha ha ha p2 ha P2
or
hi — hy = hy (1—’”) (4.11.d)
P2

The only way the hy, to be higher of hy is if the heavy liquid is on the top if the stability
allow it. The pressure at the bottom is

pP= Patmos + g (pl hl + P2 hZ) (417)

End Solution

Example 4.3:

The effect of the water in the car tank is more than the possibility that water freeze
in fuel lines. The water also can change measurement of fuel gage. The way the
interpretation of an automobile fuel gage is proportional to the pressure at the bottom
of the fuel tank. Part of the tank height is filled with the water at the bottom (due to
the larger density). Calculate the error for a give ratio between the fuel density to the
water.

SOLUTION
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The ratio of the fuel density to water density is ¢ = py/p.,, and the ratio of the total
height to the water height is £ = hy,/hiotar Thus the pressure at the bottom when the
tank is full with only fuel

Pru = pf hiotar 9 (4.111.2)
But when water is present the pressure will be the same at
Pfull - (pw T + (;bpf) g htotul (4”|b)
and if the two are equal at
prhicrar d = (pw + ¢ pr) g hestar (4.11lc)
where ¢ in this case the ratio of the full height (on the fake) to the total height. Hence,
— 2Py
g="LL" TP (4.111.d)
P

End Solution

4.3.2 Pressure Measurement
4.3.2.1 Measuring the Atmospheric Pressure

One of the application of this concept is the idea of measuring the atmospheric pressure.
Consider a situation described in Figure[d.3] The liquid is filling the tube and is brought
into a steady state. The pressure above the liquid on the right side is the vapor pressure.
Using liquid with a very low vapor pressure like mercury, will result in a device that can
measure the pressure without additional information (the temperature).

Example 4.4:

Calculate the atmospheric pressure at 20°C'. The high of the Mercury is 0.76 [m] and
the gravity acceleration is 9.82[m/sec]. Assume that the mercury vapor pressure is
0.000179264[kPa]. The description of the height is given in Figure[4.3 The mercury
density is 13545.85[kg/m?3].

SOLUTION

The pressure is uniform or constant plane perpendicular to the gravity. Hence, knowing
any point on this plane provides the pressure anywhere on the plane. The atmospheric
pressure at point a is the same as the pressure on the right hand side of the tube.
Equation can be utilized and it can be noticed that pressure at point a is

Pa:pgh+Pvapor (418)
The density of the mercury is given along with the gravity and therefore,
P, = 13545.85 x 9.82 x 0.76 ~ 101095.39[Pa] ~ 1.01[Bar]

The vapor pressure is about 1 x 10™* percent of the total results.

End Solution
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The main reason the mercury is used be-
cause of its large density and the fact that it

is in a liquid phase in most of the measure-

ment range. The third reason is the low va- Gas 2y
por (partial) pressure of the mercury. The par- The pressure, P

tial pressure of mercury is in the range of the <

valve

0.000001793[Bar] which is insignificant com-
pared to the total measurement as can be ob-
served from the above example.

Example 4.5:
A /iqui(ﬂ a in amount H, and a liquid b in Fig. -4.6 — Schematic of gas measurement
amount Hy in to an U tube. The ratio of the utilizing the “U” tube.

liquid densities is « = p1/pa. The width of the
U tube is L. Locate the liquids surfaces.

SOLUTION

The question is to find the equilibrium point where two liquids balance each other. If
the width of the U tube is equal or larger than total length of the two liquids then the
whole liquid will be in bottom part. For smaller width, L, the ratio between two sides
will be as

prh1=pahs = hs =ah

The mass conservation results in
H,+Hy,=L+hy+ ho

Thus two equations and two unknowns provide the solution which is

H,+H,— L
hi=——-—
1+«

When H, > L and p, (H, — L) > py (or the opposite) the liquid a will be on the two
sides of the U tube. Thus, the balance is

hi py + ha pa = h3 pa

where h1 is the height of liquid b where hs is the height of “extra” liquid a and same
side as liquid b and where hg is the height of liquid b on the other side. When in this
case hi is equal to H,. The additional equation is the mass conservation as

H, =ho+ L+ hs

The solution is
(Ho — L) pa — Hypy

2 pa

End Solution

hy =

2This example was requested by several students who found their instructor solution unsatisfactory.
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4.3.2.2 Pressure Measurement

The idea describes the atmo-
spheric measurement that can be
extended to measure the pressure
of the gas chambers. Consider a
chamber filled with gas needed to
be measured (see Figure[4.6]). One
technique is to attached “U" tube
to the chamber and measure the
pressure. This way, the gas is pre-
vented from escaping and its pres- Fig. -4.7 — Schematic of sensitive measurement device.
sure can be measured with a min-
imal interference to the gas (some gas enters to the tube).

The gas density is significantly lower than the liquid density and therefore can be
neglected. The pressure at point “1" is

Pl :Patmos+pgh (419)

Since the atmospheric pressure was measured previously (the technique was shown
in the previous section) the pressure of the chamber can be measured.

4.3.2.3 Magnified Pressure Measurement

For situations where the pressure difference is very small, engineers invented more sensi-
tive measuring device. This device is build around the fact that the height is a function
of the densities difference. In the previous technique, the density of one side was ne-
glected (the gas side) compared to other side (liquid). This technique utilizes the
opposite range. The densities of the two sides are very close to each other, thus the
height become large. Figure shows a typical and simple schematic of such an in-
strument. If the pressure differences between P; and P, is small this instrument can
“magnified” height, hy and provide “better” accuracy reading. This device is based on
the following mathematical explanation.
In steady state, the pressure balance (only differences) is

P1 +gp1(h1+h2):P2+gh2p2 (420)

It can be noticed that the “missing height” is canceled between the two sides. It can
be noticed that h; can be positive or negative or zero and it depends on the ratio that
two containers filled with the light density liquid. Additionally, it can be observed that
hy is relatively small because A; >> Ay. The densities of the liquid are chosen so that
they are close to each other but not equal. The densities of the liquids are chosen to
be much heavier than the measured gas density. Thus, in writing equation the
gas density was neglected. The pressure difference can be expressed as

Py — P, = g[pa ho — pi(h1 + hs)] (4.21)
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If the light liquid volume in the two containers is known, it provides the relationship
between hy and hy. For example, if the volumes in two containers are equal then

ha Ag

—h1 Ay =hy Ay —> hy = — A,

(4.22)

Liquid volumes do not necessarily have to be equal. Additional parameter, the volume
ratio, will be introduced when the volumes ratio isn't equal. The calculations as results
of this additional parameter does not cause a significant complications. Here, this ratio
equals to one and it simplify the equation . But this ratio can be inserted easily
into the derivations. With the equation for height equation becomes

A
Pl — P2 = ghg (p2 — pP1 (1 - 142)> (423)
1
or the height is
P — P
hy = L (4.24)
9 [(m —p)+ m%ﬂ
For the small value of the area ratio, A2/A; L1, then equation (4.24) becomes
P — P
hy= —— "2 (4.25)
9(p2—p1)

Some refer to the density difference shown in equation (4.25]) as “magnification factor”
since it replace the regular density, ps.

Inclined Manometer

One of the old methods of pressure
measurement is the inclined manometer.
In this method, the tube leg is inclined rel-
atively to gravity (depicted in Figure .
This method is an attempt to increase the
accuracy by “extending” length visible of

the tube. The equation (4.19)) is then
q Fig. -4.8 — Inclined manometer.

Pl - Poutside = pgd( (426)

Poutside
d/

If there is a insignificant change in volume (the area ratio between tube and inclined
leg is significant), a location can be calibrated on the inclined leg as zercﬂ

Inverted U-tube manometer

3This author's personal experience while working in a ship that use this manometer which is signifi-
cantly inaccurate (first thing to be replaced on the ship). Due to surface tension, caused air entrapment
especially in rapid change of the pressure or height.
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The difference in the pressure of two different
liquids is measured by this manometer. This idea is Zi |y z
similar to “magnified” manometer but in reversed.
The pressure line are the same for both legs on line

. . h
ZZ. Thus, it can be written as the pressure on left
is equal to pressure on the right legs (see Figure
4.9). s
right leg left leg b

Rearranging equation (4.27)) leads to

P,—Pi=py(b+h)g—prag—phg (4.28)

Py—pa(b+h)g=Pr—pia—ph)g (4.27) u.

Fig. -4.9 — Schematic of inverted
For the similar density of p; = po and for a = b equatioﬁn@tﬁecomes

Py =Py =(p1—p)gh (4.29)

As in the previous “magnified’ manometer if the density difference is very small the
height become very sensitive to the change of pressure.

4.3.3 Varying Density in a Gravity Field

There are several cases that will be discussed here which are categorized as gases,
liquids and other. In the gas phase, the equation of state is simply the ideal gas model
or the ideal gas with the compressibility factor (sometime referred to as real gas).
The equation of state for liquid can be approximated or replaced by utilizing the bulk
modulus. These relationships will be used to find the functionality between pressure,
density and location.

4.3.3.1 Gas Phase under Hydrostatic Pressure

Ideal Gas under Hydrostatic Pressure

The gas density vary gradually with the pressure. As first approximation, the ideal gas
model can be employed to describe the density. Thus equation ([4.12)) becomes

oP gP
bl Sl 4.30
0z RT ( )
Separating the variables and changing the partial derivatives to full derivative (just a
notation for this case) results in

P __gd:

= =-2= (4.31)
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Equation (4.31)) can be integrated from point “0" to any point to yield

P g
In—=——"-(2— 4.32
ng = g (=) (432)
It is convenient to rearrange equation (4.32) to the following
P _ g(zfzo)
—=€ ( rT ) (4.33)
FPo

Here the pressure ratio is related to the height exponentially. Equation (4.33)) can be
expanded to show the difference to standard assumption of constant pressure as

_h;;gg
p ( )9 ( )?

z—z2)9 (z—2) g
—=1- 434
Py RT + 6RT + ( )

Or in a simplified form where the transformation of h = (z — zp) to be
correction factor

(4.35)

Equation (4.35)) is useful in mathematical derivations but should be ignored for practical
us
Real Gas under Hydrostatic Pressure

The mathematical derivations for ideal gas can be reused as a foundation for the
real gas model (P = ZpRT). For a large range of P/P. and T/T,, the value of the
compressibility factor, Z, can be assumed constant and therefore can be swallowed into

equations (4.33) and (4.34). The compressibility is defined in equation (2.39). The

modified equation is

P (9(2—20)
P _e ("7wt') (4.36)
Py
Or in a series form which is
P (z—20)9 (z—zo)zg
-1 4.37
P ZRT & 6ZRT T (4.37)

Without going through the mathematics, the first approximation should be noticed that
the compressibility factor, Z enter the equation as h/Z and not just h. Another point
that is worth discussing is the relationship of Z to other gas properties. In general, the
relationship is very complicated and in some ranges Z cannot be assumed constant. In
these cases, a numerical integration must be carried out.

4These derivations are left for a mathematical mind person. These deviations have a limited practical
purpose. However, they are presented here for students who need to answer questions on this issue.
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4.3.3.2 Liquid Phase Under Hydrostatic Pressure

The bulk modulus was defined in equation . The simplest approach is to assume
that the bulk modulus is constant (or has some representative average). For these cases,
there are two differential equations that needed to be solved. Fortunately, here, only
one hydrostatic equation depends on density equation. So, the differential equation for
density should be solved first. The governing differential density equation is

_p.o
p=DBros (4.38)

The variables for equation ([4.38)) should be separated and then the integration can be

carried out as
P P d
/ dP = / Br (4.39)
Po P0o P

The integration of equation ((4.39) yields

P—Py=Brin (4.40)
Po

Equation ([4.40) can be represented in a more convenient form as

Density variation

P—Py
B

p=p€ 7T (4.41)

Equation ([4.41)) is the counterpart for the equation of state of ideal gas for the liquid
phase. Utilizing equation (4.41)) in equation ([4.12)) transformed into

oP e
92 -9 ﬂoe (4.42)

Equation ([4.42)) can be integrated to yield
0
—€ 1 =24 Constant (4.43)

It can be noted that Br has units of pressure and therefore the ratio in front of the
exponent in equation has units of length. The integration constant, with units
of length, can be evaluated at any specific point. If at z = 0 the pressure is P and the
density is pg then the constant is

B
Constant = —— (4.44)

g po
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This constant, Br/gpo, is a typical
length of the problem. Additional discus-
sion will be presented in the dimensionless
issues chapter (currently under construc-
tion). The solution becomes

B P—Py 2| :
or (e Br _1> =z (4.45) B P |
g po o

October 1, 2013 J_ﬁ%

Or in a dimensionless form

Fig. -4.10 — Hydrostatic pressure when there is

Density in Liquids
y q compressibility in the liquid phase.

(e% - 1) — 2980 (4.46)
Br

The solution is presented in equation and is plotted in Figure The solution
is a reverse function (that is not P = f(z) but z = f (P)) it is a monotonous function
which is easy to solve for any numerical value (that is only one z corresponds to any
Pressure). Sometimes, the solution is presented as

P Bry, (9p02
R R Br

- 1) +1 (4.47)

An approximation of equation (4.46]) is presented for historical reasons and in
order to compare the constant density assumption. The exponent can be expanded as

piezometric corrections
pressure 5 3
/(P—P_\) +& P—-F & P—-F T =Z4pPo (4.48)
0 2 \ Br 6 \ Br

It can be noticed that equation is reduced to the standard equation when the
normalized pressure ratio, P/ By is small (<< 1). Additionally, it can be observed that
the correction is on the left hand side and not as the “traditional” correction on the
piezometric pressure side.

After the above approach was developed, new approached was developed to an-
swer questions raised by hydraulic engineers. In the new approach is summarized by the
following example.

Example 4.6:

The hydrostatic pressure was neglected in example[1.12 In some places the ocean depth
is many kilometers (the deepest places is more than 10 kilometers). For this example,
calculate the density change in the bottom of 10 kilometers using two methods. In one
method assume that the density is remain constant until the bottom. In the second
method assume that the density is a function of the pressure.

SOLUTION
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For the first method the density is

AP AP
S IN S = I,
vy AV =V, (4.Vl.a)

1

Br

The density at the surface is p = m/V and the density at point = from the surface the
density is

= plw) =

(x)_L
PO =y Ay

AP (4.VLb)

In this Chapter it was shown (integration of equation (4.8])) that the change pressure
for constant gravity is

AP=g /OZ p(z)dz (4.Vlc)

Combining equation (4.VI.b|) with equation (4.VI.d) yields

0

Equation can be rearranged to be

m £0

B (O VRV R (R SR A

Equation (4.VI.€) is an integral equation which is discussed in the appendiﬂ It is
convenient to rearrange further equation (4.VI.€) to

g [7 _ Po_
1- Br ), p(z)dz = ) (4.VLT)

The integral equation (4.VI.f can be converted to a differential equation form when
the two sides are differentiated as

po_dp(z)
p(z)? dz

g - 4.V,
By 0 (4Vl.g)

equation (4.V1.g) is first order non—linear differential equation which can be transformed
into

3
gp(z) + dp(z) -0 (4.V1.h)
Br po dz
The solution of equation (4.V1.h]) is
po Br .
297 =z+c (4.VLi)

5Under construction
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| poBr .
p= m (4.V1))

The integration constant can be found by the fact that at z = 0 the density is py and

hence
po Br Br
= o= 2T (4.V1.K)
29 (c) 29 po

or rearra nged as

po =

Substituting the integration constant and opening the parentheses, the solution is

(4.49)

Or

! 2
po” Br
Z{ P Br (4.VLI)
%(2QPOZ+BT) o\ (2gpozt Br)
0

Equation (4.VLI) further be rearranged to a final form as

p:

1

a B p 1

= = = | (4.VL.m)

Po 29poz Po 29poz
1 A |
%< Br > ( Br >

2g9p0z

The parameter represents the dimensional length controlling the problem. For

T
small length the expression in (4.VI.m)) is similar to

1 x 322 523
- — 1z = 4.50
f@) =\ 2t R T 16 (4.50)
hence it can be expressed as
9 2,2 2 3 3.3
P _29mz 39 Po 2 _ 59 PO (4.V1n)
o 2Br 8 Br 16 By

End Solution

—_— — s A dvance material can be skipped w— — —

Example 4.7:
Water in deep sea undergoes compression due to hydrostatic pressure. That is the
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density is a function of the depth. For constant bulk modulus, it was shown in “Fun-
damentals of Compressible Flow” by this author that the speed of sound is given by

c=|Br (4.VI1.2)

p

Calculate the time it take for a sound wave to propagate perpendicularly to the surface
to a depth D (perpendicular to the straight surface). Assume that no variation of
the temperature exist. For the purpose of this exercise, the salinity can be completely
ignored.

SOLUTION

The equation for the sound speed is taken here as correct for very local point. However,
the density is different for every point since the density varies and the density is a
function of the depth. The speed of sound at any depth point, 2z, can be expressed

utilizing equation ([4.V1.m]) to obtain

C\/ ,/29”2 (4.VIL.b)

The time the sound travel a small interval distance, dz is

\/ /2gpoz (4.VIl.c)
Br

The time takes for the sound the travel the whole distance is the integration of infinites-
imal time. The integration can be easly carried by changing to the dummy variable to
u= 2”“ £ 4+ 1. Under this transform equation (4.VIl.c|) changes to

Br
U
2 VBr d
dr= P - Y=L (4.VIL.d)
T\/E 9g+/Po
Po

Integrating equation (4.VII.d|) when noticing that the boundary conditions change to 1
and 2gp, D/Br + 1 results in

29po D

+1
/dT_/ Br VBr du (4.Vil.e)
29/po ut/*
The integration results in
2gé>oD+1
VBr 4 s PT (4.VILf)

_2gf3

1
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Simplifycation of the equation (4.VIL.f)) which can obtain the form of

2B 3/4
t= r {(29§0D+1) 1} (4.Vil.g)
39+/Po ’
The time to travel according to the standard procedure is
‘ D _ D \/po
Br v Br (4.VILh)

Po

The ratio between the corrected estimated to the standard calculation is

2VBr [(zgpoa+1)3/4_1]

Br

correction ratio = 39+/Po = (4.VILi)

Dpo

vV Br

Or

correction ratio 2 Br (29poD + 1)3/4 1 (4.V11j)
| | = — . .
39D po Br !

End Solution

In Example ratio of the density was expressed by equations while here
the ratio is expressed by different equations. The difference between the two equations
is the fact that Example use the integral equation without using any “equation of
state.” The method described in the Example is more general which provided a
simple solutiorﬂ The equation of state suggests that OP = g po f(P)dz while the
integral equation is AP = g [ pdz where no assumption is made on the relationship
between the pressure and density. However, the integral equation uses the fact that the
pressure is function of location.

4.3.4 The Pressure Effects Due To Temperature Variations
4.3.4.1 The Basic Analysis

There are situations when the main change of the density results from other effects.
For example, when the temperature field is not uniform, the density is affected and thus
the pressure is a location function (for example, the temperature in the atmosphere is
assumed to be a linear with the height under certain conditions.). A bit more complicate
case is when the gas is a function of the pressure and another parameter. Air can be a
function of the temperature field and the pressure. For the atmosphere, it is commonly
assumed that the temperature is a linear function of the height.

5This author is not aware of the “equation of state” solution or the integral solution. If you know
of any of these solutions or similar, please pass this information to this author.
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Here, a simple case is examined for which the temperature is a linear function of
the height as

ar

= —-_c, 451

where h here referred to height or distance. Hence, the temperature—distance function
can be written as

T = Constant — Cy h (4.52)

where the C'onstant is the integration constant which can be obtained by utilizing the
initial condition. For h = 0, the temperature is Ty and using it leads to

Temp variations

T=To—C,h (4.53)
Combining equation (4.53) with (4.12) results in
oP P

= J (4.54)

Oh ~  R(To—CLh)

Separating the variables in equation (4.54) and changing the formal O to the informal
d to obtain

dP gdh

e . A — 4.55

P R(Ty — Cy h) (4.55)
Defining a new variabl{] as & = (Ty — C; h) for which &g = Ty — Cy ho and d/d¢ =
—C, d/dh. Using these definitions results in

dP _ g dt
P RC, ¢

(4.56)

After the integration of equation (4.55]) and reusing (the reverse definitions) the variables
transformed the result into

P g TO - Cg; h
In— = 1 4.57
"B TRCG YT T (457)
Or in a more convenient form as
Pressure in Atmosphere
P T, -, b\ (7&)
=z _ g (4.58)
Py 1o

"A colleague asked this author to insert this explanation for his students. If you feel that it is too
simple, please, just ignore it.
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It can be noticed that equation is a monotonous function which decreases with
height because the term in the brackets is less than one. This situation is roughly
representing the pressure in the atmosphere and results in a temperature decrease.
It can be observed that C, has a “double role” which can change the pressure ratio.
Equation can be approximated by two approaches/ideas. The first approximation
for a small distance, h, and the second approximation for a small temperature gradient.
It can be recalled that the following expansions are

ghp .
e correction factor

Po
—~—
P C, \Re gh~ (RgCs—g?) I
— =1lim (1-=2h =1- - s — (4.59)
Py h=>0 To ToR 2Ty* R

Equation shows that the first two terms are the standard terms (negative sign is
as expected i.e. negative direction). The correction factor occurs only at the third term
which is important for larger heights. It is worth to point out that the above statement
has a qualitative meaning when additional parameter is added. However, this kind of
analysis will be presented in the dimensional analysis chaptelﬁ

The second approximation for small C is

g gh
. RC, - h2C, o—-2k
2~ lim (1Ch> _e RTO,%e RTo _ ... (4.60)
270" R

Equation shows that the correction factor (lapse coefficient), C,, influences at
only large values of height. It has to be noted that these equations and
are not properly represented without the characteristic height. It has to be inserted to
make the physical significance clearer.

Equation represents only the pressure ratio. For engineering purposes, it
is sometimes important to obtain the density ratio. This relationship can be obtained
from combining equations and . The simplest assumption to combine these
equations is by assuming the ideal gas model, equation (2.25)), to yield

g e
T
g P
ﬁ:PTOZ . C.h (w&) ) C,h (4.61)
po  PT T tr

Advance material can be skipped

4.3.4.2 The Stability Analysis

8These concepts are very essential in all the thermo—fluid science. | am grateful to my adviser
E.R.G. Eckert who was the pioneer of the dimensional analysis in heat transfer and was kind to show
me some of his ideas.
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It is interesting to study whether this

solution is stable and if so under /’ bt dh
what conditions. Suppose that for some ]

. S
reason, a small slab of material moves . 3
from a layer at height, h, to layer at
height h + dh (see Figure What
could happen? There are two main pos-
sibilities one: the slab could return to
the original layer or two: stay at the new layer (or even move further, higher heights).
The first case is referred to as the stable condition and the second case referred to as
the unstable condition. The whole system falls apart and does not stay if the
analysis predicts unstable conditions. A weak wind or other disturbances can make the
unstable system to move to a new condition.

This question is determined by the net forces acting on the slab. Whether these
forces are toward the original layer or not. The two forces that act on the slab are
the gravity force and the surroundings pressure (buoyant forces). Clearly, the slab
is in equilibrium with its surroundings before the movement (not necessarily stable).
Under equilibrium, the body forces that acting on the slab are equal to zero. That is,
the surroundings “pressure” forces (buoyancy forces) are equal to gravity forces. The
buoyancy forces are proportional to the ratio of the density of the slab to surrounding
layer density. Thus, the stability question is whether the slab density from layer h, p'(h)
undergoing a free expansion is higher or lower than the density of the layer h + dh. If
p'(h) > p(h+ dh) then the situation is stable. The term p'(h) is slab from layer & that
had undergone the free expansion.

The reason that the free expansion is chosen to explain the process that the slab
undergoes when it moves from layer h to layer h + dh is because it is the simplest. In
reality, the free expansion is not far way from the actual process. The two processes
that occurred here are thermal and the change of pressure (at the speed of sound).
The thermal process is in the range of [cm/sec|] while the speed of sound is about
300 [m/sec]. That is, the pressure process is about thousands times faster than the
thermal process. The second issue that occurs during the “expansion” is the shock (in
the reverse case [h + dh] — h). However, this shock is insignificant (check book on
Fundamentals of Compressible Flow Mechanics by this author on the French problem).

The slab density at layer h+dh can be obtained using equation as following

Fig. -4.11 — Two adjoin layers for
stability analysis.

g

p(h+dh)  PT, (. Codh\(%&) /¢, dh
amrm () () ee

The pressure and temperature change when the slab moves from layer at h to layer
h-+dh. The process, under the above discussion and simplifications, can be assumed to
be adiabatic (that is, no significant heat transfer occurs in the short period of time). The
little slab undergoes isentropic expansion as following for which (see equation (2.25))

pl(h+dh) _ <P’(h + dh) > 17k (4:63)

p(h) P(h)
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When the symbol ’ denotes the slab that moves from layer h to layer h + dh. The

pressure ratio is given by equation (4.58) but can be approximated by equation (4.59)
and thus

/ 1/k
p'(h+dh) _ <1_ gdh > (4.64)
o(h) T(h) R
Again using the ideal gas model for equation (4.65)) transformed into
’ 1/k
p'(h+ dh) _ (1_pgdh> (4.65)
p(h) p
Expanding equation ([4.65]) in Taylor series results in
L pgd\YT L gpdh (PP k—g?p?) A (4.66)
P Pk 2 P2 k2 '

The density at layer h + dh can be obtained from (4.62)) and then it is expanded
in taylor series as

P(hpgl;ih) _ (I_C;jh><1%g@c> (14_09}‘”1) ~1— (gp_C'x> dh + - -

(4.67)

The comparison of the right hand terms of equations (4.67)) and (4.66]) provides
the conditions to determine the stability. From a mathematical point of view, to keep
the inequality for a small dh only the first term need to be compared as

(4.68)

After rearrangement of the inequality (4.68) and using the ideal gas identity, it trans-
formed to

Cp< —==Z (4.69)

The analysis shows that the maximum amount depends on the gravity and gas
properties. It should be noted that this value should be changed a bit since the k should
be replaced by polytropic expansion n. When lapse rate C,, is equal to the right hand
side of the inequality, it is said that situation is neutral. However, one has to bear in
mind that this analysis only provides a range and isn't exact. Thus, around this value
additional analysis is needed [7]

9The same issue of the floating ice. See example for the floating ice in cup.
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One of the common question this author has been asked is about the forces
of continuation. What is the source of the force(s) that make this situation when
unstable continue to be unstable? Supposed that the situation became unstable and
the layers have been exchanged, would the situation become stable now? One has to
remember that temperature gradient forces continuous heat transfer which the source
temperature change after the movement to the new layer. Thus, the unstable situation
is continuously unstable.

4.3.5 Gravity Variations Effects on Pressure and Density

Until now the study focus on the change of density
and pressure of the fluid. Equation has two
terms on the right hand side, the density, p and
the body force, g. The body force was assumed
until now to be constant. This assumption must be
deviated when the distance from the body source
is significantly change. At first glance, the body
force is independent of the fluid. The source of
the gravity force in gas is another body, while the
gravity force. source in. liquid can b.e the quuic.i itself. Fig. -4.12 - The varying gravity effects
Thus, the discussion is separated into two different on density and pressure.

issues. The issues of magnetohydrodynamics are

too advance for undergraduate student and therefore,will not be introduced here.

4.3.5.1 Ideal Gas in Varying Gravity

In physics, it was explained that the gravity is a function of the distance from the center
of the plant/body. Assuming that the pressure is affected by this gravity/body force.
The gravity force is reversely proportional to r2. The gravity force can be assumed that
for infinity, = — oo the pressure is about zero. Again, equation can be used
(semi one directional situation) when r is used as direction and thus

op__ G

ar P2
where G denotes the general gravity constant. The regular method of separation is
employed to obtain

(4.70)

P T
dP G dr
— = — (4.71)
/Pb P RT [, r?

where the subscript b denotes the conditions at the body surface. The integration of

equation (4.71)) results in

Wl G (L)) @72

Or in a simplified form as
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P 7&7‘—7‘1,
i =5 =€ (4.73)

Equation demonstrates that the pressure is reduced with the distance. It can be
noticed that for r — 7, the pressure is approaching P — P,. This equation confirms
that the density in outer space is zero p(0o) = 0. As before, equation can be
expanded in Taylor series as

correction factor

standard
—_—
ﬁzgzl_G(r—rl,)_(ZGRT+G27"Z,) (r=r)® (4.74)
Po +o RT 27, (RT)*

Notice that G isn't our beloved and familiar g and also that G,/ RT is a dimensionless
number (later in the Chapter (9] a discution about the definition of the dimensionless
number and its meaning was added).

4.3.5.2 Real Gas in Varying Gravity

The regular assumption of constant compressibility, Z, is employed. It has to remember
when this assumption isn't accurate enough, numerical integration is a possible solution.
Thus, equation (4.71)) is transformed into

P r

dpP G dr

— = — (4.75)
/Pb P ZRT ), r2

With the same process as before for ideal gas case, one can obtain
G r—r

ﬁ = E = e_ZRT Trbb (476)
B

Equation (4.73]) demonstrates that the pressure is reduced with the distance. It can be
observed that for » — r, the pressure is approaching P — P,. This equation confirms
that the density in outer space is zero p(co) = 0. As before Taylor series for equation

@7 is

correction factor

standard
ro_ 5 = _GG-n) (QGZRT+Gn)(r—n)" (4.77)
Po T ZRT 21, (Z RT)?

It can be noted that compressibility factor can act as increase or decrease of the ideal
gas model depending on whether it is above one or below one. This issue is related to
Pushka equation that will be discussed later.

4.3.5.3 Liquid Under Varying Gravity

For comparison reason consider the deepest location in the ocean which is about 11,000
[m]. If the liquid “equation of state” (4.41)) is used with the hydrostatic fluid equation
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results in
5 P—-PF
p f_-0
5 = *Poe Br % (4.78)
which the solution of equation (4.78)) is
Py—P B
€ Br = Constant — -9 (4.79)

r

Since this author is not aware to which practical situation this solution should be applied,
it is left for the reader to apply according to problem, if applicable.

4.3.6 Liquid Phase

While for most practical purposes, the Cartesian coordinates provides sufficient treat-
ment to the problem, there are situations where the spherical coordinates must be
considered and used.

Derivations of the fluid static in spherical coordinates are

Pressure Spherical Coordinates

1 d [(r?dP
e (el 4 — (4.80)
r2 dr (p dr>+ €=l
Or in a vector form as
1
Ve <pVP> +47Gp=0 (4.81)

4.4 Fluid in a Accelerated System

Up to this stage, body forces were considered as one-dimensional. In general, the
linear acceleration have three components as opposed to the previous case of only
one. However, the previous derivations can be easily extended. Equation can
be transformed into a different coordinate system where the main coordinate is in the
direction of the effective gravity. Thus, the previous method can be used and there
is no need to solve new three (or two) different equations. As before, the constant
pressure plane is perpendicular to the direction of the effective gravity. Generally the
acceleration is divided into two categories: linear and angular and they will be discussed
in this order.

4.4.1 Fluid in a Linearly Accelerated System
For example, in a two dimensional system, for the effective gravity

gepf =ai+gk (4.82)
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where the magnitude of the effective gravity is

gerrl =V g* +a? (4.83)

and the angle/direction can be obtained from
tanB = = (4.84)
)

Perhaps the best way to explain the linear acceleration is by examples. Consider
the following example to illustrate the situation.

Example 4.8:

A tank filled with liquid is accelerated at
a constant acceleration. When the accel-
eration is changing from the right to the
left, what happened to the liquid surface?
What is the relative angle of the liquid
surface for a container in an accelerated
system of a = 5[m/sec|?

Fig. -4.13 — The effective gravity
is for accelerated cart.
SOLUTION

This question is one of the traditional question of the fluid static and is straight forward.
The solution is obtained by finding the effective angle body force. The effective angle
is obtained by adding vectors. The change of the acceleration from the right to left is
like subtracting vector (addition negative vector). This angle/direction can be found

using the following

5
tan~! B = tan~! 4_ YT 27.01°
g .

The magnitude of the effective acceleration is

|gesr| = V52 +9.812 = 11.015[m/sec?]

End Solution

Example 4.9:
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A cart partially filled with liquid and is sliding
on an inclined plane as shown in Figure
Calculate the shape of the surface. If there is a
resistance, what will be the angle? What hap- = (®
pen when the slope angle is straight (the cart is Q\&
(®

dropping straight down)?
SOLUTION ﬂ\

Fig. -4.14 — A cart slide on
inclined plane.

(a)
The angle can be found when the acceleration of the cart is found. If there is no
resistance, the acceleration in the cart direction is determined from

a=gsinf (4.85)

The effective body force is acting perpendicular to the slope. Thus, the liquid surface
is parallel to the surface of the inclination surface.

(b)

In case of resistance force (either of friction due to the air or resistance in the
wheels) reduces the acceleration of the cart. In that case the effective body moves
closer to the gravity forces. The net body force depends on the mass of the liquid and
the net acceleration is

Fnet
—g— 4.86
a=g— (4.86)
The angle of the surface, o < 3, is now

Fhet

g — Fue
t =-—"n 4.87
an o o cosp ( )

(c)

In the case when the angle of the in-
clination turned to be straight (direct
falling) the effective body force is zero.
The pressure is uniform in the tank and
no pressure difference can be found. So,
the pressure at any point in the liquid is
the same and equal to the atmospheric

Fig. -4.15 — Forces dia-
pressure. gram of cart sliding on

End Solution

inclined plane.
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Calculation of .
|the correction &
ctor

Fig. -4.17 — Schematic angular angle to explain example

4.4.2 Angular Acceleration Systems: Constant Density

For simplification reasons, the first case deals with a rotation in a perpendicular to the
gravity. That effective body force can be written as

8eff = fglAchwzrf (4.88)

The lines of constant pressure are

not straight lines but lines of parabolic center of )
. circulation  unit

shape. The angle of the line depends on mass
the radius as z r

dz g

— = —— 4.89 8eff

dr w2r ( ) g

Seff
Equation ((4.89)) can be integrated as
w2 r? Fig. -4.16 — Schematic to explain the angular
zZ— 2y = (490) angle.

29

Notice that the integration constant
was substituted by zg. The constant pres-
sure will be along

Angular Acceleration System

2,.2
P—Py=pg [(zo—z)+w2r } (4.91)
g

To illustrate this point, example is provided.

Example 4.10:

A “U" tube with a length of (14 x)L is rotating at angular velocity of w. The center of
rotation is a distance, L from the “left” hand side. Because the asymmetrical nature of
the problem there is difference in the heights in the U tube arms of S as shown in Figure
[4.17F Expresses the relationship between the different parameters of the problem.
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SOLUTION

It is first assumed that the height is uniform at the tube (see for the open question on
this assumption). The pressure at the interface at the two sides of the tube is same.
Thus, equation (4.90)) represents the pressure line. Taking the “left” wing of U tube

change in r direction
change in z direction

—N— w2 LQ
2l — 20 =
29
The same can be said for the other side
w?x? L2
Zy — 20 =
T 0 29

Thus subtracting the two equations above from each each other results in
Lw? (1—2?)
29

Zr — 2] =

It can be noticed that this kind equipment can be used to find the gravity.

End Solution

Example 4.11:

Assume that the diameter of the U tube is R;. What will be the correction factor if the
curvature in the liquid in the tube is taken in to account. How would you suggest to
define the height in the tube?

SOLUTION

In Figure [4.17] shows the infinitesimal area used in these calculations. The distance of
the infinitesimal area from the rotation center is 7. The height of the infinitesimal area
is 7. Notice that the curvature in the two sides are different from each other. The
volume above the lower point is ? which is only a function of the geometry.

End Solution

Example 4.12:

In the U tube in example[4.10] is rotating with upper part height of {. At what rotating
velocity liquid start to exit the U tube? If the rotation of U tube is exactly at the center,
what happen the rotation approach very large value?

—_— — s A dvance material can be skipped w— — —

4.4.3 Fluid Statics in Geological System

This author would like to express his gratitude to
Ralph Menikoff for suggesting this topic.
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Fig. -4.18 — Earth layers not to scaleH

In geological systems such as the Earth provide cases to be used for fluid static
for estimating pressure. It is common in geology to assume that the Earth is made of
several layers. If this assumption is accepted, these layers assumption will be used to
do some estimates. The assumption states that the Earth is made from the following
layers: solid inner core, outer core, and two layers in the liquid phase with a thin crust.
For the purpose of this book, the interest is the calculate the pressure at bottom of the
liquid phase. Earth layers not to scale. This explanation is provided to understand
how to use the bulk modulus and the effect of rotation. In reality, there might be an
additional effects which affecting the situation but these effects are not the concern of
this discussion.

Two different extremes can recognized in fluids between the outer core to the
crust. In one extreme, the equator rotation plays the most significant role. In the other
extreme, at the north—south poles, the rotation effect is diminished since the radius
of rotation is relatively very small (see Figure . In that case, the pressure at the
bottom of the liquid layer can be estimated using the equation or in approximation
of equation (4.VL.j). In this case it also can be noticed that g is a function of r.

10The image was drawn by Shoshana Bar-Meir, inspired from image made by user Surachit
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If the bulk modulus is assumed con-
stant (for simplicity), the governing equation
can be constructed starting with equation
(1.30). The approximate definition of the
bulk modulus is

, _ pAP

AP
Br=2"" —ap="2

) 5 (492)

Using equation to express the pressure dif-
ference (see Examplefor details explana-

tion) as
Po
= 493
Fig. -4.19 — Illustration of the ef- p(?“) " g(r)p(r) ( )
fects of the different radii on - B dr
Ro T(T)

pressure on the solid core.

In equation it is assumed that Br is
a function of pressure and the pressure is a function of the location. Thus, the bulk
modulus can be written as a function of the location radius, r. Again, for simplicity the
bulk modulus is assumed to be constant. Hence,

Po

p(r) = -
1- L/ g(r)p(r) dr

BT RO

(4.94)

The governing equation (4.94]) can be written using the famous relation for the gravityEl
as
Po [
—=1—- = Grp(r)dr (4.95)
p(r) Br Jg,
Equation ([4.95) is a relatively simple (Fredholm) integral equation. The solution of this
equation obtained by differentiation as

podp
——+Grp= 4.96
2ar TGP (4.96)
Under variables separation technique, the equation changes to
P T
/ p—gdp:— Grdr (4.97)
po P Ro
The solution of equation (4.97) is
po (1 1 > G 2_ .2
—|l—=—-—=)=5 (Ro"—r 4.98
2 (002 r*) 2 (Ro ) (4.98)

" The solution for the field with relation of 1/r? was presented in the early version. This solution
was replaced with a function of gravity g o r. The explanation of this change can be found at
http://www.physicsforums.com/showthread.php?t=203955.


http://www.physicsforums.com/showthread.php?t=203955
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or

1 p 1

p= — L (4.99)
1 G 2 2
Po Po Po Ry

These equations, (4.98)) and (4.99), referred to as the expanded Pushka equation.The
pressure can be calculated since the density is found and using equation ([1.30) as

T T g(AT) T
AP = p(r)g(r)dr = / p Grpdr= / P> Grdr (4.100)
Ro Ro Ro
or explicitly
po? Grdr
AP = <1 _ 26 <1 _ 1)) (4.101)
po®  po \Ro 7

Ro
The integral can evaluated numerically or analytically as

4p04 G? R03 log (7" (RO —2po G) + 2 pg GR())

_ Ro® — 6po G Ro2+ 12 p02 G2 Ry — 8 po® G3
AP = Po G T’2 (p02 R02 — 2p03 GR()) —4r p03 GR02 (4102)

2R02—8p0GR0+8p02G2

The related issue to this topic is, the pressure at the equator when the rotation is
taken into account. The rotation affects the density since the pressure changes. Thus,
mathematical complications caused by the coupling creates additionally difficulty. The
integral in equation has to include the rotation effects. It can be noticed that
the rotation acts in the opposite direction to the gravity. The pressure difference is

AP = /RT p (g(r) —wr?) dr (4.103)

Thus the approximated density ratio can be written as

1 I
P — p(pGr—wr?) dr (4.104)
P Br g,

Taking derivative of the two sides with respect to r results in

po dp 1



4.5. FLUID FORCES ON SURFACES 105

Integrating equation (|4.105))

00 1 /(-G wr
2ﬁ:£%(71_:3) (4.106)

Where the pressure is obtained by integration as previously was done. The conclusion is
that the pressure at the “equator” is substantially lower than the pressure in the north
or the south “poles” of the solid core. The pressure difference is due to the large radius.
In the range between the two extreme, the effect of rotation is reduced because the
radius is reduced. In real liquid, the flow is much more complicated because it is not
stationary but have cells in which the liquid flows around. Nevertheless, this analysis
gives some indication on the pressure and density in the core.

e ind Advance material w— — —

4.5  Fluid Forces on Surfaces

The forces that fluids (at static conditions) extracts on surfaces are very important for
engineering purposes. This section deals with these calculations. These calculations are
divided into two categories, straight surfaces and curved surfaces.

4.5.1 Fluid Forces on Straight Surfaces

A motivation is needed before going through the routine of derivations. Initially, a
simple case will be examined. Later, how the calculations can be simplified will be
shown.

Example 4.13:

Consider a rectangular shape gate as shown in Figure Calculate the minimum
forces, F| and Fs to maintain the gate in position. Assuming that the atmospheric
pressure can be ignored.

SOLUTION

The forces can be calculated by looking
at the moment around point “O." The el-
ement of moment is a d§ for the width of
the gate and is

dF
AM =P adf(l +¢)
b

The pressure, P can be expressed as a
function £ as the following Fig. -4.20 — Rectangular area under pressure.

P=gp(l+¢§)sinp
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The liquid total moment on the gate is

b
M:/ gp(+&)sinfadf(l+¢)
0

The integral can be simplified as

b
M =gapsing / (€ +€)%de (4.107)
0

The solution of the above integral is

3b12 +3b2l+b3>
3

M =gpasinp (

This value provides the moment that F; and F5 should extract. Additional equation is
needed. It is the total force, which is

b
Ft(,ml:/ gp(l+&)sinBade
0

The total force integration provides

200+ b2
2

b
Ftatulzgpasinﬁ/ (L+8dE=gpa sin,@(
0

The forces on the gate have to provide

2b€+b2)

F1+F2:gpasinﬁ< 7

Additionally, the moment of forces around point “O” is

3bl2+3b2l+b3)

F1€+F2(€+b)=gpasin6( 3

The solution of these equations is

(34+b)abgpsinp

F = ;

(3042b) abgpsinp

= 5

End Solution
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The above calculations are time con- /
suming and engineers always try to make ‘
life simpler. Looking at the above calcu-
lations, it can be observed that there is
a moment of area in equation and
also a center of area. These concepts have Fig. -4.21 — Schematic of submerged area to ex-
been introduced in Chapter[3] Several rep- plain the center forces and moments.
resented areas for which moment of inertia
and center of area have been tabulated in
Chapter 3] These tabulated values can be used to solve this kind of problems.

Symmetrical Shapes

Consider the two—dimensional symmetrical area that are under pressure as shown
in Figure[£.21] The symmetry is around any axes parallel to axis . The total force and
moment that the liquid extracting on the area need to be calculated. First, the force is

o0 M9
F:/PdA=/(Patmos+pgh)dA:APatmos—|—pg/ (€4 £4y)sin8dA
A Lo

(4.108)

In this case, the atmospheric pressure can include any additional liquid layer above
layer “touching” area. The “atmospheric” pressure can be set to zero.

The boundaries of the integral of equation refer to starting point and
ending points not to the start area and end area. The integral in equation can
be further developed as

z. A
/_41/\‘
Fiotal = A Patmos +pg sin B | lo A+ A £dA (4.109)
In a final form as
Total Force in Inclined Surface
Fiotar = A [Patmos + pg sin 8 (bo + z.)] (4.110)

The moment of the liquid on the area around
point “O" is

M, = /El P(£)¢dA (4.111)

€& g sin B

Fig. -4.22 — The general forces acting
on submerged area.
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Or separating the parts as

ze A Iu:,a:/
& 3
1 1
My = Pitmos / EdA+gpsin £2dA (4.113)
o o
The moment of inertia, I,/,/, is about the axis through point “O" into the page.

Equation (4.113)) can be written in more compact form as

Total Moment in Inclined Surface
My = Popmos Tc A+ gpsinfl, (4.114)

Example can be generalized to solve any two forces needed to balance the
area/gate. Consider the general symmetrical body shown in figure which has
two forces that balance the body. Equations (4.110)) and (4.114)) can be combined the
moment and force acting on the general area. If the “atmospheric pressure” can be
zero or include additional layer of liquid. The forces balance reads

Fy 4+ Fy = A [Patmos + pg sin 8 (b + x.)] (4.115)

and moments balance reads
Fia+Fob= Pymostc A+ gpsinfl, (4.116)
The solution of these equations is

[(p sin 8 — %) Te+lop sinB—i—%} bA— I, psinf
a g(b—a)

(4.117)

and

I, psing— Kp sinﬁ—%) ze+Llop sinﬁ—l—% aA
2:
g(b—a)

In the solution, the forces can be negative or positive, and the distance a or b can
be positive or negative. Additionally, the atmospheric pressure can contain either an
additional liquid layer above the “touching” area or even atmospheric pressure simply
can be set up to zero. In symmetrical area only two forces are required since the
moment is one dimensional. However, in non—symmetrical area there are two different
moments and therefor three forces are required. Thus, additional equation is required.
This equation is for the additional moment around the x axis (see for explanation in
Figure [4.23). The moment around the y axis is given by equation and the total
force is given by (4.110). The moment around the z axis (which was arbitrary chosen)
should be

(4.118)

M, = / y PdA (4.119)
A
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Substituting the components for the pressure transforms equation (4.119) into

M, = / Y (Patmos + pg & sin 8) dA
A

The integral in equation ((4.119)) can be written as

A I
Ye Ty
—_—— —_——

My = Patmon [ wdAtpgsing [ ¢yda
A A
The compact form can be written as

Moment in Inclined Surface
My, = Pitmos Aye +pg sinﬂ[m/y/

The product of inertia was
presented in Chapter These ¢

equations (4.110), (4.114) and
(4.122)) provide the base for solv-

ing any problem for straight area |

109

(4.120)

(4.121)

(4.122)

under pressure with uniform den- @A

sity. There are many combinations

of problems (e.g. two forces and

moment) but no general solution is Fig. -4.23 — The general forces acting on non
provided. Example to illustrate the symmetrical straight area.

use of these equations is provided.

Example 4.14:

Calculate the forces which required to balance the triangular shape shown in the Figure

[4.24
SOLUTION
The three equations that needs to be solved are
Fy + Fy + F3 = Fioa
The moment around z axis is
Fib=M,
The moment around y axis is

Fily+ Fy(a+ o)+ F3ly = M,

(4.123)

(4.124)

(4.125)

The right hand side of these equations are given before in equations (4.110f), (4.114)

and (4.122)).
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The moment of inertia of the triangle around z is made of two triangles (as shown
in the Figure for triangle 1 and 2). Triangle 1 can be calculated as the moment of
inertia around its center which is £y +2x% (€1 —£y)/3. The height of triangle 1 is (¢; —{)
and its width b and thus, moment of inertia about its center is I, = b(¢; — £)3/36.
The moment of inertia for triangle 1 about y is

Ay ,_AL
bl —£0)® | b(tr—fo) 2001 —£0)\ 2
Izzl = 136 = + 13 o (é() + 1?0)

The height of the triangle 2 is a — (¢; — ¢y) and its width b and thus, the moment of
inertia about its center is

A2 A£22

bla—(l1—t0)® | Bla—(01—t t—t0)]\ 2
[a*(glﬁf 0)] + [a7(31* 0)] (61_’_ f[a—( :1))* 0)])

Ipwo =

and the total moment of inertia

‘ﬁl%

Iy = zz1 T Iww2 81[

The product of inertia of the triangle can

be obtain by integration. It can be no- F

ticed that upper line of the triangle is

y = W + £y. The lower line of the Fz yx

triangle is y = 7(5145_“)9” + £y + a.

Fig. -4.24 — The general forces acting on a non
symmetrical straight area.

01 —Ly—
’ = l(’) a)IMOM 2ab?01+2ab?lo+a> b3
_ _ 2a 1t+2a ota
Iwy—/ (tr—to)e rydx| dy = o1
—3 T

The solution of this set equations is

——
F = |:0,b:| (g (6€1 + 3(1) +6g€0) p Sinﬁ + 8 Putmos
3 24 ’
((3&714@)40 <%727)+%) gp sin B
# (1) )
- 72 - ’
(- 15) 5 28) s
[ﬁ] N 240 .
3 ((Tl+24>+%) Patmos
Jr

72

End Solution
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4.5.1.1 Pressure Center

In the literature, pressure centers are commonly defined. These definitions are math-
ematical in nature and has physical meaning of equivalent force that will act through
this center. The definition is derived or obtained from equation and equation
. The pressure center is the distance that will create the moment with the
hydrostatic force on point “O.” Thus, the pressure center in the x direction is

T, = %/AdeA (4.126)

In the same way, the pressure center in the y direction is defined as
1
Yp = —/ yPdA (4.127)
F J4

To show relationship between the pressure center and the other properties, it can be
found by setting the atmospheric pressure and ¢; to zero as following

gpsin I s
gy, = ———— 2L L 4128
p Apgsinfx, ( )
Expanding I,/ according to equation ([3.28]) results in
= J2 4o (4.129)
L
and in the same fashion in y direction
L (4.130)
Yp = e A Ye .

It has to emphasis that these definitions are useful only for case where the atmospheric
pressure can be neglected or canceled and where ¢; is zero. Thus, these limitations
diminish the usefulness of pressure center definitions. In fact, the reader can find that
direct calculations can sometimes simplify the problem.

4.5.1.2 Multiply Layers

In the previous sections, the density was assumed to be constant. For non constant
density the derivations aren't “clean” but are similar. Consider straight/flat body that
is under liquid with a varying density{T_Zl If density can be represented by average density,
the force that is acting on the body is

mez:/gphdz‘l~ﬁ/ghdz4 (4.131)
A A

12This statement also means that density is a monotonous function. Why? Because of the buoyancy
issue. It also means that the density can be a non-continuous function.
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In cases where average density cannot be represented reasonablﬂ the integral has be
carried out. In cases where density is non—continuous, but constant in segments, the
following can be said

Ftotal:/gphdA: gpzhdA+-~-+/
A

An

gplhdA-i-/

gpnhdA (4.132)
Az s

Ay

As before for single density, the following can be written

Tey Ar Teg Az Tep An

—— ——
Fua=gsind |p [ €ddipe [ cateipn [ can|  @a3)

Aq As An

Or in a compact form and in addition considering the “atmospheric” pressure can be
written as
Total Static Force

n
Fiotal = Patmos Atotal + g sin B Z Pi Ty Aj (4.134)
i=1
where the density, p; is the density of the layer i and A; and x.; are geometrical
properties of the area which is in contact with that layer. The atmospheric pressure can
be entered into the calculation in the same way as before. Moreover, the atmospheric
pressure can include all the layer(s) that do(es) not with the “contact” area.
The moment around axis y, M, under the same considerations as before is

My:/g,of2 sin BdA (4.135)
A

After similar separation of the total integral, one can find that
n
M, =gsinf Zpi I, (4.136)
i=1

If the atmospheric pressure enters into the calculations one can find that
Total Static Moment
n
My = Patmos Zc Atotal +9 Sinﬂ Z Pi Iz'z'i (4137)
=1
In the same fashion one can obtain the moment for z axis as

Total Static Moment

Mw = Latmos Ye Atotal +g Sinﬁ Z Pi leyli (4138)
=1

13A qualitative discussion on what is reasonably is not presented here, However, if the variation of
the density is within 10% and/or the accuracy of the calculation is minimal, the reasonable average
can be used.
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To illustrate how to work with these equations the following example is provided.

Example 4.15:

Consider the hypothetical Figure The last layer is made of water with den-
sity of 1000[kg/m3]. The densities are p; = 500[kg/m?], pa = 800[kg/m3],
ps = 850[kg/m?],

and ps = 1000[kg/m3].
Calculate the forces at points
a; and b;. Assume that the P1 hy az/
layers are stables without any
movement between the liquids.
Also neglect all mass trans-
fer phenomena that may occur.
The heights are: hy = 1[m)],
hg = Z[m], h3 = 3[m], and

hy = 4]m]. The forces dis- , ‘\Fg ¢

tances are a; = 1.5[m], az =

<]

ay
hy

F

1.75[m], and by = 4~5[m]- The Fig. -4.25 — The effects of multi layers density on
angle of inclination is is 8 = static forces.

45°.

SOLUTION

Since there are only two unknowns, only two equations are needed, which are
and (4.134). The solution method of this example is applied for cases with less layers
(for example by setting the specific height difference to be zero). Equation (4.137)
can be used by modifying it, as it can be noticed that instead of using the regular
atmospheric pressure the new “atmospheric”’ pressure can be used as

Patmos = Fatmos T P19 hl

The distance for the center for each area is at the middle of each of the “small”
rectangular. The geometries of each areas are

3
ho e(.h—2—a )
az+; h sinf ~ 42 2
Te1 = 4281116 A=t (sinzﬁ B a2> Ly = 36 +(Te1)” A
L(h3—h2)® 2
Leo = ;LQs-ii_nhg’ A2 = siﬁB (h'?) - h2) leml2 = % + (5[302) A2
hs+h ¢ £(ha—h3)® 2
Lez = 23sJirné A3 = sin 8 (h4 - h3) lew/?) = (364sin323) + (zc3) A3

After inserting the values, the following equations are obtained
Thus, the first equation is

Atotal 3

/ .
Fi + F> = Patmos £(ba —az) +g sin g E Pit1 Tei Aj
i=1
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The second equation is (4.137)) to be written for the moment around the point “O" as

TeAtotal

’ (bg + CLQ)
2

3
l(by — az) +g SinﬁZpiﬂ I,

i=1

F1a1+F2b1:Patmos

The solution for the above equations is

2b1 g sinﬁ Z?:l Pit1 Tey Ai72g sinﬁ Z?:l Pi41 Ir,, m,i

21)172 al
F1=
(b22—2b1 ba+2 a2 b1—a22)€ Patmos
2bi1—2a1
29 sinB %, pig1 I, ,—2a1gsinf S pit1 e A n
217172 al
F2 =

(b22+2 ay b2+a22_2 al 0«2)6 Patmos
2b1—2 aq

The solution provided isn’t in the complete long form since it will makes things messy.
It is simpler to compute the terms separately. A mini source code for the calculations is
provided in the text source. The intermediate results in Sl units ([m], [m?], [m?]) are:

Tep = 2.2892 Tep = 3.5355 ez = 4.9497
Ay = 2.696 Ay =3.535 As =3.535
Tpwry = 14.215  Ipigrg = 44.292 Ipias = 86.718

The final answer is
Fy = 304809.79[N]

and
Fy = 958923.92[N]

End Solution

4.5.2 Forces on Curved Surfaces

The pressure is acting on surfaces perpen-
dicular to the direction of the surface (no
shear forces assumption). At this stage,
the pressure is treated as a scalar function.
The element force is

dF = —-PndA (4.139)
) . . Fig. -4.26 — The forces on curved area.
Here, the conventional notation is used

which is to denote the area, dA, outward
as positive. The total force on the area will be the integral of the unit force

F = —/ PhdA (4.140)
A
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The result of the integral is a vector. So, if the y component of the force is needed,
only a dot product is needed as

dF,=dF e} (4.141)

From this analysis (equation (4.141])) it can be observed that the force in the direction
of y, for example, is simply the integral of the area perpendicular to y as

F, :/ PdA, (4.142)
A

The same can be said for the z direction.
The force in the z direction is

Fzz/hgpdAZ (4.143)
A

The force which acting on the z di-
rection is the weight of the liquid above the
projected area plus the atmospheric pres-

. 2
sure. This force component can be com- i =
bined with the other components in the |
other directions to be I

N
Fiotat = \|F.* + F,2 + F,*  (4.144) only the
liquid above
PTS T . the bod
And the angle in “z 2" plane is affecting);,
F the body
tanf,, = — (4.145)
Fy
and the angle in the other plane, “y 2" is
tan sz = & (4,]_46) Fig. -4.27 — Schematic of Net Force on floating
E, body.

The moment due to the curved surface require integration to obtain the value. There
are no readily made expressions for these 3—dimensional geometries. However, for some
geometries there are readily calculated center of mass and when combined with two
other components provide the moment (force with direction line).

Cut—Out Shapes Effects

There are bodies with a shape that the vertical direction (z direction) is “cut-
out” aren't continuous. Equation implicitly means that the net force on the
body is z direction is only the actual liquid above it. For example, Figure shows a
floating body with cut—out slot into it. The atmospheric pressure acts on the area with
continuous lines. Inside the slot, the atmospheric pressure with it piezometric pressure
is canceled by the upper part of the slot. Thus, only the net force is the actual liquid
in the slot which is acting on the body. Additional point that is worth mentioning is
that the depth where the cut—out occur is insignificant (neglecting the change in the
density).
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Example 4.16:

Calculate the force and the moment
around point “O” that is acting on the
dam (see Figure (4.28)). The dam is
made of an arc with the angle of 8y = 45°
and radius of r = 2[m|. You can as- Y
sume that the liquid density is constant

and equal to 1000 [kg/m?®]. The gravity

is 9.8m/sec?] and width of the dam is

b= 4[m] C?mpare. the diffe':enl: methods Fig. -4.28 — Calculations of forces
of computations, direct and indirect. on a circular shape dam.

1<

4[m]

x direction

SOLUTION

The force in the x direction is
dA,
—
F, :/Pr cos 6 df
A

Note that the direction of the area is taken into account (sign). The differential area
that will be used is, br dfl where b is the width of the dam (into the page). The pressure
is only a function of 8 and it is

P = Piimos +pgrsint

The force that is acting on the x direction of the dam is A, x P. When the area A,
is brdf cosf. The atmospheric pressure does cancel itself (at least if the atmospheric
pressure on both sides of the dam is the same.). The net force will be

dA,

00 e e
F, :/ pgrsinf br cosfdf
0
The integration results in

b 2
F, = p92 " (1- cos> (60))
Alternative way to do this calculation is by cal-
culating the pressure at mid point and then
multiply it by the projected area, A, (see Fig-

ure [4.29) as

Ap =12 sinfcosf

T,
Az /—"‘? b Fig. -4.29 — Area above the dam arc sub-
——rsin ro. :
F, = pg brsinfy ; 0 _ /392 sin 6 tract triangle.
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Notice that dA,(cos ) and A, (sin ) are different, why?
The values to evaluate the last equation are provided in the question and simplify
subsidize into it as

1000 x 9.8 x 4 x 2

Fy
2

sin(45°) = 19600.0[N]

Since the last two equations are identical (use the sinuous theorem to prove it
sin’ 0 + cos? = 1), clearly the discussion earlier was right (not a good proof LO.
The force in the y direction is the area times width.

v
A
6o  r2siné cos by
F,=— 5~ 5 b gp ~ 22375.216[N]

The center area ( purple area in Figure [4.29)) should be calculated as

_ Ye A(L’!'C —Ye Atriangle
Ye A

The center area above the dam requires to know the center area of the arc and triangle
shapes. Some mathematics are required because the shift in the arc orientation. The

arc center (see Figure [4.30) is at

47 sin® (g)
Yeare = T

All the other geometrical values are obtained from
Tables[3.1and and substituting the proper values

results in 4r sin (3) cos (9)
36
A Ye Ye Atriangle 0
arc - e ——
7.2 4rsin (g) cos (g) B 27 cosf sinfr?
Yeor = 2 36 3 2
C - .
" 0r2 12 siné cosd -
. v 47 sin (5)
2 2 36
~ ——
Aare Atriangle

This value is the reverse value and it is
Fig. -4.30 — Area above the dam arc
Yo, =1 65174[m] calculation for the center.
. .

L4Well, it is just a demonstration!
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The result of the arc center from point “O" (above
calculation area) is

Yo =7 — Yo = 2 — 1.65174 ~ 0.348[m)
The moment is

M, =y Fy ~ 0.348 x 22375.2 ~ 7792.31759[N x m]

The center pressure for x area is

Iyn
¥ (rcosby)®
——— I _ r costly 36 _ 5rcos by
T A 2 r costly 9
5 B (r cosby)
——

T
The moment due to hydrostatic pressure is

51 cosby

Mh:prac: 9

F, ~ 15399.21[N x m)
The total moment is the combination of the two and it is

Miotar = 23191.5[N x m)]

For direct integration of the moment it
is done as following

0o
dF:PdA:/ pgsinfbrdl
0

and element moment is

)4
——

dM = dF x { =dF 2r sin <z) cos (0)

2

and the total moment is

0o
M:/ dM
0

fo 0 0
M:/ pgsinfbr2r sin() cos <) do
0 2 2

Fig. -4.31 — Moment on arc element around
Point “O.”

or
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The solution of the last equation is

_grp (260 —sin (26o))

M
4

The vertical force can be obtained by

0o
F, = / PdA,
0

or

90/_/\“,_(1;4;
F, :/ pgr sinfrdf cosf
0

2
F, = g1"2 p (1 — cos (90)2)

Here, the traditional approach was presented first, and the direct approach second.
It is much simpler now to use the second method. In fact, there are many programs
or hand held devices that can carry numerical integration by inserting the function and
the boundaries.
End Solution

To demonstrate this point further, consider a more general case of a polynomial
function. The reason that a polynomial function was chosen is that almost all the
continuous functions can be represented by a Taylor series, and thus, this example
provides for practical purposes of the general solution for curved surfaces.

Example 4.17:

For the liquid shown in Figure ,cal- o 5
culate the moment around point “O" and :

the force created by the liquid per unit i1
depth. The function of the dam shape is ° \\

y = > a;x’ and it is a monotonous ‘\fﬂ"”
function (this restriction can be relaxed ' -
somewhat). Also calculate the horizontal .

and vertical forces.

n i
y =X ax

Fig. -4.32 — Polynomial shape
dam description for the mo-
SOLUTION ment around point “O” and
force calculations.
The calculations are done per unit depth (into the page) and do not require the actual

depth of the dam.
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The element force (see Figure|4.32) in this case

is
P
———
— / ‘
dF = (b—y) gp/daz? + dy?

The size of the differential area is the square root of
the do? and dy? (see Figure [4.32)). It can be noticed
that the differential area that is used here should be
multiplied by the depth. From mathematics, it can be
shown that

d 2
Vdz? +dy? =dz 1+ <y>
dx

Fig. -4.33 — The differ-
ence between the slop

The right side can be evaluated for any given and the direction an-
function. For example, in this case describing the dam gle.
function is

1+ (2)2 =\ |1+ (iia(i) x(z')“>2

The value of xp is where y = b and can be obtained by finding the first and positive
root of the equation of

OZiaixifb
i=1

To evaluate the moment, expression of the distance and angle to point “O” are needed
(see Figure[4.33). The distance between the point on the dam at z to the point “O” is

Uz) = V(b —y)? + (2 — 2)?

The angle between the force and the distance to point “O” is

1 (dy - b—y
_ 1 1
O(z) = tan (dx) tan <Ib x)

The element moment in this case is
dF

2
dM =L0(z) (b—y)gpr/1l+ (Zi) cosf(z) dx

To make this example less abstract, consider the specific case of y = 25. In this case,
only one term is provided and x; can be calculated as following
6/ b

Tp =] =
b 2
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‘

Notice that f/g is measured in meters. The number “2" is a dimensional number with

units of [1/m®]. The derivative at z is

dy 5
— =12
dz .

and the derivative is dimensionless (a dimensionless number). The distance is

2
0=, (b—2x8)7+ (f/g—a,)

The angle can be expressed as

b—22x5

ofb
2

6 = tan~? (12 1‘5) —tan~!
—x

The total moment is

v
M = / U(z)cosO(z) (b—22°%) gpV/1+122° da
0

This integral doesn’t have a analytical solution. However, for a given value b this integral
can be evaluate. The horizontal force is
b pgb?

Fp=bpg—- = ——
h 092 9

The vertical force per unit depth is the volume above the dam as

7

6

7

vE 5
FU:/ (b—2m6)pgdx:pg
0

In going over these calculations, the calculations of the center of the area were not
carried out. This omission saves considerable time. In fact, trying to find the center of
the area will double the work. This author find this method to be simpler for complicated
geometries while the indirect method has advantage for very simple geometries.

End Solution

4.6 Buoyancy and Stability

One of the oldest known scientific research on fluid mechanics re-
lates to buoyancy due to question of money was carried by Archimedes.
Archimedes principl{r_gﬁs related to question of density and volume.

15This topic was the author’s high school class name (ship stability). It was taught by people like
these, 300 years ago and more, ship builders who knew how to calculate GM but weren't aware of
scientific principles behind it. If the reader wonders why such a class is taught in a high school, perhaps
the name can explain it: Sea Officers High School ( or Acco Nautical College)
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While Archimedes did not know

much about integrals, he was able to _

capture the essence. Here, because this / o
material is presented in a different era, a|_ 4 /AN
more advance mathematics will be used.

While the question of the stability was

not scientifically examined in the past, b

the floating vessels structure (more than Fig. -4.34 — Schematic of Immersed
300 years ago) show some understand- Cylinder.

ing.

The total net forces the liquid and gavity exact on a body are considered as
a buoyancy issue while the moment these force consided as a stability issue. The
buoyancy issue was solved by Archimedes and for all practical pupuses is realy solved
issue. Furthermore, as a derivative, the stability in the perpendicular direction liquid
surface is a solved problem did not give to any real question (like oscillating of body is
solved problem). While there are recent papers which deal the issue but they do solve
any issue in this respect. However, the rotation stability is issue that continue to be
evolved even after this work. There three approaches that deal with issue which are in
historical order are Metacenter, potential, and moment examinatiorEl

To understand this issue, consider a cubical and a cylindri-
cal body that is immersed in liquid and center in a depth of, hg —
as shown in Figure The force to hold the cylinder at the ho
place must be made of integration of the pressure around the
surface of the square and cylinder bodies. The forces on square
geometry body are made only of vertical forces because the two
sides cancel each other. However, on the vertical direction, the
pressure on the two surfaces are different. On the upper surface
Fhe pressure is p g (ho —a/2). On the Iovv.er .surface the Pressure  pi. 4.5 - The float
is pg (ho + a/2). The force due to the liquid pressure per unit ing forces on Im-
depth (into the page) is mersed Cylinder.

F=pg((ho—a/2) — (ho+a/2)) tb=—pgabl=—pgV
(4.147)

In this case the ¢ represents a depth (into the page). Rearranging equation (4.147)) to
be

F
g 4.148
v =rY ( )

The force on the immersed body is equal to the weight of the displaced liquid. This
analysis can be generalized by noticing two things. All the horizontal forces are canceled.
Any body that has a projected area that has two sides, those will cancel each other
in the perpendicular to surface direction. Another way to look at this point is by

6The first method was developed 300 years ago, the potential was developed about 30 years ago
and moment examination if present here for the first time.
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approximation. For any two rectangle bodies, the horizontal forces are canceling each
other. Thus even these bodies are in contact with each other, the imaginary pressure
make it so that they cancel each other.

On the other hand, any shape is made of many small rectangles. The force on
every rectangular shape is made of its weight of the volume. Thus, the total force is
made of the sum of all the small rectangles which is the weight of the sum of all volume.

In illustration of this concept, consider the cylindrical shape in Figure [4.34] The

force per area (see Figure [4.35)) is
P dAyertical
——
dF =pg (hg —r sinf)sinfrdf (4.149)

The total force will be the integral of the equation (4.149))
2m
Fz/ pg (hg —r sin®)rdb sinf (4.150)
0
Rearranging equation (4.149)) transforms it to
2m
F = rgp/ (ho — r sin6) sin 6 df (4.151)
0
The solution of equation (4.151)) is

F=-mr’pg (4.152)

The negative sign indicate that the force acting upwards. While the horizontal force is

27
F, = / (ho — 7 sind)cosfdf =0 (4.153)
0

Example 4.18:
To what depth will a long log with radius, r, a length, { and density, p,, in liquid with
density, p;. Assume that p; > p,,. You can provide that the angle or the depth.

Typical examples to explain the buoyancy are
of the vessel with thin walls put upside down into
liquid. The second example of the speed of the
floating bodies. Since there are no better examples,
these examples are a must.

Example 4.19:

A cylindrical body, shown in Figure[4.3Q ,is floating
in liquid with density, p;. The body was inserted
into liquid in a such a way that the air had remained

Fig. -4.36 — Schematic of a thin wall
floating body.
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in it. Express the maximum wall thickness, t, as a

function of the density of the wall, ps liquid den-

sity, p; and the surroundings air temperature, T for the body to float. In the case
where thickness is half the maximum, calculate the pressure inside the container. The
container diameter is w. Assume that the wall thickness is small compared with the
other dimensions (t << w and t << h).

SOLUTION

The air mass in the container is

v Pair
P,
2 atmos
Mair = TW D=
The mass of the container is
A
2
Meontainer = | TW" + 2mwh tps

The liquid amount enters into the cavity is such that the air pressure in the cavity equals
to the pressure at the interface (in the cavity). Note that for the maximum thickness,
the height, hy has to be zero. Thus, the pressure at the interface can be written as

On the other hand, the pressure at the interface from the air point of view (ideal gas
model) should be

Mair RTI

hin mw?

Pin:

v

Since the air mass didn't change and it is known, it can be inserted into the above

equation.
P
—

(wwzh)%ml

Riy, ™ w2

plghin+Patmos:Pin:

The last equation can be simplified into

h Patmos

PLg hm + Patmos = h
in

And the solution for h;, is

Patmos + \/4ghPatmos Pl + Patm052
29m

hin:_
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and

) — \/49 hpatmos Pl + Patmos2 - Patmos
" 29p

The solution must be positive, so that the last solution is the only physical solution.

End Solution

—_— — s A dvance material can be skipped w— — —

Example 4.20:
Calculate the minimum density an infinitely long equilateral triangle (three equal sides)
has to be so that the sharp end is in the water.

SOLUTION

The solution demonstrates that when h — 0 then h;,, — 0. When the gravity
approaches zero (macro gravity) then

Pamos h2 2h3 2 .2 5h4 3,3
By = =2 T h ngr P9 P g

2 3
Ly Patmos Patmos Patmos

This “strange” result shows that bodies don't float in the normal sense. When the
floating is under vacuum condition, the following height can be expanded into

hPa mos Pa mos
hin = Tty ROt
gpi 2gm

which shows that the large quantity of liquid enters into the container as it is expected.
Archimedes theorem states that the force balance is at displaced weight liquid (of
the same volume) should be the same as the container, the air. Thus,

net displayed

; air
water container
Pa mos
mw? (h = hin) g = (rw*+27wh) tp,g+mwh (RtT)g
1

If air mass is neglected the maximum thickness is

29 hw Pl + Patmos w—w \/4 gh Patmos Pl + Pat'm032
(2gw+4gh) pips

The condition to have physical value for the maximum thickness is

tmaw -

QQhPl + Patmos Z \/4gh Patmos Pl + Patmos2

The full solution is

(w R \/99h Patmos pr+ Patmos®—2 9 hw R pi—Patmos w R) Ti+2 g h Patmos  pu
tmaz = — (2gw+4gh) Rp, ps Th
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In this analysis the air temperature in the container immediately after insertion
in the liquid has different value from the final temperature. It is reasonable as the
first approximation to assume that the process is adiabatic and isentropic. Thus, the
temperature in the cavity immediately after the insertion is

T _ (B
RN

The final temperature and pressure were calculated previously. The equation of state is

Mair R Tz

P, =
Vi

The new unknown must provide additional equation which is
Vi =mw?h;

Thickness Below The Maximum

For the half thickness t = th,m the general solution for any given thickness below
maximum is presented. The thickness is known, but the liquid displacement is still
unknown. The pressure at the interface (after long time) is

2 Patm,os
Tw* h e RTy

(hzn + hl) 7T’U}2

PLyg hm + Patmos =

which can be simplified to

h Patmos

LG Pin + Patmos = m

The second equation is Archimedes' equation, which is

Pamos
ﬂwQ(h—hin—hl): (77w2+27rwh)tpsg)+7rw2h ( RtT ) g
1

End Solution

—_— — s Fnd Advance material e— —

Example 4.21:

A body is pushed into the liquid to a distance, hg and left at rest. Calculate acceleration
and time for a body to reach the surface. The body's density is . p; , where « is ratio
between the body density to the liquid density and (0 < o < 1). Is the body volume
important?

SOLUTION
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The net force is

liquid body
weight weight

~ =
F= Vgp —Vgap =Vgp(l-a)

But on the other side the internal force is

m

—~ =
F=ma=Vap a

o= (157)

If the object is left at rest (no movement) thus time will be (h = 1/2at?)

Thus, the acceleration is

2 ha

V)

If the object is very light (o« — 0) then

3 5 7
2ha  V2gha?2 3v2gha2 5+2gha?
+ + + +
g 29 8¢ 16g

tmin -

From the above equation, it can be observed that only the density ratio is important.
This idea can lead to experiment in “large gravity” because the acceleration can be
magnified and it is much more than the reverse of free falling.

End Solution

Example 4.22:

In some situations, it is desired to find equivalent of force of a certain shape to be
replaced by another force of a “standard” shape. Consider the force that acts on a half
sphere. Find equivalent cylinder that has the same diameter that has the same force.

SOLUTION

The force act on the half sphere can be found by integrating the forces around the
sphere. The element force is

dA,

h dA
——

—_——~
dF = (pr, — ps) g r cos ¢ cosf cos @ cos ¢ r* df do

The total force is then

F$:/ /(pL—pS)gc052¢cos29r3d9dq§
o Jo
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The result of the integration the force on sphere is

R ) 4—ps)7°3

The force on equivalent cylinder is
Fc:WTQ(PL*PS)h

These forces have to be equivalent and thus

WZXYZMh

Thus, the height is
h 7

r 4

End Solution

Example 4.23:

In the introduction to this section, it was assumed that above liquid is a gas with
inconsequential density. Suppose that the above layer is another liquid which has a bit
lighter density. Body with density between the two liquids, p; < ps < rhoy is floating
between the two liquids. Develop the relationship between the densities of liquids and
solid and the location of the solid cubical. There are situations where density is a
function of the depth. What will be the location of solid body if the liquid density
varied parabolically.

SOLUTION

In the discussion to this section, it was shown that net force is the body volume times
the density of the liquid. In the same vein, the body can be separated into two: one
in first liquid and one in the second liquid. In this case there are two different liquid
densities. The net force down is the weight of the body p. h A. Where h is the height of
the body and A is its cross section. This force is balance according to above explanation
by the two liquid as

pe A = AN (api+ (1 — @)pp)

Where « is the fraction that is in low liquid. After rearrangement it became

Pc — Ph
o =
PL— Ph

the second part deals with the case where the density varied parabolically. The density
as a function of = coordinate along h starting at point py, is

p(z) = pp — (%)2 (pn — p1)
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Thus the equilibration will be achieved, A is canceled on both sides, when

peh = /:1+h {Ph - (%)2 (pn — pz)} dx

1

After the integration the equation transferred into

(3p1 —3pn) 12+ (3hp, —3hpn) x1 +h%p +2h% py,
3h

pch:

And the location where the lower point of the body (the physical), z1, will be at

VBBR2p2 + (Ape — 612 pr) pr+ 3R pp® — 12 pepn +3hpr — 3hpy

X1
6pn —2p
For linear relationship the following results can be obtained.

_ hpr+hpr—6pc
2p1—2pp

T1

In many cases in reality the variations occur in small zone compare to the size of the
body. Thus, the calculations can be carried out under the assumption of sharp change.
However, if the body is smaller compare to the zone of variation, they have to accounted
for.

End Solution

Example 4.24:

A hollow sphere is made of steel (ps/p., = 7.8) with a t wall thickness. What is the
thickness if the sphere is neutrally buoyant? Assume that the radius of the sphere is
R. For the thickness below this critical value, develop an equation for the depth of the
sphere.

SOLUTION

The weight of displaced water has to be equal to the weight of the sphere

psg@ = pu g (MRS _Am (R t)3> (4.XXIV.a)

3 3 3

after simplification equation (4.XXIV.a]) becomes

ps R?
Puw

=3tR*-3t°R+13 (4. XXIV.b)

Equation (4.XXIV.b]) is third order polynomial equation which it's solution (see the
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appendix) is

ho= (-4-4 < )+R
( p

bo- (1) (‘SR R3> R (4XXIV.c)

2
th( Ls 1+)
Puw

The first two solutions are imaginary thus not valid for the physical world. The last
solution is the solution that was needed. The depth that sphere will be located depends
on the ratio of ¢/R which similar analysis to the above. For a given ratio of t/R, the
weight displaced by the sphere has to be same as the sphere weight. The volume of a
sphere cap (segment) is given by

h2 (3R — h
Viap = % (4.XXIV.d)

Where h is the sphere height above the water. The volume in the water is

3 2 3_ 2, 13
47r3R _7h (3;%—h) _4m (R ?;)Rh + 1) (4.XXIV.e)

Vwater =

When V,4ter denotes the volume of the sphere in the water. Thus the Archimedes law
is
pwdm (R*—3Rh>+h*)  p.dn (3tR*—3t° R+1%) (4.XXIV f)
3 N 3 o

or
(R3—3Rh2+ 1) = 22 (3t R2 - 312 R+ 9) (4.XXIV.g)

Ps
The solution of (4.XXIV.g)) is

1
h(\/—fR(4R3—fR) fR2R3>3
- 2 B 2

R2

<\/—fR (AR*—fR) fR-2R?
2 2

(4XXIV.h)
Where —fR = R® — ';w (3t R?2 — 3t2 R + t®) There are two more solutions which

contains the imaginary component. These solutions are rejected.

End Solution
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Example 4.25:

One of the common questions in buoyancy is the weight with variable cross section and
fix load. For example, a wood wedge of wood with a fix weight/load. The general
question is at what the depth of the object (i.e. wedge) will be located. For simplicity,
assume that the body is of a solid material.

SOLUTION

It is assumed that the volume can be written as a function of the depth. As it was
shown in the previous example, the relationship between the depth and the displaced
liquid volume of the sphere. Here it is assumed that this relationship can be written as

Viw = f(d, other geometrical parameters) (4.XXV.a)

The Archimedes balance on the body is

p@Va = pwVw (4XXVb)
d= f—lf'f‘;j (4.XXV.c)

End Solution

Example 4.26:
In example a general solution was provided. Find the reverse function, f~! for
cone with 30° when the tip is in the bottom.

SOLUTION

First the function has to built for d (depth).

d 2
. md (3@) _ w;ﬁ (4.XXV1.a)

= 32T Pw (4.XXVL.b)
Pe Va

End Solution

Thus, the depth is

4.6.1 Stability

Simplistically, the stability of floating body is divided into three categories. When
moments/forces are such that they returned the immerse body to its original
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position state is referred to as
the stable body and vice versa.
The third state is when the cou-
ple forces do have zero moment, l
it is referred to as the neutral sta-
ble. An example of such situation
is a rounded body, like a marble,
on flat surface.

Floating uniform  density
bodies are, as it can be observed, Fig. -4.37 — Schematic of floating bodies.
are inherently “unstable.” Only
at extreme case where liquid density is almost equal to the density of solid body it
will be neutral stability. Bodies with none uniform densities can be both situations, in
stable and none stable. The bodies with none uniform density can arrange the center
of mass in lower position. The discussion here will be focused on uniformed bodies as
they provide more complicated situations. The none uniformed bodies are like uniform
bodies but with a different center of gravity. To understand the unstable zone consider
Fig. [4.37] which shows a body made of a hollow balloon and a heavy sphere connected
by a thin and light rod in three different configurations. The left one (a) shows the
sphere just under the balloon in middle (b) there is a slight deviation from the previous
case. Case 3 depicts (right side) almost opposite to case (a). This arrangement has
mass centroid close to the middle of the sphere. The buoyant centroid is below the
middle of the balloon. If this arrangement is inserted into liquid and will be floating,
the balloon will be on the top and sphere on the bottom Fig. [4.37p. Tilting the body
with a small angle from its resting position creates a shift in the forces direction to
return original state (examine Fig. ) These forces create a moment which wants
to return the body to the resting (original) position. When the body is at the position
shown in Fig. [4.37k, the body is unstable and any tilt from the original position creates
moment that will further continue to move the body from its original position. This
analysis doesn't violate the second law of thermodynamics because it takes energy to
move the body to the unstable situation.

a b ¢

4.6.1.1 Centroid of Floating Body or Buoyancy Centroid

To carry this analysis a new concept has to in-

troduce, the center or centroid of floating body .—

or Buoyancy Centroid denoted “B.” The pres-

sure center discussed in Section [£.5.1.7]in this

section expanded to deals with the equivalents Fig. -4.38 — Center of mass arbitrary float-
force that acting on the floating bodies. To il- ing body.

lustrate this point consider an arbitrary shape floats on liquid shown in Fig. It was

shown, in this book, that the force acting on floating body must be only in the vertical

direction. Furthermore, the liquid pressure must be balanced the displaced liquid. The

equivalent force of the pressure acting on the body in equilibrium can be obtained from
calculating the center mass of the displaced liquid. Note that the above statement is
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correct for arbitrary density (for example, if the density, p = f(h)). If the body is not in
equilibrium with the floating force does not act at the center of mass. The location and
direction of the force is some distance from the center of the mass yet in the vertical
direction.

4.6.1.2 History of the Stability Analysis

The history of the stability analysis is reflective of general physics and fluid mechanics
science. A good summary is given by (Nowacki and Ferreiro 2003)) but lacking major
developments that occurred in the last 30 years. The highlights of stability analysis
research show that it was important topic for a long time. Clearly having ship that do not
flipped in the sea (or other water body) was important since the early time. The test was
done by some individuals moving on the floating body to examine how the stable is the
ship. The real understanding of the stability is tied to more advance mathematics and
fluid mechanics there was no ability to examine this issue. For example, Archimedes did
not know about the concept of pressure hence he lack a major tool in his understanding.

The early work was done by Huy- = 1%
gens (Huygens 1967) by that time the *
concept of pressure and some knowledge
of early calculus was available. Even
the concept of “specific gravity” (spe-
cific density) was introduced by that
time (density was introduced 1586 by
Simon Stevin). Stevin also discover that
the forces (gravity and buoyancy) have
to act in the same line as prerequisite
for stability. French mathematics Paul
Hoste, (1652'1700) made attempt to Fig. -4.39 — Bouguer Showing Metacen-
tackle the stability problem but fail be- ter.
cause did know about the calculus.

In Euler was requested by the Russian (at the time he was Russian Tzer kids
tutor, what a lucky students) to review the work of La Croixs work (Euler 1735; [Euler
1736)). As usual money was the reason pushing the science forward. That was the age
of discovery and ability to project power especially with a marine power was essential.
During that era the ship’s gunport was developed The need to find the water line and
maximum turning point before water get into the ship were important. Hence the
importance of developing the science behind the stability.

Pierre Bouguer French Hydrologist (fluid mechanics) got his father royal professor
post at age of 15 after his father pass away (must be very smart kid). He improved the
numerical integration methods (trapezoid methodﬂ Later he derived the Metacenter
concept (Bouguer 1746)) see Fig. This Metacenter method is the most used
method today. Yet, when one tries to use it, it is found to be complicated and graphical

7 This method is widely used in stability study even though there are simpler and better methods
like Simpson’s rule
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representation (or numerical modeling) is commonly required. If the conversion to
moment of inertia is utilized then the body must be smooth.

As results, another method
namely the potential/energy principle front view

top view

is or could be used. In this method
the energy or the potential of the
system is written and utilized to find
stability points. This technique was
first proposed by Huygens and again
because lack of calculus developed at Fig. -4.40 - Typical rotation of

that time he failed to work it out the ship/floating body.

technical details.

Paul Erdds et al was the first (this author is not aware other who worked the
details) to have used this approach successfully (Erdos, Schibler, and Herndon 1992).
Amazingly the authors were not aware the centroid calculations are well established
topic and used complex integral calculations to find the centroid of trapezoid (and
these calculations were done 1992!). Additionally they have made some nonessential
assumptions which Mohammad Abolhassani was able to fix. The calculations of centroid
were not explained in the last paper (Abolhassani 2004). The potential method will be
explain briefly later on. This approach utilizes mathematics without the ability to see or
examine what cause what and why. In way the methods abstract the physics and convert
it a pure mathematical creation. The method is seeking to find the angle(s) for which
the shortest vertical distance between buoyancy centroid and the gravity/mass centroid.
Numerous mathematical papers (dealing with the mathematics) where published later
dealing with abstract. It is the opinion of this undersign that many of these papers
are without any real meaning to the stability of floating body. It is interesting to
point out that because lack of physical observation ability or because the underline the
equilibrium analysis it was assumed that it is a dimensional compartmental. In stability
of floating bodies the stability is compartmental under very unique cases where the body
is symmetrical and extruded body. For example, using marine terminology, roll rotation
creates yaw rotations because change of Centroid location in x,y, and z directions.

The newest approach is Direct Examination approach and it is suggested by this
undersign. The Metacenter method is probably the closest to the Direct Examination.

side view

Example 4.27:
In the illustration depict G above B. Explain why at equilibrium stage the G and
B must be in same vertical action line.

SOLUTION

On of the favorite question that this undersign bring to engineers. Assume that G is
not the same vertical action line as the B. In that case, a moment is created and the
body will rotate until G and B will on the vertical action line.

End Solution
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4.6.1.3 Introduction to Direct Examination Method

A cubic (for example made of pine) is in-

serted into liquid. In this specific case, half

the block floats above liquid line. The cu- ALC

bic mass (weight) is in the middle of the = —

cubic (assuming uniform density). However -

the buoyancy center is the middle of the vol- 7= B

ume under the water (see Fig. [4.41)). This -

situation is similar to Fig. [4.37c. However, Fig. -4.41 — Schematic of Cubic
any experiment of this cubic shows that the showing the body center (G)
cubic is stable only under special conditions. and lift center (G).

Small amount of tilting of the cubic results in immediate returning away from the orig-
inal position. For example, under the conditions where wood (solid) density is half of
the liquid, the distance between GB (also AB) is exactly quarter of the side (a/4) as
it can be observed from the drawing. The location of center of gravity is constant and
centroid of the immersed part is a/4 and hence a/2 — a/4 = a/4. The buoyancy force
will be the weight of the cubic. When the centroid is exactly under the center of mass
of the cubic it can be in equilibrium. What happen when the buoyancy force and gravity
force are slightly deviate from the equilibrium? This question is the question of stability.

The stability can be answered by looking in Y

what direction the moment created. If the E 2t gl
moment trys to return it to “original” and § b/2

trys to keep the two forces in the same line

then the situation is stable. This topic inno- Ay

vative (for now) and therefore it would be Az d
explained in stages with some material that Y X
can be omitted for mathematically incline

individual. Fig. describes the new lo- b

cation of the inclination of the body by pur-
ple line. When the centroid point appears
left to the purple line the body is stable and
conversely (to be on the right hand side of the purple line a < 8).

In this case as it will be shown the body is unstable and the cubic will tilted away.

When the cubic is floating at 45 degree the mass gravity centroid is in the same
location. But as it will be shown the angle « is large and therefore the body is stable.
It has to emphasis that this discussion refers to a specific density ratio. (in other words
that body density is half of the liquid).

From geometrical consideration (see Table page center is 1/3 of the
height. The height is b/v/2 and hence the GB (more importantly AB) is b/3+/2.
It can be noticed that in this case the value GB is smaller than the GB distance
in the upright situation, that is b/4 > b/3v/2. The value of GB (or AB) in the
upright is about 0.01429774 b larger than the tilted case but any other configuration.

Fig. -4.42 — The Change Of An-
gle Due Tilting.
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Yet for both cases the forces are identical (why?
Because body has the same mass yet the moment
is smaller due to a small leverage.). This point
is actually the base for the energy method.

In this case, all the situations are “unsta-
ble” (the term unstable is used because G is
above B and therefor forces are pointing to each
other) yet the case with the 45 degree is the least
“unstable” (shown in Fig. [4.37k) because when Fig. -4.43 — Cubic on the side
turned the moment turns body to the original (45°) stability analysis.
state. Hence, the (45 degree) location is the
most stable. Also note body has the smallest moment (the force is the same). This
topic is related to curve of dynamical stability and Moseley's formula (for stability not
rays). Yet, this topic will not be covered in this book.

In other geometries and/or other densities of liquid and floating body, this kind of
analysis has to done to determine the least “unstable” situation. This analysis can be
done in a conventional way which will presented first and in new innovative approach.
The conventional method introduces a new geometrical location which used to describe
the stability while this location is physical it requires calculations and it is not “visible.”
While the conventional approach is used by many, now this undersign recommends
to utilize the new direct examination method. The potential method is simpler and
practical but requires some theoretical understanding and abstraction of the physics.

4.6.1.4 The Direct Examination

The critical point a@ = 0 determines where limit B
point where body is stable. Hence, the position OWS‘ b0,

under investigation is given small tilting angle the AS'tef,gflzag,e
analysis has to check the relationship between « /Old Coordinate
and 0. If a > 6 then the body in position under System
investigation The quantitative test is the ratio
g (it must be noted that this ratio really does
not require finding either 6 or a. The value of
this ratio indicts how much stable the body at a
specific position. Most of the calculations would Fig. -4.44 — Arbitrary body
have to done numerically. rotates in ¢ and the

. . . . . buoyancy centroid ro-
This core of the idea mentioned in the in- tates in o. The brown o

troduction and it will be expanded here. There shows the case of stable
are two possibilities one with o < 6 shown in scenario. The purple de-

. . - - picts the large a not sta-
brown in Fig. and two with a > 6 shown in bl oase.

purple in Fig. [4.44] The old coordinate system

represents the arbitrary body before the rotation and new coordinate system present the
situation after the rotation. The center of both coordinate is the same location that
is point A which is the intersection of the liquid surface and the vertical line from old
buoyancy centroid. After the rotation, the gravity will be in the new coordinate system
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pointing to negative y ordinate. In that case the buoyancy for small « will rotate the
body to restore to the original location. For large o the buoyancy center will rotate the
body further from the original state.

Example 4.28:
What are the minimum conditions for 3D effects.

SOLUTION

The cause of 3D effect is the asymmetry in two directions “opposite to the motion at
question.” That is a ship that perfectly symmetrical along the length of the ship but
“front” ( bow) and “back” (stern) are asymmetrical (for various reasons) the centroid
of the ship move along back and forth (between the bow and the stern) as result ship
has yaw rotation. (that is for example, roll creates yaw).

End Solution

It was shown that Eq. (3.16]) the relationship is

tan9 7 9 7
o = tan’ a5 0 =~ Gé) (4.154)

Where point G is total volume centroid (uniform density bodies). Equation Eq. (4.154)
is written for a very small angle # when the change of y is very small. And for practical
application the stability condition is

BG < 2 (4.155)

Fig. -4.45 — Rectangular body floating in a liquid for stability analysis.
It can be notice that the right hand side depend only on the volume and surface at
the immersed side while the left hand side depend on the difference between the entire
body and the immersed part.

Example 4.29:
What are the conditions that extruded rectangular shape will be floating stable in a
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liquid (see Fig. . Assume that the dimensions of the rectangular are s >> b long
and the crosse section is b the width and D the height are same magnitude.

SOLUTION

The governing equation Eq. (4.155]) determines the stability conditions. In this case,
BA is given by D/2—d/2 the moment of inertia given in the book b s/12. The volume
is Vo =dbs.

b2
W
il

4 XXIX.
D _d_ 1o ( a)
2 27 4 b

A
rearrange Eq. (4.XXIX.a|) reads
b2
6 (D—d)< i (4.XXIX.b)
The relation between the different heights (Archimedes’ law) is
ped=psD (4.XXIX.c)
Substituting Eq. (4.XXIX.d) into Eq. (4.XXIX.a]) reads
d d
D D D D
622 D22 <> 6l (D—'OS >>b2 (4.XXIX.d)
Pe Pe Pe Pe
Eq. (4.XXIX.€) can be rearranged to be written as
L (1 _ Ps) (4.XXIX.€)
D pe pe

The results of Eq. (4.XXIX.e) are depicted in Fig. It can be noticed that (as

expected) for large values of b/ D the body is stable. However, when the densities ratios
are very small (22— 0) or very large (22 — 1) (solid density is close to liquid
density) even for small value the ratio of geometries the body is stable (not intuitive).
In the mid range of densities requires a larger ratio of b/D. Note that edge close range
ps/pe — 0 or ps/pe — 1 this analysis is not applied.



4.6. BUOYANCY AND STABILITY 139

Rectangle Stability Graph

1.4 T T T T T T T

Ll S'table Stabie ]

Unstable

00 01 02 03 04 05 06 07 08 09 10
Ps
Pe

Fig. -4.46 — Extruded rectangular body stability analysis.

This figure is new (for 2021 and it will be standard the word new should be removed
later) and first was published in this book.
End Solution

From the dome shown the Fig. it is expect body with density ratio of about
0.5 (closer to 0.6) to less stable than the body extremely light density. As it can be
observed in Fig. The difference is so significant that the light body is extremely
stable while heavier body like wooden squire is unstable.

(a) Wooden block floating in a water (b) Foam block floating in a water
withe density ratio of around 0.6. with density ratio of around 0.05.

Fig. -4.48 — Demonstration that light body (small density ratio) are more stable than the
heavier bodies. In fact the even smaller ratio of b/D are stable for the foam as shown
the photo. For example, the most right on the left photo is unstable (1:1) while the right
phone even (1:2) is stable. This experimant was not done before and it deomonstrate the
Direct Examination model showing the dome applicabilty.

Most modern ships are build like a square for example the Ever giving Ship. This kind of
ship with there displacement are unstable. Thus it requires to the gravity center below
the center of the body topic that will be discussed later.

1, 2, and 3 corners in the liquid

This topic should not be fluid mechanics book but the stability book. Neverthe-
less, it is add to here as a temporary place holder.
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This discussion deals with uniform density. When extruded rectangular floating
body in liquid there is two regimes. These two regimes are separated by half point
(ps = 0.5p¢). At this limiting case when a square turning to 45° there are three corners
(or one if half corner is considered to be out) in the liquid. Otherwise, there are two
corners in the liquid at all time. When (p; > 0.5p,) then there are situations where two
corners or three corners inside the liquid. There are no situation with only one corner.
Conversely, in the case (ps < 0.5p¢) there are only one corner or two corners in the
liquid.

Example 4.30:

A long extruded isosceles triangle is
placed up side down in a liquid (shown
in Fig. Analyze the stability for
this case. This auther (Bar-Meir 2021))
point out that this arrange is right
for this kind analysis (change of fixed

Fig. -4.49 — Floating upside down tri-
angle in liquid. The Points A and B

point).  For this exercise neglect this are representation to actual location
point. Assume that the base and the which is at the center.

height of the triangle are provided.

SOLUTION

The mass centroid of the triangle is 1/3 of the height. The location of buoyancy centroid
is 1/3 of the immersed part for case of the tip in the liquid. Archimedes's law combined
with the geometrical identities hy/D = r4/b provides

hqryg bD Ps Td hq
——=ps— [ — = — = — 4 XXX.a
" T pm b D ( )
The governing equation requires that
ICIXE
BA < — (4.XXX.b)
Vo
Substituting the value for the various parameters
rdg;f
2D _2ha _ 1 (4.XXX.c)

3 3~ rahaf
2

Utilizing the identities in equations Eq. (4.XXX.a|) provides

sz

2D (0 [ps) w_rd (4.XXX.d)
3 pe) ~ 6rdhqg 6 hq




4.6. BUOYANCY AND STABILITY 141
Moving all the geometrical terms to the right and densities to left yields

T‘d2

——~

§
v ()2 (4 XXX.e)
(o-yE)< L

22 (- 2) <2 (43000

Eq. has significance which was not explored in this section. The relationship
is different from those obtained in a rectangular extrusion shape, no dome. It can be
said that here heavier the body the more stable it become. It indicate that if you are
on boat that has traingle shape you shoud make it heavir. And the body will “fail” if it
is very light. This phenomenon is oppose the squire shape shown before. In “regular”
rectangular extrusion does not have a singular point as in triangle extrusion. In the
“regular” rectangular and cylinder the relationship was with the densities ratio while
here it is with square root and this factor was not examined yet.

Or in a cleaner form as

End Solution

Example 4.31:

A cylinder is floating on a liquid when z coordinate is upright. Under what conditions
the cylinder is stable. Is 3-D effects appears in the stability analysis of the cylinder
under the condition in this question.

SOLUTION

There is no 3-D effects because the cylinder is symmetrical in both directions around
the x axis and the y axis. The condition for stability is

BA< 17 (4.XXX1.2)

0

The moment of inertia of circle is given in table L., = wr*/4. The volume of
the submerged part is 772 d. The location of point A A = D/2 and the location of
B =d/2. The last part is to related between submerged volume to total volume as

dp; =D p, (4.XXXL.b)

Armed with all the components Eq. (4.XXXIl.a)) can be written as

A
<_4
“wZd

Slie
SIES
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which can be rearranged as

4
Pe
and finally get the form as
T [2es (1 _ Ps) (4. XXXl.c)
D Pe Pe

It can be observed that the smallest possible value of the Eq. (4.XXXI.c)) when the ratio
(ps/pe = 0.5) and in that case, 7 > v/2D. The results are presented in Fig. MThe
strange fact is the stability line appears symmetrical as the rectangular shape in regard
to densities ratio.

End Solution

Cylinder Stability Graph
0.8 ! ! ! : :

or | Staiole St;‘ibie ]

0.6 |

~]Q 04

0s| Unstable

0.2 |

0.1

0.0 L L L L L L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Pe

Fig. -4.50 — Cylinder in upright position stability line.

4.6.1.5 Potential Energy Approach

This method was suggested by Erdos at el and was slightly improved by Abolhassani.
This method based on the idea that a derivative of potential energy can provide a loca-
tion or locations where a system has a minimum (or maximum) and thus it is potential
location of stability poinﬂT_Sl The energy used in this scenario is the gravitational energy
that is expressed as

Usys = (M +m) ghprem =g (mhy, + M hay) (4.156)

Where subscript sys referred to the entire system. The m is referred to floating body
and M is referred to the displaced liquid in other words to the mass if the liquid was
filling the submerged volume. The logic to the last definition is that it represents the

18This topic should be discussed elementary physics class and not fluid mechanics textbook. However,
if there will be a significant request it will be briefly discussed.
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potential of the buoyancy force acting in the center immersed part. The change in the
potential is due to the change in the angle

dUsys
de

=0 (4.157)

The condition that angle, 6 is by checking the second derivative if it positive or negative.
In away doing example it will repetitive of the moment method converting it to potential
and going over the mathematics. This book is more focus on the physics and therefore
it not presented.

Fig. -4.51 — T shape floating to demonstrate the 3D effect The rolling creates yaw.
To correct the energy method, it suggested that a new stability potential energy should
build similar to velocity potential that is discussed in this book on potential flow. The
following definition should be adapted. The stability potential is defined as

V&) = Froi+ Fpyj+ Frak (4.158)

Where ®; is the stability function. Fy, and Fy, are the components in the z (yaw) y
(pitch). The main component which roll is Fy, and the difference that this main/mostly
movement that cause the movement in the other two directions. Fig. depicts a
body in a shape of the “T" that is symmetrical along it length. However the body is not
symmetrical in any other direction. The top (out stretch segment) is thin enough so
that it just at the liquid level. If there any roll the material suddenly at the thin section
will enter the liquid. In fact under this configuration, the force and the moment will be
the largest at thin segment. Since the force acting on the body from non symmetrical
location. That is, there are two different moments one the roll direction and one in the
yaw direction.
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4.6.1.6 Metacenter Approach

Fig. -4.52 — Stability analysis of floating body.

The two methods that previously discussed are very direct (moving examination) and
the abstract (potential energy). Metacenter method is based on the difference between
the body’s local positions gravity centroid and imaginary point that is referred to as
Metacenter. These points are results from the buoyant force and can be obtained by
following analysis. Assuming general body floating and it is at a certain configuration.
To check if the body is stable at this situation the body is tilted at a small angle, 6, and
the force (momentum) is examined. The immersed part of the body center changes to
a new location, B’ as shown in Figure The center of the mass (gravity) is still in
the same old location since the body did not change.

The body, shown in Figure when given a tilted position, move to a new
buoyant center, B’. This deviation of the buoyant center from the old buoyant center
location, B, is calculated. This analysis is based on the difference of the displaced liquid.
The right brown area (volume) in Figureis displaced by the same area (really the
volume) on left since the weight of the body didn't changeEIso the total immersed area
(volume) is constant. For small angle, 6, the moment is calculated as the integration
of the small force shown in the Figure as AF. The displacement of the buoyant
center can be calculated by examining the moment these forces creates. The body
weight creates opposite moment to balance the moment of the displaced liquid volume.

BE'W =M (4.159)

Where M is the moment created by the displaced areas (volumes), BB’ is the distance
between points B and point B’, and, W referred to the weight of the body. It can
be noticed that the distance BB’ is an approximation for small angles (neglecting the
vertical component.). So the perpendicular distance, BB’, should be

— M
BB = — 4.160
- (4.160)

191t is correct to state: area only when the body is extruded. However, when the body is not extruded,
the analysis is still correct because the volume and not the area should be used.
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The moment M can be calculated as

OF

M / 0dA 9/ 2dA (4.161)
= [ gmg T=gp x :
A = A

The integral in the right side of equation ({4.161)) is referred to as the area moment
of inertia and was discussed in Chapter The distance, BB’ can be written from

equation (4.161)) as

g pi Ixm
Psvbody

BB' = (4.162)
The point where the gravity force direction is intersecting with the center line of
the cross section is referred as metacentric point, M. The location of the metacentric
point can be obtained from the geometry as
BB’
BM = 4.163
sin 6 ( )

And combining equations (4.162)) with (4.163)) yields

Bif— _ APO0ea _ prle
gps sin 0 Vioay Ps Vbody

(4.164)

For small angle (6 ~ 0)

. siné
lim
6—0

~1 (4.165)

It is remarkable that the results is independent of the angle. Looking at Fig. the
geometrical quantities can be related as

BM
—
AT Pl wa Yl
GM = ———— —BG (4.166)
pstody
It can be noticed that the combination of Vioayps/pe = Vi and thus

S
GM = 222 _BG (4.167)
Vo

To understand these principles consider the following application.

4.6.2 Application of GM

All the terms in Eq. (4.167)) normally provided and it is simply plugging them into the
Eq. (4.167) and obtaining the results. lllustrate these points an extensive example is
provided.
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Fig. -4.53 — Cubic body dimensions for stability analysis.

Example 4.32:

In Fig. depicts the extruded rectangular with various dimensions. Assume that
the body is solid with density below the liquid density, calculate the GM for various
dimensions.

SOLUTION

The governing equation is
1

GM == —-BG (4.XXXIl.a)
Vo
As before the densities is used to related
Vope = Vbody ps — dpe =D p, (4XXX||b)

Point G is located at D/2 and point B is located at d/2. Moment of inertia is I =
b3 5/12 and the volume is Vy = d sb Armed with these data Eq. (4.XXXIl.a|) becomes

b3
_ 12 (D _d (4. XXXIl.c)
a5 (5-5)

or in dimensionless form as

2
GM _ 1 (b) (Pf> 1 (1 _ Ps) (4.XXXI1.d)
D 12 \ D Ps 2 pe

Plotting the results of various density and b/D provides the following figure
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GM as a function of density ratio
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Fig. -4.54 — GM of Rectangular shape with various dimensions.

The rectangular has larger GM when floating on very heavy liquid. It is more stable if
it is lighter. The blue line differentiate between positive and to negative GM values
The Fig. exhibits the GM as function of the density ratio for various ratio of b/D.
The figure demonstrates that there is a minimum with every graph that is around the
ps = 0.5p. For some ratios of b/D the figure demonstrates that GM is negative. As
solid density approaches to liquid density, the body becomes more stable and even with
positive GM for some b/ D ratios. At mid range density range the body is less stable.

End Solution

Example 4.33:

Assume that you are on a floating body (boat or ship) and it is about turn to it side.
what should you in order to save the floating body? Throw items over board or bring
more things to ship like your raft that is normally tied to your boat?

SOLUTION

If the ship or the boat is light that throwing items will make more stable. On the other
the boat is almost full and you should add more items and make it as heavy as you
can (even pump water into the ship). It is common to have a maximum load marking
on the ship or boat. Normally this point should be design in about 30% of the ship
displacement. Thus, if the convention is applied that it better to throw as much as
possible. The reason that maximum mark exist is or should be for stability reasons.
Load about that point will the ship unstable (below safety factor).

As anecdote of this author, on his ship mechanic duty exam (on a missile boat) a
common question was what to do when ship shows signs of turning. The proper answer
was to pump and throw overboard everything as possible out. The question was origi-
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nated by someone experienced it first hand without any the theoretical understanding.

End Solution

Example 4.34:

A cylinder with a radius, r and a length
D is floating on a liquid. Calculate the
GM for various densities ratios and ra-
tios of r/D. The schematic is shown in
Fig. Not